
Instar Determination for the Tomato Leafminer Tuta
absoluta (Lepidoptera: Gelechiidae) Using the Density-
Based OPTICS Clustering Algorithm

Authors: Wang, Wenqian, Xiao, Guanli, Yang, Baoyun, Ye, Jvhui,
Zhang, Xu, et al.

Source: Environmental Entomology, 51(5) : 940-947

Published By: Entomological Society of America

URL: https://doi.org/10.1093/ee/nvac065

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles
in the biological, ecological, and environmental sciences published by nonprofit societies, associations,
museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your
acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use.
Commercial inquiries or rights and permissions requests should be directed to the individual publisher as
copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit
publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to
critical research.

Downloaded From: https://complete.bioone.org/journals/Environmental-Entomology on 02 May 2024
Terms of Use: https://complete.bioone.org/terms-of-use



940© The Author(s) 2022. Published by Oxford University Press on behalf of Entomological Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Pest Management

Instar Determination for the Tomato Leafminer Tuta 
absoluta (Lepidoptera: Gelechiidae) Using the Density-
Based OPTICS Clustering Algorithm
Wenqian Wang,1,  Guanli Xiao,2 Baoyun Yang,1 Jvhui Ye,1 Xu Zhang,1 Yaqiang Zheng,3,4 
and Bin Chen1,4

1State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural 
University, Kunming 650201, China, 2College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, 
China, 3Resource and Utilization Research Center of Medicinal Cordyceps, Guizhou University of Traditional Chinese Medicine, 
Guiyang, Guizhou 550025, China, and 4Corresponding author, e-mail: chbins@163.com (BC), 15288338237@163.com (YZ)

Subject Editor: Angel Acebes-Doria

Received 11 March 2022; Editorial decision 27 July 2022.

Abstract 

The tomato leafminer Tuta absoluta (Meyrick) is one of the most harmful pests of solanaceous crops. Its larval 
morphological characteristics are similar, making the distinguishing between different larval instars difficult. 
Accurate identification of T. absoluta instars is necessary either for population outbreak forecasting, or de-
veloping successful control programs. Although a clustering algorithm can be used to determine the number 
of larval instars, little is known regarding the use of density-based ordering points to identify the clustering 
structure (OPTICS) and determine the number of larvae. In this study, larval instars of 240 T. absoluta 
individuals were determined by the density-based OPTICS clustering method, based on mandible width, 
and head capsule width and length. To verify the feasibility of the OPTICS clustering method, we compared it 
with the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm, Gaussian 
mixture models, and k-means. Additionally, the instars determined by the clustering methods were verified 
using the Brooks–Dyar rule, Crosby rule, and linear regression model. The instars determined by the OPTICS 
clustering method were equal to those determined by the other types of clustering algorithms, and the instar 
results were consistent with the Brooks–Dyar rule, Crosby rule, frequency analysis, and logarithmic regres-
sion model. These results indicated that the OPTICS clustering method is robust for determining insect larva 
instar phase. Moreover, it was found that three morphological indices of T. absoluta can be used for deter-
mining instars of this pest in the field, which may provide important information for the management of T. 
absoluta populations.

Key words: OPTICS clustering algorithm, larval instar, Tuta absoluta, tomato leafminer

Determination of the instar distribution of a pest population can 
provide important information for management because spray 
applications at a particular stage of pest larval development may 
increase the control efficacy. Thus, accurate instar determination in 
pests is important for forecasting the outbreak of pest insects, life table 
analyses, key factor analyses, and other aspects of biology (Esperk 
et al. 2007). The toxicity of some insecticides, as well as the effi-
ciency larval parasitoids, and the level of expression of certain genes 
with instar-wise variation are instar-specific (Ramasubramanian et 
al. 2020). The most direct method for determining the instar number 

is identifying morphological features by observing the molting 
larvae (Puri 1925, Kiguchi and Agui 1981). However, this method 
is suitable for insects with significant differences in the instar mor-
phological characteristics and short growth cycles that can be easily 
distinguished. For larval is that involve similar morphological char-
acteristics, long growth periods, and spend most of their time inside 
leaves, stems, and fruits of plants. Thus, the instars cannot be easily 
distinguished.

