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ARTICLE

An adapted Weibull function for agricultural applications
W. Daniel Reynolds, Craig F. Drury, Lori A. Phillips, Xueming Yang, and Ikechukwu V. Agomoh

Abstract: The Weibull function is applied extensively in the life sciences and engineering but underused in
agriculture. The function was consequently adapted to include parameters and metrics that increase its utility
for characterizing agricultural processes. The parameters included initial and final dependent variables (Y0 and
YF, respectively), initial independent variable (x0), a scale constant (k), and a shape constant (c). The primary metrics
included mode, integral average, domain, skewness, and kurtosis. Nested within the Weibull function are the
Mitscherlich and Rayleigh functions where c is fixed at 1 and 2, respectively. At least one of the three models
provided an excellent fit to six example agricultural datasets, as evidenced by large adjusted coefficient of determi-
nation (RA

2 ≥ 0.9266), small normalized mean bias error (MBEN ≤ 1.49%), and small normalized standard error of
regression (SERN ≤ 8.08%). The Mitscherlich function provided the most probable (PX) representation of corn
(Zea mays L.) yield (PM = 87.2%); Rayleigh was most probable for soil organic carbon depth profile (PR = 96.4%); and
Weibull was most probable for corn seedling emergence (PW = 100%), nitrous oxide emissions (PW = 100%),
nitrogen mineralization (PW = 58.4%), and soil water desorption (PW= 100%). The Weibull fit to the desorption data
was also equivalent to those of the well-established van Genuchten and Groenevelt–Grant desorption models. It
was concluded that the adapted Weibull function has good potential for widespread and informative application
to agricultural data and processes.

Key words: Weibull function, Mitscherlich function, Rayleigh function, least-squares regression, parsimony,
goodness of model-data fit.

Résumé : Si on y recourt abondamment dans les sciences de la vie et en génie, en revanche, la fonction de Weibull
est sous-utilisée en agriculture. Les auteurs ont adapté cette fonction en y incluant les paramètres et les mesures
qui en accroîtront l’utilité lors de la caractérisation des processus agricoles, notamment les variables
dépendantes initiale et finale (Y0 et YF, respectivement), la variable indépendante initiale (x0), une constante pour
l’échelle (k) et une autre pour la forme (c). Parmi les principales mesures, mentionnons le mode, la moyenne
intégrale, le domaine, le voile et l’aplatissement. Dans la fonction de Weibull figurent les fonctions de
Mitscherlich et de Rayleigh, où c a respectivement pour valeur 1 et 2. Au moins un des trois modèles s’ajuste très
bien aux six jeux de données agricoles employés comme illustration, ainsi que le prouve l’important
coefficient de détermination après correction (RA

2 ≥ 0,9266), la faible erreur de justesse moyenne normalisée
(MBEN ≤ 1,49 %) et le petit écart-type normalisé pour la régression (SERN ≤ 8,08 %). La fonction de Mitscherlich
engendre la représentation la plus probable (PX) du rendement du maïs (Zea mays L.) (PM = 87,2 %), celle de
Rayleigh, la représentation la plus probable du profil vertical du carbone organique dans le sol (PR= 96,4 %) et celle
de Weibull, la représentation la plus probable de la levée du maïs (PW = 100 %), des émissions d’oxyde nitreux
(PW = 100 %), de la minéralisation de l’azote (PW = 58,4 %) et de la désorption de l’eau dans le sol (PW = 100 %).
L’ajustement de la fonction de Weibull aux données sur la désorption équivaut à celui des modèles bien connus
de van Genuchten et de Groenevelt–Grant. Les auteurs en concluent que la version adaptée de la fonction de
Weibull pourrait largement s’appliquer aux données et aux processus agricoles, et s’avérer fort instructive.
[Traduit par la Rédaction]

Mots-clés : fonction de Weibull, fonction de Mitscherlich, fonction de Rayleigh, régression des moindres carrés,
parcimonie, adéquation de la justesse modèle-données.
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1. Introduction
Agricultural processes are amongst the most complex

known, owing to their myriad of interacting chemical,
physical, and biological factors. As a result, description
and characterization of agricultural processes rely
largely on fitted polynomial splines and empirical
functions, rather than on theoretical models derived
from first principles. Although this may be less than
ideal, fitted splines and empirical functions can still be
very useful. For example, splines and functions can often
simulate the highly complex process of crop seedling
emergence and can thereby provide objective estimates
of important seed performance indicators such as time
of first emergence, duration of emergence, maximum
emergence rate, and average emergence rate. Fitted
splines and empirical functions can also model strongly
non-linear agricultural processes, such as nitrogen
dynamics and soil water retention/release, which then
serve as essential regulating functions in numerical crop
growth and soil gas/water/solute balance models.

However, splines and empirical functions are
frequently not equal when applied to agricultural data.
Splines often perform unrealistically when applied to
data that are irregularly spaced, change rapidly in value,
exhibit outliers, and contain appreciable experimental
and (or) random error, which are all “hallmark traits”
of agricultural datasets. Empirical functions, in contrast,
are not unduly perturbed by the above data traits; and
when regression fitted, they are particularly adept at
separating out the underlying data signal from random
noise. As a result, empirical functions are often
preferred over splines for describing and characterizing
agricultural datasets.

One well-established empirical function that has
potentially widespread agricultural applications is the
so-called Weibull function. The function was first pro-
moted in a publication by W. Weibull (Weibull 1951)
and it has increased in popularity ever since, especially
for characterizing extreme event processes. Some
common life science and engineering applications
include characterizing biological growth, ocean
currents, particle size distributions, and failure of
electrical insulation; determining breaking strength of
natural fibers and building materials; assessing yield
force, fatigue, and brittle failure of metals; estimating
likelihood of infrequent events such as earthquakes,
floods, gales, and tsunamis; and failure analysis of
equipment such as lightbulbs, automotive parts,
electronics, and industrial machinery (Weibull 1951;
Monahan 2006; Abernethy 2010; Chu 2013; Brown and
Mayer 1988; Mahanta and Borah 2014). Although
the Weibull function is quintessentially empirical
(Weibull 1951), it is nonetheless closely related to the
power law distribution of flaw sizes, classical fracture
mechanics, and weakest link theory (Zok 2017; Quinn
and Quinn 2010).

The main popularizing features of the Weibull model
are its relative simplicity, extensive versatility, and
ability to perform well with small datasets and extreme
data values (e.g., Abernethy 2010; Chu and Ke 2012;
NCSS, Weibull 2020). More specifically, the standard
Weibull function has only three fitting parameters, but
it can still exhibit varying degrees of left skew,
symmetry, right skew, leptokurtosis, mesokurtosis, and
platykurtosis; and it can accommodate a variable inflec-
tion point, a variable y-axis intercept, and a variable
x-axis threshold. In addition, Chu and Ke (2012) found
that estimates of Weibull parameters can remain
useably accurate even with datasets as small as
5–10 points. None of the other commonly used empirical
functions (e.g., Gompertz, Logistic, Richards, Beta,
Gumbel, Normal, Lognormal, etc.) can match the
Weibull combination of simplicity, flexibility, and range
of application.

Despite the above advantages, Weibull applications to
agricultural processes appear limited to a relatively
small number of studies using specialized (and restric-
tive) equation forms for characterizing crop yield and
biomass production (e.g., Karadavut and Tozluca 2005;
Karadavut et al. 2010), seed germination (e.g., Brown
and Mayer 1988; Gardarin et al. 2011), and seedling
emergence (e.g., Aboutalebian et al. 2017; Izquierdo et al.
2013; Navarro et al. 2013; Gan et al. 1996). The objectives
of this study were consequently to (i) derive an adapted
Weibull function that is applicable to a wide range of
agricultural processes; (ii) describe Weibull function
characteristics, parameters, and metrics that may be
useful in agricultural applications; and (iii) present six
illustrative Weibull characterizations of agricultural
datasets.

We start by deriving an adapted Weibull function
(Section 2.1.), then illustrate the primary Weibull
characteristics (Section 2.2.), describe potentially useful
function parameters and metrics (Section 2.3.), identify
nested special case and related functions (Section 2.4.),
describe a convenient but rigorous method for determin-
ing Weibull parameters (Section 2.5.), and finally,
present six example applications to diverse agricultural
datasets (Section 3.). Although the Weibull model may
have theoretical justification for some processes, it is
applied here as a purely empirical function for parame-
terizing and characterizing agricultural processes and
not for making time/space/quantity predictions or
extrapolations beyond fitted datasets.

2. Materials and Methods
2.1. Derivation of an adapted Weibull function

The Weibull relationship includes a “derivative
function” and a “cumulative function”. The derivative
function can be written as a “diminishing response”
relationship:
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dY
dx

= cα−cðx − x0Þc−1jYF − Y j; α,c > 0; x ≥ x0 ≥ 0ð1Þ

where Y is the dependent variable, x is the independent
variable, c is a shape parameter affecting function sym-
metry, α is a scale or proportionality parameter affecting
function domain, x0 is an initial/threshold/minimum
allowable x-value, and YF is the final (end-point) Y-value
as x becomes large. By “diminishing response”, we mean
that dY/dx → 0 as Y → YF, regardless of other parameter
values.

