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Abstract

Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in
western China. A comprehensive understanding of the ecological response of A. inebrians
germination to environmental factors would facilitate the formulation of better management
strategies for this weed. Experiments were conducted under laboratory conditions to assess the
effects of various abiotic factors, including temperature, light, water, pH, and burial depth, on
the germination and seedling emergence ofA. inebrians. The seeds germinated at constant tem-
peratures of 15, 20, 25, 30, and 35 C and in alternating-temperature regimes of 15/5, 20/10,
25/15, 30/20, 35/25, and 40/30 C, and the germination percentages under constant and
alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum
germination occurred at a constant temperature of 25 C, and germination was prevented at
45/35 C. Light did not appear to affect germination. The germination percentage of seeds
was more than 75% in the pH range of 5 to 10, with the highest germination percentage at
pH 6. The seeds germinated at osmotic potentials of 0MPa to−1.0MPa, but decreasing osmotic
potential inhibited germination, with no germination at −1.2MPa. After 21 d of low osmotic
stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling
emergence percentage was highest (90%) when seeds were buried at 1 cm, but declined with
increasing burial depth, with no emergence at 9 cm. Deep tillage may be effective in limiting
the germination and emergence of this species. The results of this study provide useful infor-
mation on the conditions necessary forA. inebrians germination and provide a theoretical basis
for science-based prediction, prevention, and control of this species.

Introduction

Grasslands, one of the most important ecosystems in the world, comprise 40% of the global land
surface and are not being utilized effectively due to topography and climate (Squires 2009). In
recent years, due to overgrazing and human activities, the stability of grassland ecosystems has
been greatly weakened, resulting in grassland degradation (Asner et al. 2004; Squires 2009).
Overgrazing of grasslands causes flora and fauna biodiversity to decline (Hilker et al. 2014).
China has the second-largest area of grazing grasslands in the world and plays an important
role in global ecology (Hua and Squires 2015). Due to overgrazing, grasslands in northwest
China are being invaded by poisonous and harmful plants (Lu et al. 2012). One of these inedible
plants is drunken horse grass [Achnatherum inebrians (Hance) Keng], which is toxic to grazing
animals. (Miles et al. 1996).

Achnatherum inebrians is a clumping perennial poisonous herb of the Poaceae family. This
species is native to Europe and Asia and grows in high mountains, slopes, roadsides, and valleys
at altitudes of 1,700 to 2,400 m (Ji 2009). Mature A. inebrians can reach a height of 60 to 150 cm,
and each compact inflorescence can produce approximately 700 small, easily shed seeds (Miles
et al. 1996). Spreading by seeds is one of the important ways of population dispersal (Dilixiati
et al. 2017). Because this grass contains toxic alkaloids (Miles et al. 1996), livestock fed upon it
display symptoms of intoxication such as sluggishness, tottering, drooping, and glaring (Ji
2009). These alkaloids are produced by a seed-transmitted symptomless fungal endophyte,
Epichloë gansuensis (C.J. Li & Nan) Schardl (Bruehl et al. 1994). Previous research has shown
that almost 100% of A. inebrians plants in natural rangeland are infected by the endophyte
E. gansuensis (Li et al. 2004).The endophytic fungi improves resistance to biotic (pest, nematode,
etc.) and abiotic (drought, cold, barren, etc.) factors and promotes rapid growth of A. inebrians
(Nan et al. 2016;Wang et al. 2018). However,A. inebrians is poisonous to livestock and has come

Downloaded From: https://complete.bioone.org/journals/Weed-Science on 28 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use

https://www.cambridge.org/wsc
https://doi.org/10.1017/wsc.2020.81
mailto:jguili@126.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-1861-1040
https://orcid.org/0000-0002-8515-6930


to dominate degraded grasslands in Xinjiang, Qinghai, and other
northwestern areas (Li et al. 1996). For example, the total area of
natural grassland in Xinjiang is 57 million ha, and the area domi-
nated by A. inebrians is as high as 450,000 ha; its coverage can
reach 85% in lush areas, greatly affecting local animal husbandry
development (Yan et al. 2015).