Therefore, some rules, models, and clustering algorithms have 
been developed to solve this problem. Traditional instar division 
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is based on Dyar’s rule, where a certain external morphological 
index of the insect body is measured (Dyar and Rhinebeck 1890). 
The larval development and growth rule was analyzed by the fre-
quency distribution method to determine the age of the larvae, and 
the growth rule of Brooks (1886), Floater (1996), and Crosby (1973) 
was used to assist the inference. However, these methods are based 
on the fact that biological characteristics tend to have a normal dis-
tribution, the frequency density curve is bell-shaped, and the instar 
number is then preliminarily assumed according to the data distribu-
tion state (Mcclellan et al. 1994, Jones et al. 2005, Wang et al. 2009). 
If the overlap area of two normal distributions is too large, then 
insect larval instars cannot be determined.

To account for these problems, some cluster analyses, such as the 
Gaussian mixture models (GMM, Wu et al. 2013), linear discrimi-
nant method (LDA, Hunt and Chapman 2001), k-means clustering 
algorithm (Yang et al. 2018), univariate kernel density estimation 
(Chen and Seybold 2013), adaptive kernel smoothing method (Cen 
et al. 2015), adaptive bivariate kernel smoothing method (Cen et 
al. 2018), density-based spatial clustering of applications with 
noise (DBSCAN) (Zheng et al. 2019), and artificial neural networks 
(Carmo et al. 2020), have been proposed. DBSCAN is a typical den-
sity clustering algorithm. Compared with k-means clustering and 
Gaussian mixture models, which are generally only applicable to 
convex sample sets, DBSCAN can be applied to both convex and 
nonconvex sample sets (Hahsler et al. 2019). However, its ina-
bility to find clusters of varying densities is a notable drawback of 
DBSCAN, resulting from the fact that a combination of a specific 
neighborhood size with a single density threshold minPts is used to 
determine if a point resides in a dense neighborhood.

Ordering points to identify the clustering structure (OPTICS) is 
proposed based on the DBSCAN clustering algorithm to reduce the 
instability of the clustering results caused by the parameter settings 
(Ankerst et al. 1999). OPTICS borrows the core density-reachable 
concept from DBSCAN. However, while DBSCAN may be thought 
of as a clustering algorithm, searching for natural groups in data, 
OPTICS is an augmented ordering algorithm from which either flat 
or hierarchical clustering results can be derived. OPTICS introduces 
two additional concepts called core-distance and reachability-
distance. The algorithm starts with a point and expands its neigh-
borhood in a manner similar to that of DBSCAN, but it explores 
new points in the order of lowest to highest core-distance. The order 
in which the points are explored in addition to each point’s core- and 
reachability-distance is the final result of the algorithm (Hahsler et 
al. 2019). However, to the best of our knowledge, no study using this 
algorithm has focused on determining the number of insect instars in 
the field of entomology.

The tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: 
Gelechiidae) is an important tomato pest native to Peru, South 
America (Desneux et al. 2010). This insect has been found in more 
than 80 countries and regions in South America, Europe, Africa, 
Central America, and Asia (Desneux et al. 2011, Biondi et al. 2017, 
Campos et al. 2017, Blazhevski et al. 2018, Mansour et al. 2018, 
Han et al. 2019, Zhang et al. 2020). Tuta absoluta is considered a 
typical invasive species due to its capacity to develop very quickly 
under suitable agroecological conditions, rapidly spread in new 
areas, and cause economically related damage (Tropea et al. 2012, 
Martins et al. 2016). If no prevention and control measures are 
taken, then this pest can cause losses of up to 80–100% in the yield 
of tomato crops in recently invaded areas, and thus, it has become 
a major threat to global tomato production (Desneux et al. 2010). 
Therefore, accurate and effective prevention and control of tomato 
leafminer is extremely urgent.