Given eq. 1, an adapted Weibull cumulative function is
obtained by separating variables and integrating
between (x0,Y0) and (x,Y):

Z
Y0

Y

dY
ðAþ EYÞ =

Z
x0

x
ðx − x0Þc−1dx;

A = cα−cYF = Constant; E = −cα−c = Constant
(2)

which leads to

ln

�
A + EY
A + EY0

�
=
E
c
ðx − x0Þc;ð3Þ

and ultimately simplifies to

Y = YF − ðYF − Y0Þe−kðx−x0Þ
c

; k,c > 0; x ≥ x0ð4Þ

where Y = Y0 at x = x0, and k = α−c = kcW. Equation 4 is
effectively a five-parameter Weibull cumulative
function, as it contains five independent parameters
(YF, Y0, x0, k, and c) that can be (in any combination) speci-
fied, independently measured, or determined by curve
fitting to Y vs. xmeasurements (elaborated later). In addi-
tion, eq. 4 accommodates both YF > Y0 and YF < Y0

(Section 2.2.). The c parameter in eq. 4 is occasionally
referred to as the “Weibull slope” (Abernethy 2010)
because in traditional engineering analysis, Y vs. x data
were plotted as ln[−ln(Y)] vs. ln(x), c.f.

ln

"
− ln

�
YF − Y
YF − Y0

�#
= clnðx − x0Þ þ lnðkÞ; x > x0ð5Þ

which yields a straight line with slope = c and Y-axis
intercept = ln(k) = cln(kW) if the data follow a Weibull
function. The kW parameter is sometimes referred to as
the “Weibull scale constant”, or the “Weibull rate
constant” if the x-axis represents time.

2.2. Essential characteristics of the five-parameter Weibull
function

The essential characteristics of the five-parameter
Weibull derivative and cumulative functions are illus-
trated in Fig. 1. The derivative function is negative mono-
tone and unbounded (dY/dx → ∞ as x → x0) when c < 1;
negative monotone and bounded (dY/dx finite at x = x0)

when c = 1; bell shaped and right skewed when
1 < c < 3.6; bell shaped and near symmetrical when
c = 3.6; and bell shaped and left skewed when c > 3.6
(Fig. 1a). The corresponding cumulative function has an
inflection when c > 1; no inflection when c ≤ 1; and
decreasing k causes increasing function domain but
decreasing average slope (Fig. 1b). Note also that constant
k, x0, YF, and Y0 causes all Y vs. x relationships to intersect
at a common point regardless of c value; and that Y vs. x
is increasing when YF > Y0, but decreasing when YF < Y0
(Fig. 1b).

An interesting feature of the Weibull function is its
ability to indicate the likelihood (or chance) of an event
or condition happening at any particular x value, given

Fig. 1. Essential characteristics of the five-parameter
Weibull function: (a) effects of shape parameter, c, and
independent variable offset, x0, on derivative function, dY/dx
vs. x (eq. 1, k= 1.0); (b) effects of initial and final dependent
variables, Y0 and YF, respectively, dependent variable offset,
x0, shape parameter, c, and scale parameter, k, on
cumulative function, Y vs. x (eq. 4). For the two curves
labelled c= 2.0, k= 1.0 in panel (b), the dash-dot line applies
for Y0= 2, YF= 10, and the short-dash line applies for Y0 = 10,
YF= 2; both curves produce the derivative function labelled
c= 2.0 in panel (a). [Colour online.]

(a)

(b)
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Table 1. Selected metrics of an adapted five-parameter Weibull function (see also Appendix A, Table 2, and Fig. 2).

Adapted Weibull function with five fitting parameters (YF, Y0, k, x0, and c)

Y = YF − ðYF − Y0Þe−kðx−x0Þ
c

;
Y= dependent variable
YF= final (end-point) Y
Y0= initial Y
k= scale constant

k,c > 0; x ≥ x0
x= independent variable
xF = final (end point) x
x0= initial x
c= shape constant

Metric Comments

Mode

xM = x0 +
�
1
k

�
c − 1
c

��
1=c

YM = YF − ðYF − Y0Þe½ð1−cÞ=c�
RM = ckðxM − x0Þc−1jYF − YMj

c≥ 1.

Coordinates (xM,YM,RM) of derivative function peak and inflection of
cumulative function. RM=maximum dY/dx=maximum slope of Y vs.
x= derivative function peak.

Median

xN = x0 +
�
−
1
k
lnð0.5Þ

�
1=c

YN = YF −
�
YF − Y0

�
e−kðxN−x0Þ

c

dY
dx

����
N
= ckðxN − x0Þc−1jYF − YNj

Coordinates (xN,YN,dY/dx|N) that bisect the area under the derivative function
into two equal halves. dY/dx|N = slope of Y vs. x at (xN,YN).

Mean

x = x0 +
h
kð−1=cÞ

i
Γ

�
1 +

1
c

�
Y = YF − ðYF − Y0Þe−kðx−x0Þ

c

Γ

�
1 +

1
c

�
is the Gamma function.

Integral average

AI =
ðYF − Y0Þ
ðxF − x0Þ

h
1 − e−kðxF−x0Þ

ci Mean rate of change of Ywith respect to x (i.e., dY/dx) between x= x0 and x= xF.

Inflection

xI = x0 +
�
1
k

�
c − 1
c

��
1=c

Y I = YF − ðYF − Y0Þe½ð1−cÞ=c�

c≥ 1.

Coordinates (xI,YI) where cumulative function changes from convex to
concave. Same coordinates as derivative function Mode.

Quantiles

xQ = x0 +
�
−
1
k
lnð1 − Q Þ

�
1=c

YQ = YF − ðYF − Y0Þe−kðxQ−x0Þ
c

Coordinates (xQ,YQ) of specified quantiles, Q, where 0≤ Q≤ 1
The 0.5 quantile is equivalent to the Median.

Domain
xD = xF − x0 Difference between maximum (xF) and minimum (x0) x values.

Defines the relevant range of Y, i.e., YR= |Y(xF) – Y(x0)|.

Fisher population skewness

SF =
Γ3 − 3Γ1Γ2 + 2Γ3

1

ðΓ2 − Γ2
1 Þ3=2

Quantifies derivative function symmetry.

Γi = Γ

�
1 +

i
c

�
is the Gamma distribution. See Table 2 for proposed skewness

categories.

Fisher population kurtosis

KF =
Γ4 − 4Γ1Γ3 + 6Γ2

1Γ2 − 3
h
Γ4
1 + ðΓ2 − Γ2

1 Þ2
i

ðΓ2 − Γ2
1 Þ2

Quantifies derivative function tailing.

Γi = Γ

�
1 +

i
c

�
is the Gamma distribution. See Table 2 for proposed kurtosis

categories.
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that the event or condition has not already happened
(known in engineering as the Weibull “hazard” func-
tion). In processes where c ≠ 1, the likelihood of an event
or condition occurring changes with x (these
processes are said to have “memory”), whereas in
processes with c= 1, the likelihood does not change with
x (these processes are said to be “memoryless”) (Glen
2020a). Furthermore, when c < 1, likelihood of the event
or condition happening decreases at a decreasing rate
with increasing x; when c = 1, likelihood is constant
(independent of x); when 1 < c < 2, the likelihood

increases at a decreasing rate with increasing x; when
c = 2, likelihood increases linearly with increasing x;
and when c> 2, likelihood increases at an increasing rate
with increasing x (see e.g., figs. 2–8 in Abernethy 2010).
Seedling emergence is an example of an
agricultural process which may or may not exhibit
memory. If a Weibull fit to measured seedling
emergence (Y) vs. time (x) yielded c > 1, the likelihood of
emergence increased as time increased, presumably
due to viable seed and favourable seedbed conditions
(e.g., amenable soil temperature, moisture, density,
fertility, etc.). If the fitted function yielded c < 1,
likelihood of emergence decreased with increasing time,
suggesting low viability seed and (or) poor seedbed
conditions. If c = 1 was obtained, likelihood of seedling
emergence was constant through time and not affected
by seed quality or seedbed conditions. The memory
property is illustrated further in Section 3.