The expansion and reproduction of most plants depend on the
spread of seeds and successful establishment of seedlings to build
new populations. Germination is a key stage of the plant life cycle
(Xu et al. 2001). Some research has shown that germination and
emergence ability are positively correlated with the establish-
ment and spread of poisonous weeds (Chauhan et al. 2006d).
Germination and seedling emergence are affected not only by seed
properties but also by abiotic environmental factors, including
temperature, light, pH, water, and depth of burial (Baskin and
Baskin 1998; Chachalis and Reddy 2000; Chauhan and Johnson
2010; Chauhan et al. 2006a; Javaid and Tanveer 2014; Koger
et al. 2004). Previously published studies on A. inebrians have
focused mainly on its endophytic association (Chen et al. 2016),
toxicological mechanism (Liang et al. 2017), production and deg-
radation of alkaloids (Zhang et al. 2011; Zhu et al. 2017), and ger-
mination (Duan et al. 2012; Wang et al. 2010; Yu et al. 2009).
However, extreme tolerance-range information for environmental
factors affecting A. inebrians germination and emergence is not
clear in the published literature. Detailed information on the eco-
logical requirements of A. inebrians germination may facilitate the
development of effective control measures. Therefore, the objec-
tives of this study were to systematically determine the effects of
environmental factors such as temperature, light, pH, moisture,
and burial depth on the germination and emergence ofA. inebrians.

Materials and Methods

Seed Collection and Preparation

Seeds (0.32 kg total) were collected randomly from 300 individuals
belonging to the same natural population of A. inebrians in July
2017 from Saerdaban village in Urumqi, Xinjiang, China
(43.47°N, 87.25°E). The tests of individual samples (conducted 5
mo after collection; unpublished data) revealed that germination
among samples was similar. After being combined, the seeds were
air-dried and stored in paper bags in a cool (20 ± 5 C),
ventilated, dry environment before use. The 1,000-seed weight (with
awns) was 1.527 g.

General Germination Test

This experiment was conducted in May 2018 at the College
of Grass and Environmental Sciences, Xinjiang Agricultural
University, Urumqi, China. Germination of A. inebrians was
assessed in a laboratory by placing 30 seeds on two layers of filter
paper (Whatman No. 1, Maidstone, UK) in a 9-cm-diameter petri
dish. The seeds were moistened with 5 ml of distilled water or test
solution for the experiment (solutions of different pH or levels of
osmotic stress), and petri dishes were sealed with parafilm to pre-
vent moisture loss and kept in controlled-environment growth
chambers set at a constant temperature of 25 C with alternating
12-h light and dark conditions for all experiments unless specified
otherwise. Fluorescent lamps produced a photosynthetic photon
flux density of 200 μmol m−2 s−1 for all experiments. Germination
was considered successful when the radicle broke through the seed
coat. (Chauhan and Johnson 2008). Germinated seeds were counted
daily for 21 d (from the beginning of experiment to the time

germination stabilized). The germination values were defined as
the ratio of the number of germinated seeds to the total number
of seeds per petri dish.

Effect of Temperature on Germination

To determine the optimal germination temperature and influence
of temperature on the germination of A. inebrians, 30 seeds per
replicate of each treatment were placed at seven constant temper-
atures (10, 15, 20, 25, 30, 35, and 40 C) and in seven fluctuating
temperature (day/night) regimes (15/5, 20/10, 25/15, 30/20, 35/25,
40/30, and 45/35 C). The fluctuating temperature regimes were
selected to reflect the temperature variation from spring to summer
of the collection habitat in Saerdaban village in Urumqi, Xinjiang,
China. To determine whether exposure to high or low tempera-
tures and low temperature affects seed viability, the ungerminated
seeds from specific constant temperatures (10, 35, and 40 C) and
fluctuating temperatures (15/5, 40/30, and 45/35 C) and blank con-
trol seeds were transferred to a growth chamber with the temper-
ature set at optimal temperature (25 and 30/20 C, respectively).
The number of germinated seeds was determined after 21 d.