Although previous studies found that there are four larval instars 
in the life cycle of T. absoluta (Desneux et al. 2010), because its 
leaf-mining and stem-, or fruit-boring behavior, and its larval mor-
phological characteristics are similar, it is difficult to accurately de-
termine the specific larval instar. However, because it was proven 
that the third instar larvae of T. absoluta is the most susceptible 
to some strains of Beauveria bassiana (Balsamo) (Hypocreales: 
Cordycipitaceae) and Bacillus thuringiensis (Berliner) (Bacillales: 
Bacillaceae), while susceptibility was lower in the second instar larvae 
stage (Tsoulnara and Port 2016), the determination of the specific 
larval instar is very important for the control this pest. Furthermore, 
the predatory insect Dicyphus errans (Wolff) (Hemiptera: Miridae) is 
more willing to prey on first instar larvae of T. absoluta (Ingegno et 
al. 2013). Therefore, rapid and accurate determination of the specific 
larval instar of the tomato leafminer is necessary for predicting its 
occurrence and for comprehensive prevention and control. Unless its 
larval instars can be accurately determined, there will be great diffi-
culty in preventing and controlling this pest.

In this study, we used the OPTICS clustering algorithm (density-
based clustering) as a new method to assess the larval instar grouping 
of T. absoluta larvae. Larval instars were measured using head capsule 
width and length and mandible width of the newly hatched to ma-
ture T. absoluta larvae. The results of the OPTICS clustering algorithm 
were compared with DBSCAN, another density-based clustering algo-
rithm, as well as Gaussian mixture models (centroid-based clustering) 
and k-means clustering (distribution-based clustering). Through this 
work, we intend to provide a theoretical basis for studying the bio-
logical characteristics of T. absoluta, predicting pest outbreaks, and 
improving the existing integrated pest management strategy.

Materials and Methods

Insect Colony
The initial population of T. absoluta was collected in the greenhouse 
of Yunnan Agricultural University (102°44ʹ56ʺE, 25°07ʹ54ʺN). The 
experimental population was subcultured for three generations at 
room temperature on the Shouhe tomato.

Measurements of T. absoluta Morphological 
Characteristics
The adults of the above populations were placed in a nylon cage 
with potted tomato plants (1 × 1 m, 200 mesh) and raised at room 
temperature. After 24 hr of oviposition, the adults were removed, 
and the eggs were incubated. During the entire study period (from 
the newly hatched larvae to mature larva pupation), 20 larvae were 
randomly collected daily at 9:00 a.m. The end of larval instar was 
identified when the mature larvae dropped from infested leaves. 
Larvae were rinsed from the leaves and collected into a Petri dish 
using a paintbrush and a 2.5-ml liquid injector and then preserved 
in 70% alcohol (Jones et al. 2005, Yang et al. 2018, Zheng et al. 
2019). The head capsule width and length and mandible width of the 
larvae were measured to the nearest 0.001 cm using a Leica stereo-
microscope M205FA (Leica). These three characteristics were used 
together in the analysis to determine the instar stage.

OPTICS Clustering
Because OPTICS clustering was developed from the DBSCAN al-
gorithm, we will first briefly introduce the DBSCAN algorithm. The 
DBSCAN algorithm is one of the most cited density-based clustering 
algorithms (Microsoft Academic Search 2017), and it is probably 
the most commonly used density-based clustering algorithm in 
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today’s scientific community (Ester et al. 1996). The central idea be-
hind DBSCAN and its extensions and revisions is the notion that 
points are assigned to the same cluster if they are density reach-
able from each other. The DBSCAN algorithm identifies all such 
clusters by systematically finding all core points and expanding each 
to all density-reachable points. It is not always easy to determine 
the appropriate values for the two parameters ε and minPts. The 
parameters depend on the dataset and influence each other. Detailed 
information regarding these clusters has been described in previous 
studies (Hahsler et al. 2019, Zheng et al. 2019).