2.3. Parameters and metrics obtainable from the adapted
Weibull function

As mentioned above, the parameters of the adapted
(five-parameter) Weibull derivative and cumulative
functions (i.e., YF, Y0, x0, k, and c) may be obtained by any
combination of specification, independent measurement,
and estimation by curve fitting to Y vs. x data. Potentially
useful derivative function metrics include mode
ðxM,YM,RMÞ, median ðxN,dY=dxjNÞ, skewness (SF), kurtosis
(KF), and integral average ðAIÞ: Cumulative function met-
rics of potential use include mean ðx,YÞ, inflection ðxI,Y IÞ,
quantiles ðxQ ,YQ Þ, and domain ðxD = xF − x0Þ. These
metrics are briefly derived and discussed in Appendix A,

Fig. 2. Some metrics of the five-parameter Weibull
function (k= 0.5, c= 1.6): (a) derivative function, dY/dx vs. x;
(b) cumulative function, Y vs. x. Metrics listed include initial
and final independent variables (x0= 2.0 and xF = 8.2,
respectively), initial and final dependent variables (Y0= 20
and YF = 100, respectively), mode (Mode), median (Median),
mean (Mean), inflection (Inflection), integral average of
derivative function (AI), maximum value of derivative
function (RM), median quantile (0.5 Quantile), and domain
(xD) (see Appendix A for details). In panel (a), the area under
the rectangle bounded by the dashed lines equals the area
under the derivative function curve between x0 and xF. The
derivative function is moderately right skewed (SF= 0.9620)
and slightly leptokurtic (KF= 1.0440) (see Table 2). [Colour
online.]

Table 2. Proposed skewness (SF) and kurtosis (KF) categories
based on the inclusive graphic classifications of Folk (1980).

Skewness (SF) categories Numerical value

Extreme positive (right) skew >4
Strong positive (right) skew 1.25 to 4
Moderate positive (right) skew 0.4 to 1.25
Slight positive (right) skew 0 to 0.4

Normal distribution (symmetrical) 0
Slight negative (left) skew −0.4 to 0
Moderate negative (left) skew −1.25 to −0.4
Strong negative (left) skew −4 to −1.25
Extreme negative (left) skew <−4

Kurtosis (KF) categories Numerical value

Extremely leptokurtic kurtosis >20
Strongly leptokurtic kurtosis 6 to 20
Moderately leptokurtic kurtosis 3 to 6
Slightly leptokurtic kurtosis 0 to 3

Normal distribution 0
Slightly platykurtic kurtosis −3 to 0
Moderately platykurtic kurtosis −6 to −3
Strongly platykurtic kurtosis −20 to −6
Extremely platykurtic kurtosis <−20
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summarized in Table 1, and illustrated in Fig. 2. This study
focuses on the YF, Y0, x0, and c parameters and on the xD,
xM, RM, AI, SF, and KF metrics.

2.4. Special cases of the Weibull function and related
functions

The five-parameter Weibull function collapses to
four-parameter Mitscherlich and Rayleigh functions
when c = 1 and 2, respectively (e.g., Lai and Xie 2006).
The four-parameter Mitscherlich functions (which are
effectively exponential functions) are given by

dY
dx

= kMjYF − Y j; kM > 0, c = 1ð6Þ

Y = YF − ðYF − Y0Þe−kMðx−x0Þ; kM > 0, c = 1; x ≥ x0ð7Þ

where kM = α−1 = k is the Mitscherlich scale constant, and
the shape constant is fixed at c = 1. Distinguishing
features of the Mitscherlich functions include no inflec-
tion, mode located at x0, and fixed Fisher skewness and
kurtosis values of SF = 2 and KF = 6, respectively
(Weisstein 2004). Some traditional agricultural applica-
tions of Mitscherlich functions include description of
nitrogen mineralization (e.g., Yang et al. 2020),
characterization of nitrous oxide and carbon dioxide
emissions from soil (e.g., Hoben et al. 2011; Gillis and
Price 2011), depiction of crop and weed seed germination
and (or) emergence (e.g., Brown andMayer 1988; Gill et al.
1996), modeling crop growth and (or) yield responses
to fertilizer rates (e.g., Srivastava et al. 2006), and
simulating annual rainfall (e.g., Harmsen 2000) and
water infiltration rate (e.g., Horton 1940).

It should also be noted that the four-parameter
Mitscherlich cumulative function (eq. 7) is a generaliza-
tion of a single-pool, first-order reaction kinetics model
developed by Beauchamp et al. (1986) for describing
mineralization of soil nitrogen (N) in laboratory
incubation studies:

NM = N0 − ðN0 − NEÞe−βt; β > 0, t ≥ 0ð8Þ

where NM (mg N·kg−1 soil) is the amount of nitrogen
mineralized at time t (d), N0 (mg N·kg−1) is the total
amount of nitrogen available to mineralize (pool of min-
eralizable soil nitrogen), β (d−1) is the mineralization rate
constant, and NE (mg N·kg−1) is either the amount of
mineralized N already present in the soil at t = 0, or the
amount of “easily mineralizable” N that mineralized
rapidly in the early stages of the incubation before mea-
surements started. As eq. 8 assumes implicitly that
t0= 0 (i.e., x0= 0 in eq. 7), then plots of NM vs. t intersect
the y-axis at NM = NE (see e.g., Figure 4 in Beauchamp
et al. 1986). Note also that the mineralization “half time”
or “half life”, t1/2 (i.e., the time required for half of N0 to
be mineralized), is a special case of the median x (xN,
eq. A6) or the 0.5 quantile x (x0.5, eq. A23):

t1=2 =
lnð2Þ
β

= xN = x0 +
�
−
1
k
lnð0.5Þ

�
1=c

= x0.5 = x0 +
�
1
k
lnð2Þ

�
1=c

ð9Þ

since x0= 0, c= 1 and β = k.
The four-parameter Rayleigh functions are

dY
dx

= 2kRðx − x0ÞjYF − Y j; kR > 0, c = 2ð10Þ

Y =YF− ðYF−Y0Þe−kRðx−x0Þ
2

; kR > 0, c=2;x≥ x0ð11Þ

where kR = α−1 = k1=2 is the Rayleigh scale constant, and
the shape constant is fixed at c = 2. The Rayleigh
functions have variable mode, median, mean, and
inflection (as with Weibull) but fixed Fisher skewness

Fig. 3. Weibull, Mitscherlich, and Rayleigh functions fitted
to corn seedling emergence data: (a) cumulative seedling
emergence, Y vs. t; (b) seedling emergence rate, dY/dt vs. t.
Circles are measured cumulative seedling emergence
expressed as percentage of seed planting rate; triangles are
finite difference (FD) estimates of emergence rate based on
measured cumulative seedling emergence (eq. 21); predicted
end point (triangle) is time when complete emergence was
reached (xF,YF). Vertical “T bars” are standard error (n= 4).
Data from Agomoh et al. (2021). [Colour online.]
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Table 3. Confidence limits (CL, 95%) on slope and y-axis intercept of measured dependent variable (Yi
M)

regressed against model-predicted dependent variable (Yi
P) for the Weibull, Mitscherlich, Rayleigh, van

Genuchten, and Groenevelt–Grant models.

Application Weibull Mitscherlich Rayleigh

Corn seedling emergence (Fig. 3)
95% CL on slope 0.9992 to 1.0008 0.7956 to 1.2618 0.9671 to 1.0448
95% CL on intercept (% planted) −0.07 to 0.07 −23.3 to 17.8 −4.02 to 2.85

Nitrous oxide emissions (Fig. 4)
95% CL on slope 0.9861 to 1.0190 0.9620 to 1.3220 0.9943 to 1.1264
95% CL on intercept (g N·ha−1) −276.6 to 195.9 −4711.7 to 393.7 −1887.8 to 1.9

Corn grain yield (Fig. 5)
95% CL on slope 0.7426 to 1.2528 0.7329 to 1.2494 0.6320 to 1.3520
95% CL on intercept (t·ha−1) −2.4 to 2.4 −2.4 to 2.5 −3.3 to 3.5

Nitrogen mineralization (Fig. 6)
95% CL on slope 0.9816 to 1.0184 0.9795 to 1.0322 0.8680 to 1.1320
95% CL on intercept (% of N0) −0.59 to 0.59 −1.05 to 0.65 −4.25 to 4.25

Soil organic carbon depth profile (Fig. 7)
95% CL on slope 0.9434 to 1.0704 0.5672 to 1.8636 0.9044 to 1.1523
95% CL on intercept (wt. %) −0.12 to 0.11 −1.42 to 0.82 −0.25 to 0.20

Soil water desorption curve (Fig. 8)
95% CL on slope 0.9712 to 1.0322 0.6546 to 1.1364 0.49910 to 1.1592
95% CL on intercept (m3·m−3) −0.01 to 0.01 −0.06 to 0.11 −0.08 to 0.17

Soil water desorption curve (Fig. 9) Weibull van Genuchten Groenevelt–Grant
95% CL on slope 0.9712 to 1.0322 0.9191 to 1.0645 0.9356 to 1.0535
95% CL on intercept (m3·m−3) −0.01 to 0.01 −0.02 to 0.03 −0.02 to 0.02

Table 4. Selected parameter values and associated metrics for Weibull, Mitscherlich, and Rayleigh models fitted
to corn emergence data (Figs. 3a, 3b).