The following equation was used to estimate the time required
for the germination percentage to reach 90% (t90) at different tem-
peratures (Li et al. 2012):

t90 ¼ Hp � Lp
� ��1 þ L [1]

where L is the day before germination percentage reaches 90%, Lp
is the germination percentage on day L, and Hp is the germination
percentage when it reaches or exceeds 90%.

Germination percentages obtained at different constant tem-
peratures and fluctuating temperatures were fit to a functional
three-parameter sigmoid model (SigmaPlot v. 13, Systat Software,
San Jose, USA) (Chauhan and Johnson 2008). The fitted model
was as follows:

G %ð Þ ¼ Gmax=f1þ exp½� t � t50ð Þ=Grate�g [2]

where G is the cumulative germination percentage (%) at time
t,Gmax is the maximum germination percentage (%), t50 is the time
required to achieve 50% germination, and Grate is the slope of
the curve.

Effect of Light on Germination

To evaluate the influence of photoperiod on germination, petri
dishes containing A. inebrians seeds were incubated under 0/24,
6/18, 12/12, 18/6, and 24/0-h light/dark regimes at a constant tem-
perature of 25 C. In the dark treatment, petri dishes were wrapped
in double layers of aluminum foil to avoid any effects of light on the
experiment. In the treatments with 0/24, 6/18, 12/12, 18/6, and
24/0-h light/dark regimes, petri dishes were allowed light exposure
for 24, 18, 12, 6, and 0 h, respectively. Additionally, the addition of
water to the petri dishes and daily germination counts were con-
ducted under green safe light in a darkroom.

Effect of pH on Germination

To determine the influence of pH on the germination of A. inebrians,
seeds were placed in buffer solutions with pH values ranging from
4 to 10 configured in advance according to the methods described
by Reddy and Singh (1992) and Wu et al. (2015). Three acid sol-
utions (pH< 7), one neutral solution (pH= 7), and three alkaline

Weed Science 63

Downloaded From: https://complete.bioone.org/journals/Weed-Science on 28 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use



solutions (pH> 7) were used. Other experimental conditions were
the same as those described in the general germination test.

Effect of Osmotic Stress on Germination

To study the influence of drought stress on the germination of
A. inebrians, seeds were tested in aqueous solutions with osmotic
potentials of 0, −0.1, −0.2, −0.4, −0.6, −0.8, −1.0, −1.2, and −1.3
MPa. Polyethylene glycol 6000 was used as a drought stimulator
and prepared following published methods (Chachalis and
Reddy 2000; Michel 1983; Michel and Radcliffe 1995). Other
experimental conditions were the same as those described in the
general germination test. To determine whether exposure to low
osmotic potential would affect seed viability, the remaining unger-
minated seeds under low osmotic potential (−0.8, −1.0, −1.2, and
−1.3 MPa) were rinsed with distilled water five times and trans-
ferred to a growth chamber at 25 C after 5 ml of distilled water
was added. The number of germinated seeds was counted after
21 d.

Germination percentages (%) obtained at different osmotic
potential conditions were fit to a three-parameter sigmoid model
(SigmaPlot software) (Chauhan and Johnson 2008). The fitted
model was as follows:

G %ð Þ ¼ Gmax=f1þ exp½� x � x50ð Þ=Grate�g [3]

where G is the cumulative germination percentage (%) at osmotic
potential x, Gmax is the maximum germination percentage (%), x50
is the osmotic potential required to achieve 50% germination, and
Grate is the slope of the curve.