The inability to find clusters of varying density is a notable draw-
back of DBSCAN resulting from the fact that a combination of a 
specific neighborhood size with a single density threshold minPts 
is used to determine if a point resides in a dense neighborhood. 
OPTICS requires the same ε and minPts parameters as DBSCAN. 
However, the ε parameter is theoretically unnecessary and is only 
used for the practical purpose of reducing the runtime complexity 
of the algorithm. To describe OPTICS, we introduced two additional 
concepts called core-distance and reachability-distance.

Definition 1:
 ϵ-neighborhood. The ϵ-neighborhood, Nε ( p), of a data point p is 
the set of points within a specified radius ϵ around p.

|Nε( p)| = {q ∈ D | d ( p, q) < ε}

where d is some distance measure and ε ∈ R+. Note that together 
with p ∈ D this definition implies that point p is always part of its 
own ϵ-neighborhood, i.e., p ϵ always holds. The size of the neigh-
borhood |Nε( p)| showed as a simple unnormalized kernel density 
estimate around p using a uniform kernel with a bandwidth of ϵ.

…

Definition 2:
Core-distance. The core-distance of a point p ∈D with respect to 
minPts and ϵ is defined as:

core− dist ( p; ε,minPts) =

®
UNDEFINED
minPts− dist ( p)

if |Nε( p)| < minPts, and
otherwise

where minPts-dist(p) is the distance from p to its minPts-1 nearest 
neighbor, i.e., the minimal radius a neighborhood of size minPts 
centred at and including p would have.

Definition 3:
Reachability-distance. The reachability-distance of a point p ∈ D to 
a point q ∈ D parameterized by ϵ and minPts is defined as:

reachability− dist (p; ε,minPts) =

®
UNDEFINED
max(core− dist ( p) , d( p, q)

if |Nε( p)| < minPts, and
otherwise

The reachability-distance of a core point p with respect to ob-
ject q is the smallest neighborhood radius such that p would be di-
rectly density-reachable from q. Note that the parameters, although 
they have the same name, work differently than those in DBSCAN. 
OPTICS is typically set to a very large value compared to that of 
DBSCAN. Therefore, OPTICS will consider additional nearest 
neighbors in the core-distance calculation, and minPts affects the 
smoothness of the reachability distribution, where larger values will 
lead to a smoother reachability distribution. This scenario needs to 
be considered when choosing appropriate parameters. It is worth 
noting that the εparameter is strictly used for computational reasons, 
and it restricts the number of points considered in the neighbor-
hood search. It can safely be set to the maximum k-nearest neighbor 
(k-NN) distance, where k = minPts, and will achieve the same result 

as if ϵ were set to∞. Detailed information regarding these clusters 
has been described in previous studies (Hahsler et al. 2019).

The instar results for the OPTICS algorithm were assessed by 
the Brooks–Dyar and Crosby rules, frequency analysis, and loga-
rithmic regression model (Dyar and Rhinebeck 1890, Crosby 1973). 
Detailed information regarding these procedures has been described 
in previous studies (Wu et al. 2013, Yang et al. 2018, Zheng et al. 
2019).

Comparative Tests
To verify that the OPTICS clustering method is appropriate, 
DBSCAN clustering, k-means clustering, and Gaussian mixture 
models were also used to determine instars for T. absoluta. Detailed 
information regarding DBSCAN clustering is described above. 
Gaussian mixture model-based clustering was conducted based on 
the maximum-BIC model selected using the Bayesian information 
criterion (BIC). The BIC for parameterized Gaussian mixture models 
was fitted using the EM algorithm initialized by model-based hierar-
chical clustering. Detailed information on Gaussian mixture models 
has been described in previous studies (Wu et al. 2013, Scrucca 
et al. 2016, Zheng et al. 2019). Detailed information on k-means 
clustering has also been described in previous studies (MacQueen 
1967, Wagstaff et al. 2001, Yang et al. 2018). The instar results 
for the above three clustering methods were also assessed by the 
Brooks–Dyar and Crosby rules, frequency analysis, and logarithmic 
regression model (Dyar and Rhinebeck 1890, Crosby 1973).