Parameter or metric Weibull model Mitscherlich model Rayleigh model

Observed initial emergence, Y0 (%)
a 0 0 0

Fitted final emergence, YF (%)
a 104.0 108.3 104.5

Measured first emergence, x0 (d)
b 5 5 5

Fitted final emergence, xF (d)
b 8.34 16.69 8.92

Time domain of emergence, xD (d) 3.34 11.69 3.92
Scale constant: kW, kM, or kR (d−1) 0.7845 0.7882 0.7743
Shape constant, c (—) 2.3022 1 2
Maximum emergence rate, RM (% d−1) 77.27 85.39c 69.39
Time of maximum emergence rate, xM (d) 6.0 5.0c 5.9
Integral aver. emergence rate, AI (% d−1) 31.09 9.27 26.65
Fisher population skewness, SF (—) 0.4536 2 0.6311
Fisher population kurtosis, KF (—) −0.0353 6 0.2451
Adjusted coefficient of determination, RA

2 (—) 1.0000 0.9617 0.9988
Normalized mean bias error, MBEN (%) −3.56 × 10−5 0.59 0.14
Normalized std. err. of regression, SERN (%) 0.05 12.40 2.17
Significance level of Weibull fit: FW-M or FW-R — <0.001 <0.001
Corrected Akaike inform. criterion, AICC (—) −33.05 38.96 14.55
Prob. that best model: PW, PM, or PR (%) 100.00 0.00 0.00

Note: Fitted parameters included YF, Weibull c, and kW, kM, or kR.
aSeedling emergence calculated as percentage of seed planting rate (76 700 seeds·ha−1).
bTime of seedling emergence (x-axis) is measured in days after planting.
c(xM,RM) occur at (x0,Y0) for c≤ 1.
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and kurtosis of SF = 0.6311 and KF = 0.2451, respectively
(Weisstein 2020). To the authors’ knowledge, Rayleigh
functions have not been applied to agricultural
processes but are used extensively for characterizing
communication signals, wind speed, wave height, sound
and (or) light radiation, electronics longevity, and
magnetic resonance images (e.g., Glen 2020b).

In addition to the above special cases, Weibull func-
tions provide close approximations to the Lognormal
distribution when c = 2.5 (NCSS, Weibull 2020), the
Normal distribution when c = 3.6023494 (Cousineau
2011; Lai and Xie 2006; NCSS, Weibull 2020; Fig. 1a),
and the Gumbel distribution when c is large
(Cousineau 2011). This obviously serves to further

extend the flexibility and applications of Weibull
functions.

2.5. Determining Weibull parameters
2.5.1. Parameter estimation methods

The main approaches for estimating Weibull
parameters from Y vs. x data include method of
moments, maximum likelihood estimation, and model-
data curve fitting using Weibull probability plots (eq. 5)
or iterative non-linear least-squares regression
(Cousineau 2009; Abernethy 2010; Lai and Xie 2006;
Quinn and Quinn 2010; Evans et al. 2019; NCSS, Weibull
2020). Of these, maximum likelihood and curve fitting
via regression provide objective (and often the most
accurate) parameter estimates (NCSS, Weibull 2020).
However, regression may provide more accurate esti-
mates of x0 than maximum likelihood (NCSS, Weibull
2020), as well as more accurate estimates of all Weibull
parameters when the dataset is small (Chu and Ke
2012). Notwithstanding that commercial software
packages (e.g., Relyence, Weibull 2020; ReliaSoft,
Weibull 7.0 2020; Reliability Workbench, Weibull
Analysis 2020; NCSS, Weibull 2020) provide a variety of
methods for estimating Weibull parameters, model-data
curve fitting via regression may be the most widely
accessible because it resides as a built-in application in
most computer spreadsheets. Iterative non-linear least-
squares regression was used here by applying the
Solver® algorithm in the Excel® spreadsheet to minimize
the sum of squared errors between the adapted Weibull
cumulative function (eq. 4) and Y vs. x data. One or more
of YF, Y0, x0, k, and c were treated as curve-fitting parame-
ters, and the Weibull scale parameter, kW, was separated
from the shape parameter, c, to improve parameter
identifiability (i.e., k was used instead of kW

c, Banks and
Joyner 2017). Initial guess values for the curve-fitting
parameters were obtained by manual “trial-and-error”
matching of model prediction to Y vs. x data and by
plotting the data according to eq. 5 (when possible) to
estimate c from slope and k from intercept. Whenever
possible, the number of parameters used for curve
fitting was ≤ half the number of data points to increase
the likelihood of obtaining unique parameter values.
The options used in the Solver fitting algorithm included
generalized reduced gradient non-linear numerical itera-
tion, slope calculation using central derivatives,
automatic scaling, and a 10−10 convergence criterion.

2.5.2. Assessing model-data fits
The accuracy and validity of model-data fits were

assessed using various “goodness of fit” indicators,
including adjusted coefficient of determination, normal-
ized mean bias error, normalized standard error of
regression (e.g., Archontoulis and Miguez 2015), and
regression of measured Y (y-axis) against model-
predicted Y (x-axis) (Piňeiro et al. 2008).

Fig. 4. Weibull, Mitscherlich, and Rayleigh functions fitted
to nitrous oxide emissions from soil: (a) nitrous oxide (N2O)
emitted vs. time (t); (b) N2O emission rate, dN/dt vs. t. Circles
are measured cumulative N2O emitted; diamonds are finite
difference (FD) estimates of dN/dt based on measured
cumulative N2O (eq. 21); predicted end point (triangle) is
estimated time when emissions ceased (xF,YF). Vertical
“T bars” are standard error (n= 4). Data from Drury et al.
(2021). [Colour online.]
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Adjusted coefficient of determination for non-linear
least-squares regression (RA

2) is given by

RA
2 = 1 −

SSE
SST

�
B − 1

B − L − 1

�
; 0 ≤ R2A ≤ 1(12)

normalized mean bias error (MBEN) by

MBEN =

"PB
i=1ðYP

i − YM
i Þ

B

#
=YM

i

i = 1, 2, 3, : : : , B; jMBENj ≥ 0

ð13Þ

and normalized standard error of regression (SERN) by

SERN =
�

SSE
ðB − L − 1Þ

�
1=2

=YM
i

i = 1, 2, 3, : : : , B ; SERN ≥ 0
ð14:1Þ

where SSE =
PB

i=1 ðYP
i − YM

i Þ2 is the regression sum of

squared errors, SST =
PB

i=1

�
YM
i − YM

i

�
2
is the regression

total sum of squares, YP
i and YM

i are, respectively, the
model-predicted and measured Y values at each x-value,

YM
i is the mean of the measured Y values, B is the number

of data points (measurements), and L is the number of
model fitting parameters (excluding intercept). The RA

2

metric indicates degree to which the fitted model
predicts (or explains) systematic variation in the data,
and accounts for the number of model fitting

parameters (L) (e.g., Archontoulis and Miguez 2015). The
MBEN (also known as “normalized mean prediction
error”, MPEN) indicates degree of systematic model bias,
with positive values indicating net overestimate of the
data by the fitted model, and negative values indicating
net underestimate (e.g., Archontoulis and Miguez 2015;
Schjønning et al. 2017). The SERN indicates the “predic-
tive power” of a fitted model with L fitting parameters,
where SERN = 0 indicates perfect prediction (i.e., no
discrepancies between predicted and measured values).
Given that SERN is functionally related to normalized
root mean square error, RMSEN, i.e.,

SERN = RMSEN

�
B

B − L − 1

�
1=2

ð14:2Þ

the RMSEN predictive power categories of Jamieson et al.
(1991) can be used as conservative SERN categories,
i.e., 0 ≤ SERN< 10% indicates excellent model prediction
of the data; 10% ≤ SERN ≤ 20% signifies good prediction;
20% < SERN ≤ 30% indicates fair prediction; and
SERN> 30% signifies poor prediction.

According to the analysis of Piňeiro et al. (2008), model
representations of data are viable only when the slope

and intercept of measured Y (YM
i ) regressed against

model-predicted Y (YP
i Þ are not significantly different

from unity and zero, respectively. When this occurs, the
95% confidence limits on slope fall on either side of
unity, and the 95% confidence limits on intercept fall
on either side of zero (at P < 0.05 significance level). If

Table 5. Selected parameter values and associated metrics for Weibull, Mitscherlich, and Rayleigh models fitted
to nitrous oxide emissions from a clay loam soil (Figs. 4a, 4b).