Effect of Burial Depth on Germination

To study the effects of burial depth on the emergence of A. inebri-
ans seeds, experiments were conducted in controlled-environment
growth chambers. The soil (pH 7.34, organic matter 33.93 g kg−1,
electrical conductivity 206.33 μs cm−1) used for this experiment
was collected from the site where the seeds were collected. The soil
was passed through a 3-mm sieve and autoclaved before the experi-
ment to ensure that there were no living seeds in the soil. In each
plastic pot (height: 12 cm; diameter: 15 cm), 30 seeds were placed
evenly on the soil surface (0 cm) or covered with soil at depths of 1,
2, 4, 6, 8, and 9 cm. Pots were watered every other day to maintain
adequate soil moisture. All pots were placed randomly inside a
growth chamber at a constant temperature of 25 C with a photo-
period of 12 h. The seedlings were considered to have emerged
when the coleoptile was visible above the soil surface. Emergence
was counted daily for 21 d until emergence stabilized. At the end
of the experiment, pots with no plant emergence were checked to
identify whether the coleoptile failed to reach the soil surface or
the seeds failed to germinate.

Variation trends of seedling emergence percentage (%) obtained
at different burial depths were fit to a three-parameter sigmoid
model (SigmaPlot software) (Mahmood et al. 2016). The fitted
model was as follows:

E %ð Þ ¼ Emax=f1þ exp½�ðx � x50Þ=Erate�g [4]

where E is the final seedling emergence (%) at depth x, Emax is the
maximum seedling emergence percentage (%), x50 is the depth at
which 50% seedling emergence is achieved, and Erate is the slope of
the curve.

Statistical Analysis

All experiments were arranged in a randomized complete block
design with four replications. Experiments were repeated over
time, and the second run of experiments was started within a
month of termination of the first run. There was no statistical dif-
ference (P> 0.05) between the two runs for all experiments, and
data were pooled across runs and used for subsequent analyses.
Data from all experimental sets from repeated experiments were
subjected to ANOVA with the general linear model procedure
using SPSS software v. 19.0 (IBM, Armonk, NY, USA), and a mean
comparison was performed using Fisher’s protected LSD test at
P ≤ 0.05. (Chauhan et al. 2006b; Hanif et al. 2017; Zhao et al.
2018). Regression analysis was conducted where appropriate using
SigmaPlot software.

Results and Discussion

Effect of Temperature on Germination

The effect of constant-temperature conditions on germination is
shown in Table 1. Achnatherum inebrians seeds germinated in
the temperature range of 15 to 35 C. In this range, the germination
percentages of the seeds first increased and then decreased with
increasing temperature. The germination percentages ranged from
50.83% (35 C) to 94.44% (25 C) in the constant temperature range
of 15 to 35 C, but the seeds did not germinate at constant temper-
atures of 10 and 40 C (Table 1). Achnatherum inebrians germi-
nated within 2 d at 25 and 30 C, which may reflect that the
effective accumulated temperature is reachedmore quickly at these
temperatures than at higher or lower temperatures. Germination
was completely inhibited at 40 C, which indicates that even though
the effective accumulated temperature was reached at high temper-
atures, the seeds failed to germinate. This result indicates that tem-
perature is an important factor for germination of this species, as
has been shown previously for other species (Chauhan and
Johnson 2008). A reasonable explanation is that such a high tem-
perature may affect the activity of enzymes needed for
germination.

Seeds took longer to start germinating at 15/5 C and did not
germinate at the 45/35 C temperature regime (Tables 1 and 2).
Compared with constant temperatures, the same average fluctuat-
ing temperatures had no significant effect on the germination per-
centage ofA. inebrians, except that the germination percentage was
significantly higher at 15/5 C than at 10 C. (Table 1). Nevertheless,
the germination trends under fluctuating temperatures (20/10, 25/
15, 30/20, 35/25, or 40/30 C) are similar to those under constant
temperatures (15, 20, 25, 20, or 35 C). These results are consistent
with those from previous studies on field brome (Bromus
arvensis L.), which is a gramineous weed (Li et al. 2015). Based
on this study, the optimum temperature range (20, 25, 30, 25/
15, 30/20 C) of A. inebrians is wider than was previously reported
(Yu et al. 2009). This may be caused by the different places where
the experimental materials were collected.