Statistical Analysis Software
The statistical analyses were performed in R software, version 
4.1.0 (R Development Core Team, 2017). OPTICS and DBSCAN 
clustering were performed using the ‘dbscan’ package (Hahsler 
et al. 2019, Zheng et al. 2019). Gaussian mixture models were 
performed using the ‘mclust’ package (Scrucca et al. 2016), and 
k-means clustering was performed using the ‘Amap’ package (Lucas 
2019). Linear regression equation fitting was performed using the 
‘basicTrendline’ package (Mei et al. 2018). Data visualization was 
performed using the ‘ggpubr’, ‘ggplot2’, and ‘scatterplot3d’ packages 
(Ligges et al. 2002, Kassambara 2017).

Results

Determining T. absoluta Larval Instars by the 
OPTICS Clustering Algorithm
The OPTICS clustering algorithm was performed at a default MinPts 
of 5 points, and the results are shown as a reachability plot and 
convex hull plot (Fig. 1a and b). The OPTICS clustering algorithm 
was used on 240 larval individuals to correctly categorize them into 
one of four T. absoluta larval instar stages using head capsule width 
and length and mandible width. A total of 69, 42, 35, and 94 larvae 
at the first, second, third, and fourth instar phases, respectively, were 
recorded.

The averages of each clustering group, as determined by the 
OPTICS clustering algorithm, were verified using the Brooks–Dyar 
rule, Crosby rule, size-frequency distribution, and linear regres-
sion model of the Brooks–Dyar equation (Table 1 and Fig. 1). The 
Brooks–Dyar index of head capsule length and width and mandible 
width calculated using the OPTICS clustering algorithm ranged from 
1.569 to 1.720, 1.497 to 1.601, and 1.439 to 1.632, respectively, 
indicating a constant rate. The Crosby index of major morphological 
characteristics determined by the OPTICS clustering algorithm was 
less than 10%, showing that the cluster determined by the OPTICS 
clustering algorithm was sustainable.
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The T. absoluta larval instars determined by the OPTICS 
clustering algorithm were mapped to the size-frequency distribu-
tion (Fig. 1d–f). The clusters of all morphological characteristics 
fit the size-frequency distribution well, and there was no overlap in 
the histogram of the size-frequency distribution. We also performed 

principal component analysis (PCA) (Fig. 1b), and the results showed 
that the four clusters produced by the OPTICS clustering algorithm 
were completely mapped.

The log-transformed size of the morphological characteristics 
in each clustering group, as determined by the OPTICS clustering 

Fig. 1. Determining the T. absoluta larval instar stage using the ordering points to identify the clustering structure (OPTICS) clustering algorithm. (a–c) The results 
for T. absoluta larval instars, as determined by the OPTICS clustering algorithm map using the original data; (d–f) OPTICS clustering algorithm map of size-
frequency distributions. The different T. absoluta larval instars determined using the OPTICS clustering algorithm are annotated with different colors.
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algorithm, was plotted using the linear regression model of the 
Brooks–Dyar equation (Fig. 2). The Brooks–Dyar equation for man-
dible width was y=0.440 x-0.543 (R2 = 0.981, df = 238, RSS (residual 
sum of squares) = 1.392, p < 0.0001), and the growth rate constant 
eb was 1.553. The Brooks–Dyar equation for head capsule width was 
y=0.452 x+0.199 (R2 = 0.992, df = 238, RSS=0.657, p < 0.0001), and 
the growth rate constant eb was 1.571. The Brooks–Dyar equation 
for head capsule length was y=0.486 x-0.265 (R2 = 0.981, df = 238, 
RSS=1.773, p < 0.0001), and the growth rate constant eb was 1.626. 
Thus, the size of each morphological characteristic exponentially 
increased with the T. absoluta larval instars. The results also showed 
that the clusters created by the OPTICS clustering algorithm were con-
sistent with those created by the Brooks–Dyar rule, further supporting 
its reliability for determining the number of T. absoluta larval instars.