Parameter or metric Weibull model Mitscherlich model Rayleigh model

Fitted initial emission, Y0 (g N·ha−1)a 101 101 101
Fitted final emission, YF (g N·ha−1)a 16 769 19 430 17 091
Fitted time of first emission, x0 (d)

b 133 133 133
Fitted time of final emission, xF (d)

b 231 711 288
Time domain of emissions, xD (d) 98 578 155
Scale constant: kW, kM, or kR (d−1) 0.0201 0.0159 0.0196
Shape constant, c (—) 3.2669 1 2
Maximum emission rate, RM (g N·ha−1·d−1) 423.8 308.2c 286.0
Time of maximum emission rate, xM (d) 178 133c 169
Integral aver. emission rate, AI (g N·ha−1·d−1) 169.6 33.5 109.9
Fisher population skewness, SF (—) 0.0872 2 0.6311
Fisher population kurtosis, KF (—) −0.2884 6 0.2451
Adjusted coefficient of determination, RA

2 (—) 0.9986 0.8724 0.9764
Normalized mean bias error, MBEN (%) 0.06 2.24 1.28
Normalized std. err. of regression, SERN (%) 1.81 17.39 7.47
Significance level of Weibull fit: FW-M or FW-R — <0.001 <0.001
Corrected Akaike inform. criterion, AICC (—) 235.04 382.24 292.76
Prob. that best model: PW, PM, or PR (%) 100.00 0.00 0.00

Note: Fitted parameters included Y0, YF, x0, Weibull c, and kW, kM, or kR.
aCumulative nitrous oxide emissions calculated as g N2O-N·ha

−1.
bJulian calendar days.
c(xM,RM) occur at (x0,Y0) for c≤ 1.
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the regression slope is significantly different from unity
(i.e., 95% confidence interval excludes unity), the model
may be compromised due to “inconsistency” (with the
data); and if the regression intercept is significantly dif-
ferent from zero (i.e., 95% confidence interval excludes
zero), the model may be compromised due to “bias”.
Generally speaking, the confidence limit “band”
(i.e., upper confidence limit minus lower limit)
becomes narrower and more symmetrical about the

YM
i vs. YP

i regression line as fit between model and data
improves.

2.5.3. Selecting the most suitable function or model
As the Mitscherlich and Rayleigh models are simpler

special cases of the Weibull model (i.e., they are “nested”
within the Weibull model because they have fixed

c values), it is advisable to determine which of the three
models provides the best balance between goodness of
fit to the data and model simplicity, or “parsimony”
(e.g., Johnson and Omland 2004; Vandekerckhove et al.
2015). This was achieved here using the two-model
partial F test and the corrected Akaike information
criterion (AICC).

The two-model partial F test (FP) may be given as
(e.g., Archontoulis and Miguez 2015):

FP =
�
SSEX − SSEW

SSEW

��
B − K − 1
K − J

�
ð15Þ

FW−X = F:DIST:RT½FP,ðK − JÞ,ðB − K − 1Þ�ð16Þ

where SSEW and K are, respectively, the sum of squared
errors and number of fitting parameters for the
Weibull model, B is the number of Y vs. xmeasurements,
FW-X is F test significance level, F.DIST.RT is the right-
tailed F probability distribution (as represented in
Excel®), and SSEX and J are, respectively, the sum of
squared errors and number of fitting parameters for
the Mitscherlich or Rayleigh models. If FW-M ≤ 0.05, the
Weibull fit is significantly better (at P < 0.05) than the
Mitscherlich fit; and if FW-R ≤ 0.05, the Weibull fit is
significantly better (at P < 0.05) than the Rayleigh fit.
Note that the FW-X test cannot compare models with an
equal number of fitting parameters (K= J).

For ordinary least-squares regression, the AICC is given
by (Banks and Joyner 2017)

AICC = B ln

�
SSEX

B

�
+ 2ðL + 1Þ +

�
2ðL + 1ÞðL + 2Þ

B − L

�
ð17Þ

where SSEX is the regression sum of squared errors for
the fitted model (i.e., Weibull, Mitscherlich, or
Rayleigh), B is the number of data points, and L is the
number of model parameters used as least-squares fit-
ting variables (as c is fixed in Mitscherlich and Rayleigh,
these models will usually have one less fitting variable
than the Weibull model). The first term on the right of
eq. 17 represents the model’s “goodness of fit”, and the
last two terms represent a “parsimony penalty”
(Banks and Joyner 2017; Vandekerckhove et al. 2015).
The parsimony penalty increases with increasing
number of model fitting variables (increasing model
complexity), and it is designed to compensate for model
over-fitting; i.e., spurious improvements in model-data
fit caused by adding fitting variables that fit largely to
the data’s random noise, rather than to the data’s
underlying signal (Johnson and Omland 2004;
Vandekerckhove et al. 2015). Generally speaking, the
model providing the lowest AICC value is considered
the “best estimator” of the data (Banks and Joyner 2017;
Vandekerckhove et al. 2015). Note also that AICC applies
for both nested and un-nested models, and that two or
more models can be compared simultaneously (see
e.g., Banks and Joyner 2017).

Fig. 5. Weibull, Mitscherlich, and Rayleigh functions fitted
to decline in grain yield of unfertilized monoculture corn:
(a) yield (Y) vs. time (t) after a one-time (spring 2012)
application of compost; (b) rate of yield decline, −dY/dt vs. t.
Circles are measured corn grain yield at 15.5 wt. % moisture
content; diamonds are finite difference (FD) estimates of
−dY/dt based on measured cumulative yield (eq. 21);
predicted end point (triangle) is estimated time when stable
yield is reached (xF,YF). Vertical “T bars” are standard error
(n= 5). [Colour online.]
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The lowest AICC alone does not indicate how much
more probable the “best estimator” model is relative to
the other models, especially if differences among AICC

values are small. To alleviate this deficiency, likelihood
of being the “best estimator” model can be assessed
using normalized probabilities, PX, derived from
differences among AICC weights (Banks and Joyner
2017; Vandekerckhove et al. 2015), i.e.,

PW =
100ωW

ðωW + ωM + ωRÞ
ð18:1Þ

PM =
100ωM

ðωW + ωM + ωRÞ
ð18:2Þ

PR =
100ωR

ðωW + ωM + ωRÞ
ð18:3Þ

where PW, PM, and PR are normalized probabilities (%),
and ωW, ωM, and ωR are the corresponding AICC

weights for the Weibull, Mitscherlich, and Rayleigh
models, respectively. The AICC weights are in turn
given by (Banks and Joyner 2017)

ωW =
e−ðΔW=2Þh

e−ðΔW=2Þ + e−ðΔM=2Þ + e−ðΔR=2Þ
ið19:1Þ

ωM =
e−ðΔM=2Þh

e−ðΔW=2Þ + e−ðΔM=2Þ + e−ðΔR=2Þ
ið19:2Þ

ωR =
e−ðΔR=2Þh

e−ðΔW=2Þ + e−ðΔM=2Þ + e−ðΔR=2Þ
ið19:3Þ

where ωW + ωM + ωR = 1, and

ΔW = AICCW − AICCMINð20:1Þ
ΔM = AICCM − AICCMINð20:2Þ
ΔR = AICCR − AICCMINð20:3Þ

where AICCW, AICCM, and AICCR are the AICC values of
the Weibull, Mitscherlich, and Rayleigh models,
respectively, and AICCMIN is the smallest AICC value
of the three models. The relative magnitudes among
PX values indicate if the AICC values are sufficiently
different to select any one model as being better than
the others for estimating or representing a particular
Y vs. x dataset (Banks and Joyner 2017).

Model suitability can also be assessed by comparing a
plot of the model-predicted derivative function,
dY=dx vs. x, to a finite difference estimate of the actual

derivative function,
ΔY
Δx

j
i
vs. xji, where

ΔY
Δx

����
i
=
ðYi − Yi+1Þ
ðxi − xi+1Þ

; xji =
ðxi + xi+1Þ

2
;

i = 0, 1, 2, : : : , ðB − 1Þ;
ð21Þ

and B is the number of measured ðxi,YiÞ data pairs. The
comparison can be informal (e.g., visual) or quantified
using goodness of fit criteria (e.g., eqs. 12–14, 18–20).

Table 6. Parameter values and associatedmetrics forWeibull, Mitscherlich, and Rayleighmodels fitted to decline
in grain yield of unfertilized monoculture corn after a one-time application of compost (Figs. 5a, 5b).

Parameter or metric Weibull model Mitscherlich model Rayleigh model

Measured initial yield, Y0 (t·ha
−1 at 15.5%)a 14.8 14.8 14.8

Fitted final yield, YF (t·ha
−1 at 15.5%) 7.4 7.5 7.8

Measured time of initial yield, x0 (yr)
b 2012 2012 2012

Fitted time of final yield, xF (yr)
b 2026.9 2021.8 2014.9

Time domain of yield change, xD (yr) 14.9 9.8 2.9
Scale constant: kW, kM, or kR (yr−1) 0.9748 0.9395 1.0582
Shape constant, c (—) 0.8299 1 2
Maximum yield change, RM (t·ha−1·yr−1) 5.3c 6.9c 6.3
Time of maximum yield change, xM (yr) 2012c 2012c 2012.7
Integral aver. yield change, AI (t·ha

−1·yr−1) 0.50 0.75 2.42
Fisher population skewness, SF (—) 2.6569 2 0.6311
Fisher population kurtosis, KF (—) 11.2258 6 0.2451
Adjusted coefficient of determination, RA

2 (—) 0.9057 0.9266 0.8639
Normalized mean bias error, MBEN (%) 0.03 0.11 0.09
Normalized std. err. of regression, SERN (%) 9.16 8.08 11.00
Significance level of Weibull fit: FW-M or FW-R — 0.7576 0.1946
Corrected Akaike inform. criterion, AICC (—) 9.56 2.63 6.94
Prob. that best model: PW, PM, or PR (%) 2.72 87.22 10.07

Note: Fitted parameters included YF, Weibull c, and kW, kM, or kR.
aMeasured corn grain yield (15.5% moisture content) in fall 2012 (x0) after compost application in spring 2012.
bTime (x-axis) is measured in calendar years.
c(xM,RM) occur at (x0,Y0) for c≤ 1.
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Although such comparisons are absent (or rare) in the
literature, they can be critically important as good corre-
lation between the model-predicted and estimated
derivative function implies model compatibility with
underlying biological–physical–chemical processes.
To be useful, this approach obviously requires relatively
low random variability in the ðxi,YiÞ measurements.