The seeds that did not germinate at constant temperature
(10, 35, and 40 C) and fluctuating temperatures (15/5, 40/30,
and 45/35 C) were transferred to 25 and 30/20 C, respectively.
After 21 d of high- and low-temperature stress, both the constant
temperatures (10, 35, and 40 C) and the fluctuating temperatures
(15/5, 40/30, and 45/35 C) inhibited germination (P < 0.05). These
data suggest that high-temperature stress had a greater effect on
germination than low-temperature stress (P< 0.05) (Figures 1
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and 2). Moreover, seeds in the fluctuating-temperature treatment
of 45/35 C completely lost their viability.

Effect of Light on Germination

Under continuous light (24/0), the germination percentage was 89%,
whereas exposure to continuous dark (0/24 h) increased the germina-
tion percentage to 96% (Figure 3). The germination percentages were
above 89% under continuous illumination or continuous darkness,
and the mean value was 93%, which indicated that germination
was not light sensitive. These results further suggest that the seeds
can germinate both in soil and on the soil surface. The insensitivity
to light makes A. inebrians more competitive in grassland habitats,
thus explaining to some extent the spreading of this plant.

Table 1. The germination of Achnatherum inebrians under constant- and
alternating-temperature regimes and t90 (the time required to reach 90% of
the germination percentage).a

Temperature T Total germination, mean ± SE t90b

C d % d
10 — 0 ± 0 e NA
15 6 84.16±3.69 ab NA
20 3 93.33 ± 3.04 a 16.10
25 2 94.44 ± 2.94 a 15.17
30 2 93.33 ± 1.92 a 16.30
35 3 50.83 ± 3.33 c NA
40 — 0 ± 0 e NA
15/5 13 15 ± 0.96 d NA
20/10 7 74.16 ± 6.14 b NA
25/15 3 89.16 ± 1.59 a NA
30/20 3 92.5 ± 1.59 a 9.16
35/25 3 83.33 ± 1.36 ab NA
40/30 3 45.83 ± 5.15 c NA
45/35 — 0 ± 0 e NA

Abbreviations: T, time at which germination began; t90, day on which the germination
percentage reached 90%; NA, the germination rate did not reach 90% in all replicates;
SE, standard error of all replicates for each treatment. Within a column, means followed
by the same letter indicate no significant difference in the mean value by Fisher’s protected
LSD test (P≤ 0.05).
bt90 was calculated using Equation 1: t90 = (Hp − Lp)−1 þ L, where L is the last day before 90%
germination was reached, Lp is the observed germination percentage on day L, and Hp is the
observed germination percentage on the day when germination reached or exceeded 90%.

Table 2. Parameters of the functional three-parameter sigmoid model used to
fit Achnatherum inebrians germination percentages (%) resulting from different
constant- and alternating-temperature regimes.a

Temperature

Parameter characteristicsb

Gmax Grate R2 t50

C
10/10 ND ND ND ND
15/15 89.32 3.21 0.98 10.38
20/20 90.79 2.12 0.98 8.96
25/25 94.81 2.52 0.99 6.77
30/30 86.26 1.13 0.96 3.21
35/35 43.06 3.79 0.91 7.79
40/40 ND ND ND ND
15/5 14.99 1.25 1 14.39
20/10 70.12 1.58 0.99 10.60
25/15 89.16 0.65 0.99 3.54
30/20 92.86 0.42 0.99 3.01
35/25 46.36 1.69 0.99 7.29
40/30 27.79 1.24 0.99 6.56
45/35 ND ND ND ND

aG(%) = Gmax/{1þ exp[−(t − t50)/Grate]}, where G is the total germination (%) at time t, Gmax is
the maximum germination (%), t50 is the time required for 50% inhibition of the maximum
germination, and Grate is the slope.
bND indicates that the seeds did not germinate at 10/10, 40/40, and 45/35 C.