Comparative Tests
To verify that the OPTICS clustering algorithm is appropriate and 
scientific, DBSCAN clustering, k-means clustering, and Gaussian 
mixture model creation were performed. The same instar clusters 
determined by the OPTICS clustering algorithm were determined 
by the DBSCAN clustering, k-means clustering, and Gaussian mix-
ture models. For DBSCAN clustering, the same instar clusters were 
obtained with a neighborhood radius eps of 0.04 and a minimum 
number of points (MinPts) of 4 (Fig. 3). According to the largest 
BIC value (Fig. 4), the unconstrained model with four clusters 
was selected, and the same instar clusters were determined by the 
Gaussian mixture models. For k-means clustering, the same instar 
clusters were obtained at k = 4.

The clusters of all morphological characteristics, as determined 
by DBSCAN clustering, k-means clustering, and the Gaussian mix-
ture models, were the same as those determined by the OPTICS 
clustering algorithm and fit the Brooks–Dyar rule and Crosby rule 
well (Table 1). Thus, OPTICS clustering can be used for determining 
T. absoluta larval instars.

Discussion

In this study, the density-based OPTICS clustering algorithm was 
used to determine the number of T. absoluta larval instars based on 
head capsule width and length and mandible width, and the results 
were the same as those obtained through the DBSCAN clustering 
algorithm (density-based clustering), Gaussian mixture models 
(centroid-based clustering), and k-means clustering (distribution-
based clustering) and fit the Brooks–Dyar and Crosby rules, and 
size-frequency distribution well. Our results showed that T. absoluta 
larval instars were reliably and effectively determined by the OPTICS 
clustering algorithm and three other types of clustering algorithms. 
The results indicated that this density-based clustering method is a 
promising tool for the identification of T. absoluta larval instars. It 
will not only be the necessary raw material for forecasting but also 
for developing successful control programs for T. absoluta.

Gaussian mixture models, as distribution-based clustering has 
been used in determing the instars of Blaptica dubia (Serville) 
(Blattodea: Blaberidae) (Wu et al. 2013), k-means clustering, as 
centroid-based clustering has been used in determing the Simulium 
quinquestriatum (Shiraki) (Diptera: Simuliidae) (Yang et al. 2018). 
However, these algorithms are greatly influenced by subjective 
factors of users. For Gaussian mixture models, the clustering 
was conducted based on the model selected using the BIC, which 
is rather complicated. For k-means clustering, the k parameter 
signifies the user-specified number of clusters to find (Hahsler et Ta
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al. 2019). Density-based clustering approaches have become in-
creasingly popular due to their ability to capture clusters of arbi-
trary shapes, including nonconvex shapes. Although, density-based 
clustering of density-based spatial clustering of applications with 
noise (DBSCAN) clustering has been successfully used to deter-
mine the instars of Phthorimaea operculella (Zeller) (Lepidoptera: 
Gelechiidae) (Zheng et al. 2019). while this density-based 
clustering, two initial parameters ϵ, and minPts need to be man-
ually set and entered by the user, and the clustering results are 
very sensitive to the values of these two parameters. Slightly dif-
ferent parameter settings will produce different clustering results 
and has some difficulties in distinguishing separated clusters if 
they are located too close to each other, even though they have dif-
ferent densities (Kanagala and Krishnaiah 2016). To overcome this 
problem, OPTICS algorithm was developed. Compared with the 
DBSCAN algorithm, the OPTICS algorithm addresses the defects 

of DBSCAN. OPTICS borrows the core density-reachable concept 
from DBSCAN. Although the OPTICS options also require the 
same two parameters as DBSCAN, the parameter ϵ is not necessary 
in theory and is only used to reduce the runtime complexity of the 
algorithm (Hahsler et al. 2019). In this study, our results show that 

Fig. 3. k-nearest neighbor (k-NN) distance plot (a knee—the optimal 
neighborhood radius eps—is visible near a 4-NN distance of 0.04).