3. Example Applications
3.1. Seedling emergence

Seedling emergence typically occurs several days after
planting of crop seeds or plow-down of weed seeds.
Cumulative seedling emergence versus time graphs
usually have a sigmoid or concave shape (e.g., Haj Seyed
Hadi and Gonzales-Andujar 2009; Forcella et al. 2000),
which is determined largely by seed viability and (or)

dormancy and seedbed conditions. Both the time delay
and emergence versus time patterns of seedling emer-
gence are amenable to characterization using the
Weibull–Mitscherlich–Rayleigh models and are illus-
trated here for emergence of grain corn (Zea mays L.)
seedlings. Figure 3 shows corn emergence data and fitted
models, where Y0 and x0 were specified constants, YF and
k were fitted for the Mitscherlich and Rayleigh models,
and YF, k, and c were fitted for the Weibull model.
Table 3 gives 95% confidence limits for slope and inter-
cept of YM

i vs. YP
i ; Table 4 gives parameter values and fit

metrics.
The Weibull and Rayleigh models produced better

visual fits than Mitscherlich to both cumulative emer-
gence (Fig. 3a) and estimated emergence rate (Fig. 3b).
Note in particular that Weibull and Rayleigh tracked
the estimated emergence rate data quite well, whereas
Mitscherlich did not (Fig. 3b), suggesting that the emer-
gence mechanism was not a Mitscherlich-type first-order
exponential. The fit statistics for Weibull were excellent
(RA

2 = 1.0000, MBEN = −3.56 × 10−5%, SERN = 0.05%),
whereas those for Rayleigh were somewhat poorer
(RA

2= 0.9988, MBEN= 0.14%, SERN= 2.17%), and those for
Mitscherlich were substantially poorer (RA

2 = 0.9617,
MBEN = 0.59%, SERN = 12.4%) (Table 4). In addition, the
95% confidence limits for slope and intercept of Yi

M vs.
Yi

P were very narrow for Weibull, whereas those for
Mitscherlich and Rayleigh were much wider (Table 3).
Evidently, Weibull’s excellent model-data fit was suffi-
cient to over-ride its parsimony penalty (due to having
one more fitting parameter), as the Weibull fit was
highly significant (FW-M < 0.001, FW-R < 0.001), and
Weibull was by far the most probable of the three
models (PW ≈ 100%, PR ≈ 0%, PM ≈ 0%). The fitted
Weibull model indicated a final seedling emergence (YF)
of 104%, a final emergence time (xF) of 8.3 d after plant-
ing, a maximum emergence rate (RM) of 77.3% d−1 at day
6 after planting (xM), and an integral average emergence
rate (AI) of 31.1% d−1 over the 3.3 d (xD) duration of
seedling emergence (Table 4). Note also that since
c = 2.3 was obtained from the Weibull fit (Table 4),
likelihood of corn seedling emergence increased with
time at an increasing rate, suggesting viable non-
dormant seed and favourable seedbed conditions. The
Weibull-fitted emergence rate (derivative) function
(Fig. 3b) was moderately right skewed (SF = 0.4536), but
only slightly less tailed (KF = −0.0353) than a normal
distribution (Table 2).

3.2. Nitrous oxide emissions
Nitrous oxide (N2O) emissions from agricultural soil

occur primarily as a result of microbial nitrification and
denitrification of applied nitrogen sources, such as
fertilizers and organic amendments (e.g., Signor and
Cerri 2013). Although cumulative N2O emission versus
time curves can assume a wide variety of shapes,
by far the most common are concave and sigmoid

Fig. 6. Weibull, Mitscherlich, and Rayleigh functions fitted
to laboratory-incubated nitrogen mineralization data:
(a) inorganic nitrogen mineralized (N) vs. time (t); (b) N
mineralization rate, dN/dt vs. t. Circles are measured
cumulative inorganic N; diamonds are finite difference (FD)
estimates of dN/dt based on measured cumulative N (eq. 21);
predicted end point (triangle) is estimated time when net
mineralization ceased (xF,YF). Vertical “T bars” are standard
error (n= 4). Data from Yang et al. (2020). [Colour online.]
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forms, which are readily characterized using the
Weibull–Mitscherlich–Rayleigh models. Figure 4 shows
cumulative N2O emissions and fitted models for corn
production on a clay loam soil that had received
starter fertilizer (8–32–16) on Julian day 136 and side-
dress nitrogen fertilizer (28% UAN) on Julian day 170
(see Drury et al. 2021 for details). Because there were
more than twice as many data points (21) as fitting
parameters (4–5), Y0, YF, x0, and k were fitted for the
Mitscherlich and Rayleigh models, and Y0, YF, x0, k, and
c were fitted for Weibull. Tables 3 and 5 give the param-
eter values and fit metrics.

The measured N2O emissions formed a sigmoid
cumulative curve (Fig. 4a) and a bell-shaped derivative,
or emission rate, curve (Fig. 4b). The Weibull and
Rayleigh models produced visually good model-data fits,
but Mitscherlich was clearly not competitive. The 95%
confidence limits for slope and intercept of Yi

M vs. Yi
P

(Table 3), and the RA
2, MBEN, SERN, FW-M, and FW-R values

(Table 5), further showed that the Weibull fit was excel-
lent and significantly better than Rayleigh and
Mitscherlich. As a result, Weibull was highly probable
(PW = 100%) despite its parsimony penalty, while
Rayleigh and Mitscherlich were highly improbable
(PR ≈ 0%, PM ≈ 0%) (Table 5). The fittedWeibull model indi-
cated maximum cumulative N2O emission (YF) of 16 769 g
N2O-N·ha

−1 at Julian day 231 (xF), a maximum emission
rate (RM) of 424 g N2O-N·ha

−1·d−1 at Julian day 178 (xM),
and an average emission rate (AI) of 170 g N2O-N·ha

−1·d−1

which occurred over a 98 d emission period (xD) (Table 5).

Note as well that since c = 3.2669 was obtained
(Table 5), likelihood of emission increased with time, and
emissions were almost normally distributed (SF= 0.0872,
KF=−0.2884, Table 2).

3.3. Yield change

Corn is highly sensitive to the soil environment, and
annual yields decline when root zone fertility and
biophysical health start to deteriorate (e.g., Bennett et al.
2012). Figure 5 shows annual grain yields and fitted
models for unfertilized monoculture corn grown under
no-tillage on a sandy loam soil after a one-time applica-
tion (in 2012) of yard waste compost (experimental
details given in Reynolds et al. 2020). Parameters Y0 and
x0 were specified constants, whereas YF and k were fitted
for Mitscherlich and Rayleigh, and YF, k, and cwere fitted
for Weibull. Parameter values and fit metrics appear in
Tables 3 and 6.

The measured yields decline with time (Fig. 5a), which
presumably reflects deteriorating soil fertility and
health as the oxidizing compost loses its ability to supply
nutrients and maintain a good biophysical environment.
The data-estimated rate of yield decline (eq. 21, Fig. 5b)
was too scattered to be useful, and it may reflect
annual variation in weather. The fitted Weibull and
Mitscherlich models predicted yield (Fig. 5a) and yield
change (Fig. 5b) curves which were similar and convex
in shape. The fitted Rayleigh model, in contrast, pro-
duced a sigmoid curve for yield (Fig. 5a) and a right-
skewed bell curve for yield change (Fig. 5b), which was

Table 7. Parameter values and associated metrics for Weibull, Mitscherlich, and Rayleigh models fitted to
laboratory-incubated nitrogen mineralization data (Figs. 6a, 6b).