Figure 1. Effect of rewarming on the germination of Achnatherum inebrians seeds at
25 C. Rewarming refers to the transfer of ungerminated seeds kept under a constant
temperature of 10, 35, or 40 C to a growth chamber set at the optimal temperature, 25
C (CK). The vertical bars represent the standard error of the mean. Bars with the same

Figure 2. Effect of rewarming on the germination of Achnatherum inebrians seeds at
30/20 C. Rewarming refers to the transfer of ungerminated seeds kept under a con-
stant temperature of 10, 35, or 40 C to a growth chamber set at the optimal temper-
ature, 25 C (CK). The vertical bars represent the standard error of the mean. Bars with

Figure 3. Effects of different photoperiods on the germination of Achnatherum
inebrians seeds under 25 C culture conditions. Bars with the same letters indicate that
there are no significant differences in the mean values by Fisher’s protected LSD test
(P≤ 0.05).
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Light is an important environmental signal regulating germina-
tion (Pons 1991), but the effect of light on the germination is spe-
cies specific. Many studies have shown that light can increase the
germination percentage of some species (Eslami 2011; Tang et al.
2010). However, studies have also found that light does not pro-
mote or may even harm the germination of certain weed seeds
(Li et al. 2007). Research showed that tall morningglory
[Ipomoea purpurea (L.) Roth] (Singh et al. 2012) germination
was not affected by light. Similar to our study, the germination
of seeds of American sloughgrass [Beckmannia syzigachne
(Steud.) Fernald] (Rao et al. 2008), Japanese brome (Bromus
japonicus Thunb.) (Li et al. 2015), musk weed (Myagrum perfo-
liatum L.) (Honarmand et al. 2016), tropical signalgrass
[Urochloa distachya (L.) T.Q. Nguyen] (Teuton et al. 2004),
and Tausch’s goatgrass (Aegilops tauschii Coss.) (Fang et al.
2012) were not affected by light.

Effect of pH on Germination

The germination of A. inebrians was ≥20% in the pH range of 4 to
10 (Figure 4). The highest (95%) and lowest (20%) germination
percentages were reached at pH values of 6 and 4, respectively
(Figure 4). While the germination percentage was highest at pH 6,
it was relatively stable between pH 7 and pH 10. The results showed
that A. inebrians could germinate at a wide range of pH values, a
strongly acidic environment could inhibit the germination of
A. inebrians seeds, and a strongly alkaline environment had no
impact on A. inebrians seeds. Different plants require different
pH environments for their germination and growth; however,
some plant germination can tolerate extreme pH levels. (Evetts
and Burnside 1972). Studies have reported that the germination
percentage of common sowthistle (Sonchus oleraceus L.) seeds
was more than 90% in the pH range of 5 to 8 (Chauhan et al.
2006b). Many invasive weeds have this feature, such as A. tauschii
(Fang et al. 2012), B. syzigachne (Rao et al. 2008), and B. japonicus
(Li et al. 2015). The ability of A. inebrians to germinate over a wide
range of pH levels indicates that it may adapt to a wide range of soil
conditions. The pH range of most soils in Xinjiang is between 5 and
10, and most of these soils are alkaline (pH> 7) (Feng et al. 2017).
The wide range of germination in either acid or base conditions
may make A. inebrians adaptable to many environments and

may increase its competitive advantage. This may be one of the rea-
sons why degraded grasslands in Xinjiang were severely invaded by
A. inebrians.

Effect of Osmotic Stress on Germination

Germination was greatly affected by osmotic potential (Figure 5).
The germination percentage decreased from 93% to 14% as the
osmotic potential decreased from 0 to −1.0MPa, with no seeds ger-
minating at −1.2 MPa. The osmotic potential necessary for a 50%
reduction in the maximum germination percentage was estimated
at approximately −0.76 MPa. Therefore, low osmotic potentials
had a strong effect on germination. The response of S. oleraceus
(Chauhan et al. 2006b), B. syzigachne (Rao et al. 2008), I. purpurea
(Singh et al. 2012), and false daisy [Eclipta prostrata (L.) L.] germi-
nation to osmotic potential was similar to the response of A. ine-
brians germination observed in this study. Other studies have
reported that turnip weed [Rapistrum rugosum (L.) All.] (Chauhan
et al. 2006c) and B. japonicus (Li et al. 2015) can withstand
−1.2 MPa low osmotic potentials.