Fig. 4. Bayesian information criterion (BIC) plot of the measurement dataset 
of the T. absoluta larval morphological characteristics. Note: ‘EII’ is spherical 
and has an equal volume; ‘VII’ is spherical and has an unequal volume; ‘EEI’ 
is diagonal and has an equal volume and shape; ‘VEI’ is diagonal and has a 
varying volume and equal shape; ‘EVI’ is diagonal and has a varying volume 
and varying shape; ‘VVI’ is diagonal and has a varying volume and shape; 
‘EEE’ is ellipsoidal and has an equal volume, shape, and orientation; ‘EVE’ 
is ellipsoidal and has an equal volume and orientation; ‘VEE’ is ellipsoidal 
and has an equal shape and orientation; ‘VVE’ is ellipsoidal and has an equal 
orientation; ‘EEV’ is ellipsoidal and has equal volume and equal shape; 
‘VEV’ is ellipsoidal and has an equal shape; ‘EVV’ is ellipsoidal and has an 
equal volume; and ‘VVV’ is ellipsoidal and has a varying volume, shape, 
and orientation. Where the maximum is taken over all of the models and 
numbers of components considered.

Fig. 2. Linear regression relationship between the measurements of the morphological characteristics with 95% confidence intervals and instar number. (a) 
Mandible width, (b) head capsule width, and (c) head capsule length.
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the OPTICS clustering algorithm can be successfully determined 
T. absoluta instar stages. It should be noted that the same instar 
stages of T. absoluta clusters were determined by the OPTICS al-
gorithm and the other algorithms, and these stages may be easily 
distinguishable for T. absoluta instar and more useful for dealing 
with complex data for insect instars. However, the advantages of 
the OPTICS clustering algorithm compared with those of the other 
three clustering methods are that it reduces the sensitivity to initial 
parameters, the clustering results are stable and unique, suggesting 
that the OPTICS clustering algorithm is a promising alternative ap-
proach for the identification of insect larval instars.

No overlapping size-frequency distributions for the morpho-
logical characteristics, head capsule width and length or mandible 
width were found, indicating that these three morphological charac-
teristics can be distinguished in T. absoluta larval instars. Among the 
three parameters, the division of head capsule width was the clearest, 
indicating that head capsule width can be used as the most optimal 
index for age identification, and this phenomenon also exists at the 
instar division of many other insects (Flaherty et al. 2012, Chen and 
Seybold 2013, Thakur 2016, Zheng et al. 2019). In summary, the 
size of three morphological characteristics for different instar stages 
is specified by the OPTICS clustering algorithm. This data can be 
used for rapid and accurate instar division and increase the efficiency 
of integrated management strategies for this pest in the field.

The instar number of insect larvae exhibits intraspecific 
differences. Photoperiod, temperature, humidity, food quality and 
quantity, and feeding density are the most common factors affecting 
the instar number of insect larvae. In the case of insufficient food or 
unfavorable environmental conditions, the instar number of insect 
larvae will change (Esperk et al. 2007, Shintani and Ishikawa 2010, 
Goguen and Moreau 2013), and the instar number usually tends 
to increase under adverse rather than favorable conditions (Esperk 
et al. 2007). Therefore, to increase the accuracy of instar divisions 
and thus increase the effectiveness of pest control, it is necessary 
for future studies to combine field data to observe the differences 
between field- and laboratory-reared instars under different photo-
period population densities at different temperatures and under dif-
ferent nutritional conditions. Nevertheless, the use of the OPTICS 
clustering algorithm to determine T. absoluta larval instar stages is 
herein shown to be reliable and effective, which indicates that this 
method can also be used to determine the instar stages of other 
insects. In this study, the OPTICs algorithm was used to determine 
the size range of the different instars of T. absoluta, which provided 
basic information for the classification of larval instars. However, in 
the field, the insect is small, and its morphological indicators are still 
difficult to determine in filed for farmers even technicians in plant 
protection station, but the instar of larva can be determined using 
a microscope and manually measure the characteristics under the 
fewer samples in field. Moreover, these methods will be more prac-
tical in field when the development of simple measurement tools 
(such as designing a software to judge the age by taking photos) 
and the development of the algorithm into a simple program (such 
as determining the age by inputting measured data), it will be a 
further study.
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