Parameter or metric Weibull model Mitscherlich model Rayleigh model

Fitted initial mineralized N, Y0 (% of N0)
a 0.06 0.00 3.41

Fitted final mineralized N, YF (% of N0)
a 39.65 40.29 37.72

Fitted initial time, x0 (d)
b 0.0 0.0 0.0

Fitted final time, xF (d)
b 123.2 151.6 49.0

Time domain of mineralization, xD (d) 123.2 151.6 49.0
Scale constant: kW, kM, or kR (d−1) 0.0622 0.0607 0.0619
Shape constant, c (—) 1.0902 1 2
Maximum mineralization rate, RM (% d−1) 2.01 2.45c 1.82
Time of maximum mineralization rate, xM (d) 1.6 0.0c 11.4
Integral aver. mineralization rate, AI (% d−1) 0.3212 0.2657 0.6998
Fisher population skewness, SF (—) 1.7574 2 0.6311
Fisher population kurtosis, KF (—) 4.4937 6 0.2451
Adjusted coefficient of determination, RA

2 (—) 0.9988 0.9979 0.9504
Normalized mean bias error, MBEN (%) 5.92 × 10−8 0.097 −2.55 × 10−8

Normalized std. err. of regression, SERN (%) 1.49 1.96 9.59
Significance level of Weibull fit: FW-M or FW-R — 0.0669 <0.001
Corrected Akaike inform. criterion, AICC (—) −0.60 0.08 35.00
Prob. that best model: PW, PM, or PR (%) 58.37 41.63 0.00

Note: Fitted parameters included Y0, YF, x0, Weibull c, and kW, kM, or kR.
aN0 is initial amount of mineralizable nitrogen in the incubated soil.
bTime is days after initiation of incubation.
c(xM,RM) occur at (x0,Y0) for c≤ 1.
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expected as this model’s shape parameter is fixed at c= 2
(eqs. 10 and 11; Figs. 1a, 1b). The RA

2 and SERN fit
metrics (Table 6) and confidence limits for Yi

M vs. Yi
P

(Table 3) were similar between Weibull and
Mitscherlich, and better than those for Rayleigh.
However, the Weibull fit was not significantly better
than the others (FW-M = 0.7576, FW-R = 0.1946); and this
combined with the Weibull parsimony penalty, caused
Mitscherlich to be most probable (PM = 87.2%), with
Rayleigh second (PR = 10.1%), and Weibull third
(PW= 2.7%). The fitted Mitscherlich model indicated that
unfertilized grain yield declined over a period of about
9.8 yr (xD) and stabilized at about 7.5 t·ha−1 (YF). The
model also indicated a maximum rate of yield decline
of 6.9 t·ha−1·yr−1 (RM) during the first year after compost
addition (xM= 2012), and an average rate of yield decline

of 0.75 t·ha−1·yr−1 (AI) over the 9.8 yr yield stabilization
period (xD). Since c = 1 for Mitcherlich (Table 6), yield
decline was predicted to be memoryless (i.e., likelihood
of yield decline was constant and independent of time).
As expected, the Mitscherlich rate of yield change
(derivative) function (Fig. 5b) was strongly right skewed
(SF = 2) and substantially more tailed (KF = 6) than a
normal distribution (Table 2).

3.4. Nitrogen mineralization

Potential supply and release dynamics of crop-
available nitrogen are often determined using labora-
tory incubations, wherein nitrogen release vs. time is
measured for soil amended with fertilizers or organic
materials (e.g., Yang et al. 2020). Nitrogen release curves
can have a variety of shapes, but they are most often
sigmoid or monotone, and thereby amenable to charac-
terization using the Weibull–Mitscherlich–Rayleigh
family of models. Figure 6 shows example mineralized
nitrogen (N) release data (from Yang et al. 2020) and
model fits for soil amended with crimson clover shoots.
Because there were more than twice as many data points
(11) as fitting parameters (4–5), Y0, YF, x0, and kwere fitted
for Mitscherlich and Rayleigh, and Y0, YF, x0, k, and cwere
fitted for Weibull. Tables 3 and 7 give parameter values
and fit metrics.

All three models generated visually reasonable fits to
cumulative N released vs. time data (Fig. 6a); however,
only Weibull and Mitscherlich produced plausible
estimates of mineralization rate (dN/dt) vs. time (Fig. 6b).
Hence, Rayleigh was deemed non-competitive and not
considered further. The Weibull fit was most probable
of the three models (PW= 58.37%, PM= 41.63%, PR = 0.0%)
(Table 7), and its 95% confidence limits for slope and
intercept of Yi

M vs. Yi
P were narrowest (Table 3). The

Weibull fit also had excellent metrics (RA
2 = 0.9988,

MBEN = 5.92 × 10−8 %, SERN = 1.49%) which were better
than Mitscherlich (RA

2 = 0.9979, MBEN = 0.097%,
SERN = 1.96%) (Table 7). The two models may actually be
equivalent; however, as Weibull’s probability, fit
metrics, and confidence limits were only slightly better
than Mitscherlich, and the partial F-test for Weibull vs.
Mitscherlich was not significant (FW-M = 0.0669). In
addition, Weibull and Mitscherlich gave similar values
for Y0, YF, k, c, RM, and AI (Table 7), and both indicated
that mineralization was effectively memoryless
(i.e., c ≈ 1, Table 7), strongly right skewed (SF = 1.8–2,
Tables 2 and 7), and moderate to strongly leptokurtic
(KF= 4.5–6, Tables 2 and 7). Note also that although both
models track N mineralization rate (dN/dt vs. t) equally
well (Fig. 6b), Weibull indicates that dN/dt = 0 at t = 0
(since c = 1.09 > 1), whereas Mitscherlich indicates that
dN/dt = RM = 2.45% d−1 at t = 0 (since c = 1) (Table 7).
Hence, the better model of the two may actually be the
one that gives the most physically plausible representa-
tion of N mineralization rate at zero and near-zero time,

Fig. 7. Weibull, Mitscherlich, and Rayleigh functions fitted
to soil organic carbon versus depth data: (a) soil organic
carbon content (SOC) vs. depth (z); (b) rate of SOC
change, −d(SOC)/dz vs. z. Circles are measured SOC content;
diamonds are finite difference (FD) estimates of −d(SOC)/dz
based on measured SOC (eq. 21); predicted end point
(triangle) is estimated depth where minimum SOC occurs
(xF,YF). Vertical “T bars” are standard error (n= 4). Data from
Reynolds et al. (2014). [Colour online.]
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given that most of the other parameters and metrics
were similar.

3.5. Soil organic carbon depth profile
Soil organic carbon content (SOC) is perhaps the

single most important soil attribute, as it affects crop
productivity, most soil properties, and most soil quality
and health indicators (e.g., Gregorich et al. 1997).
Accurate and detailed characterization of SOC depth
profiles can, therefore, be critically important for
analytical and numerical models describing carbon
sequestration, water transmission and storage, solute
transport, crop growth, and environmental impact.
Figure 7 gives an example SOC profile and correspond-
ing Weibull–Mitscherlich–Rayleigh fits for a clay loam
soil under a long-term corn–oat–alfalfa–alfalfa rotation.
Parameters Y0 and x0 were specified constants, whereas
YF and k were fitted for Mitscherlich and Rayleigh, and
YF, k, and c were fitted for Weibull. The corresponding
parameter values and fit metrics are in Tables 3 and 8.

The SOC data profile is clearly sigmoidal (Fig. 7a) with a
bell-shaped derivative function (Fig. 7b) — hence, well
fitted by the Weibull and Rayleigh models but poorly
fitted by Mitscherlich. The model-data fit metrics were
excellent for Weibull (RA

2 = 0.9950, MBEN = −0.30%,
SERN = 4.36%), whereas Rayleigh was a close second
(RA

2 = 0.9890, MBEN = −1.17%, SERN = 6.45%), and
Mitscherlich was a distant third (RA

2 = 0.7827, MBEN =
−2.44%, SERN = 28.69%) (Table 8). However, the Weibull
fit was not significantly better (FW-M = 0.0685,
FW-R= 0.3171); and when parsimony is taken into account,

Rayleigh was most probable by far (PR = 96.41%), with
Weibull a distant second (PW = 3.53%), and Mitscherlich
a very distant third (PM = 0.06%) (Table 8). Although this
clearly indicates that Rayleigh has the best balance of fit
and parsimony, there may be other factors to consider.
For example, Weibull not only produced better fit
metrics than Rayleigh but also narrower confidence
limits for slope and intercept of Yi

M vs. Yi
P (Table 3), and

a better visual fit to the −d(SOC)/dz vs. z data (Fig. 7b).
Hence, choosing the most appropriate model may
require subjective reasoning (e.g., visual model-data fits)
as well as objective criteria (fit metrics). In any case, the
Rayleigh (most probable) model indicated a minimum
SOC (YF) of 0.21 wt. % at 83 cm depth (xF), maximum rate
of SOC change of 0.08 wt. %·cm−1 at 23 cm depth (xM),
and an average rate of SOC change (AI) of 0.03 wt.
%·cm−1 over a 78.4 cm depth range (xD) (Table 8). Since
c= 2 for Rayleigh, its derivative function for SOC (Fig. 7b)
was moderately right skewed (SF = 0.6311) and slightly
more tailed (KF = 0.2451) than a normal distribution
(Table 2).

3.6. Soil water desorption curve
The soil water desorption curve, θ(h), describes the

decrease in soil volumetric water content, θ [L3·L−3], with
increasing soil water tension head, h [L]. It is a fundamen-
tal hydraulic property that underpins and regulates vir-
tually all mechanistic descriptions of transmission and
storage of water and gases in soils and other geologic
porous media. Accurate representations of the θ(h) curve
are consequently essential for valid and realistic

Table 8. Parameter values and associated metrics for Weibull, Mitscherlich, and Rayleigh models fitted to soil
organic carbon content (SOC) profile data (Figs. 7a, 7b).