The germination percentages of seeds decreased gradually with
the decrease in osmotic potential. However, when seeds that failed
to germinate at −0.8, −1.0, −1.2, and −1.3 MPa were transferred to
distilled water, the germination percentages of the rehydrated
seeds were more than 85%, which was similar to the control group
(P> 0.05). (Figure 6). The results suggest that germination was
inhibited, but the vitality of the seeds was not adversely affected
after 21 d of water stress. The seeds would be able to germinate
if a timely rainfall event occurred shortly after drought stress,
which may explain the distribution of A. inebrians in desert areas.

Effect of Burial Depth on Germination

Seedling emergence decreased as burial depth increased from
0 to 9 cm (Figure 7) and fit the three-parameter sigmoid model.
The maximum seedling emergence percentage (90%) was
observed for seeds at 1-cm depth. The minimum seedling
emergence percentage (2%) occurred with seeds sown at 8 cm,
whereas no seedlings emerged from seeds buried at 9 cm. The
seedling emergence percentage decreased sharply when seeds
were planted deeper than 4 cm. The depth required for a 50%

Figure 4. Effect of buffered pH solutions on the germination of Achnatherum
inebrians seeds at 25 C. The vertical bars represent the standard error of the mean.
Bars with the same letters indicate that there are no significant differences in themean
values by Fisher’s protected LSD test (P ≤ 0.05).

Figure 5. Effect of osmotic potential on the germination of Achnatherum inebrians
seeds at 25 C. Vertical bars represent the standard error of the mean, and a logistic
sigmoidal regression model is fit to the data.
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reduction in the maximum seedling emergence percentage was
estimated to be 5.32 cm. Similar to our findings, the emergence
of many species decreases with increased burial depth
(Li et al. 2015; Schutte et al. 2014).

In this study, A. inebrians seedling emergence was inversely
related to burial depth. Studies have shown that Asia Minor blue-
grass (Polypogon fugax Nees ex Steud.) emergence was completely
inhibited at 4-cm depth, and seeds planted deeply failed to emerge
because the small seeds could not provide enough nutrition for the
coleoptiles to reach the soil surface (Wu et al. 2015). Because of the
absence of light, the seedling emergence behavior of seeds buried
deeply may completely depend on seed reserves (Mennan and
Ngouajio 2006). This mechanism of germination and emergence
inhibition may be an important survival strategy for A. inebrians,
resulting in an underground seedbank (Benvenuti et al. 2001).
Most of the seeds of mature A. inebrians remain on the soil surface
or shallowly buried after being subjected to external forces. The
seed emergence percentage was highest on the surface and in
the shallow soil layers, which indicated that the seeds of
A. inebrians perform best under a natural, no-tillage system

(natural grassland). No seed emergence was observed from a depth
of 9 cm, indicating that deep tillage, with seeds buried at this depth,
could be a method to limit the emergence of A. inebrians. Deep-
tillage operations might be an option in an area being totally
restored to native grassland, but the potential adverse effects on
native species that are already established on an invaded site need
further study.

In summary, the seeds of A. inebrians showed strong tolerance
to variable temperature, light, moisture, pH, and burial depth dur-
ing germination. The results of this study indicate that A. inebrians
has adapted to germinate under a wide range of environmental
conditions commonly found in the Xinjiang region. These charac-
teristics of A. inebrians seed can also partly explain the successful
expansion of this species in Xinjiang, China. Achnatherum inebri-
ans has become a significant poisonous weed in natural grasslands.
Whether deep tillage can be applied in invasive sites where native
species have been already established needs to be further explored.
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