Parameter or metric Weibull model Mitscherlich model Rayleigh model

Measured maximum SOC, Y0 (wt. %)a 2.72 2.72 2.72
Fitted minimum SOC, YF (wt. %)b 0.43 0.00 0.21
Measured minimum depth, z0 (x0) (cm) 5.0 5.0 5.0
Fitted maximum depth, zF (xF) (cm) 62.0 289.5 83.4
Depth domain, zD (xD) (cm) 57.0 284.5 78.4
Scale constant: kW, kM, or kR (cm−1) 0.0426 0.0324 0.0387
Shape constant, c (—) 2.5027 1 2
Maximum rate of SOC change, RM (% cm−1) 0.10 0.09c 0.08
Depth of max. rate of SOC change, xM (cm) 24.1 5.0c 23.3
Integral aver. rate of SOC change, AI (% cm−1) 0.04 0.01 0.03
Fisher population skewness, SF (—) 0.3574 2 0.6311
Fisher population kurtosis, KF (—) −0.1444 6 0.2451
Adjusted coefficient of determination, RA

2 (—) 0.9950 0.7827 0.9890
Normalized mean bias error, MBEN (%) −0.30 −2.44 −1.17
Normalized std. err. of regression, SERN (%) 4.36 28.69 6.45
Significance level of Weibull fit: FW-M or FW-R — 0.0685 0.3171
Corrected Akaike inform. criterion, AICC (—) −6.57 1.74 −13.18
Prob. that best model: PW, PM, or PR (%) 3.53 0.06 96.41

Note: Fitted parameters included YF, Weibull c, and kW, kM, or kR.
aMeasured SOC at minimum soil profile depth, x0.
bPredicted SOC at predicted maximum soil profile depth, xF.
c(xM,RM) occur at (x0,Y0) for c≤ 1.
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characterizations of a wide range of agriculturally
relevant processes such as infiltration, drainage, irriga-
tion scheduling, tillage, trafficking, and depth
profiles of root zone temperature, aeration, and
moisture. Due to the extreme complexity of soil–water
dynamics, θ(h) is typically represented by one of several
empirical or semi-empirical equations; but to the
authors’ knowledge, Weibull–Mitscherlich–Rayleigh
expressions have never been applied. Figure 8 gives an
example of Weibull, Mitscherlich, and Rayleigh model
fits to a θ(h) curve from an agricultural sandy loam soil,
with (x0,Y0) = (hS,θS) = (0.1,0.52), where θS is measured
water content at saturation (0.52 m3·m−3), and hS is
estimated tension head at saturation (0.1 cm). Fitting
parameters included YF and k for Mitscherlich and
Rayleigh, and YF, k, and c for Weibull. The resulting
parameter values and fit metrics appear in Tables 3 and 9.

As is common for soil, the θ vs. h data produced a
sigmoid, diminishing response curve (Fig. 8a, h on log10
scale), whereas −dθ/dh vs. h produced a concave curve
(Fig. 8b, both θ and h on log10 scales). Although all three
models could produce the same basic shapes as the data,
it is clear that only Weibull was flexible enough (because
of its variable c parameter) to achieve accurate and realis-
tic model-data fits. Specifically, the Weibull line went
through, or close to, every data point, whereas
Mitscherlich and Rayleigh deviated systematically and
substantially (Figs. 8a, 8b). Weibull consequently had
much more favourable Yi

M vs. Yi
P confidence limits

(Table 3) and fit metrics (Table 9) than Mitscherlich and
Rayleigh; and as a result, PW was 100% and both FW-M

and FW-R were <0.001 (Table 9). Hence, Weibull was
highly probable and produced accurate fits to the θ(h)
and −dθ/dh data, whereas Mitscherlich and Rayleigh
were both improbable and inaccurate. The Weibull fit
indicated a minimum water content (YF) of 0.12 m3·m−3

at a tension head of 17 558 cm (xF), a maximum desorp-
tion rate (RM) of 2.23·cm

−1 at 0.1 cm tension head (xM),
and an integral average desorption rate (AI) of
2.28 × 10−5·cm−1 over a 17 557.9 cm desorption range (xD)
(Table 9). Since c = 0.4720 was obtained (Table 9), the
desorption curve was extremely right skewed (SF = 7.5)
and extremely leptokurtic (KF= 113.1) (Tables 2 and 8).

Given its apparent success, Weibull was compared
with two of the most popular and versatile functions
for describing the θ(h) relationship — the “van
Genuchten” equations (van Genuchten 1980) and the
“Groenevelt-Grant” equations (Groenevelt and Grant
2004). The empirical van Genuchten θ(h) and dθ/dh
equations are given by (van Genuchten 1980)

θðhÞ = θR +
ðθS − θRÞ

½1 + ðαhÞn�m ; h ≥ 0ð22:1Þ

dθ
dh

= −
nmαnhðn−1ÞðθS − θRÞ
½1 + ðαhÞn�ðm+1Þ ; h ≥ 0ð22:2Þ

where α [L−1] and n [—] are empirical curve-fitting
parameters, m= 1 − (1/n) [—], θR [L3·L−3] is residual soil
water content (treated as a fitting parameter), and θS
[L3·L−3] is saturated soil water content (usually
specified or measured). The empirical Groenevelt–
Grant θ(h) and dθ/dh equations can be written as
(Groenevelt and Grant 2004)

θðhÞ = θA + k1½e−ðk0=hAÞ
p

− e−ðk0=hÞ
p �; h > 0ð23:1Þ

dθ
dh

= −
pk1k

p
0

hðp+1Þ
e−ðk0=hÞ

p

; h > 0ð23:2Þ

where k0 [L], k1 [L3·L−3], and p [—] are empirical
curve-fitting parameters, and (hA,θA) is a specified water

Fig. 8. Weibull, Mitscherlich, and Rayleigh functions fitted
to soil water desorption data: (a) water content (θ) vs.
tension head (h); (b) rate of θ change, −dθ/dh vs. h. Circles are
measured θ; diamonds are finite difference (FD) estimates of
the differential water capacity relationship obtained using
−Δθ/Δh vs. geometric mean h (eq. 21); predicted end point
(triangle) is estimated tension head where minimum θ
occurs (xF,YF). Vertical “T bars” are standard error (n= 10).
[Colour online.]
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content-tension head coordinate. Equations 22.1 and 23.1
were fitted to the θ(h) data in Fig. 8a using the protocol in
Section 2.5.1., with θS= θA= 0.52m3·m−3, and hA= 0.1 cm.
It should also be noted that eqs. 22.2 and 23.2 are
traditionally referred to as the “differential water capac-
ity” or “specific moisture capacity” relationship.

The van Genuchten and Groenevelt–Grant functions
produced nearly identical visual fits to θ(h) and
−dθ/dh (Figs. 9a, 9b), as well as similar fit metrics
(Tables 3 and 10). The fits were not as good as Weibull;
however, as their fit metrics and confidence limits for
Yi
M vs. Yi

P were less favourable (Tables 3 and 10), and the

Table 9. Parameter values and associated metrics for Weibull, Mitscherlich, and Rayleigh models fitted to soil
water desorption curve, θ(h), data (Figs. 8a, 8b).

Parameter or metric Weibull model Mitscherlich model Rayleigh model

Meas. initial water content, θS (Y0) (m
3·m−3)a 0.52 0.52 0.52

Fitted final water content, θF (YF) (m
3·m−3) 0.12 0.19 0.22

Assumed initial tension head, hS (x0) (cm) 0.1 0.1 0.1
Fitted final tension head, hF (xF) (cm) 17 558 591 140
Desorption domain, hD (xD) (cm) 17 557.9 590.9 139.8
Scale constant: kW, kM, or kR (cm−1) 0.0063 0.0156 0.0217
Shape constant, c (—) 0.4720 1 2
Maximum desorption rate, RM (cm−1) 2.233b 0.0051b 0.0056
Tension at max. desorption rate, hM (xM) (cm) 0.1b 0.1b 32.7
Integral aver. desorption rate, AI (cm

−1) 2.28 × 10−5 5.55 × 10−4 2.16 × 10−3

Fisher population skewness, SF (—) 7.5246 2 0.6311
Fisher population kurtosis, KF (—) 113.0904 6 0.2451
Adjusted coefficient of determination, RA

2 (—) 0.9981 0.8640 0.7039
Normalized mean bias error, MBEN (%) −0.04 2.86 5.19
Normalized std. err. of regression, SERN (%) 1.63 13.97 20.61
Significance level of Weibull fit: FW-M or FW-R — <0.001 <0.001
Corrected Akaike inform. criterion, AICC (—) −84.41 −49.39 −42.38
Prob. that best model: PW, PM, or PR (%) 100.00 0.00 0.00

Note: Fitted parameters included θF, Weibull c, and kW, kM, or kR.
aθS is measured saturated soil volumetric water content at assumed tension head, hS.
b(xM,RM) occur at (x0,Y0) for c≤ 1.

Table 10. Parameter values and associated metrics for the Weibull, van Genuchten, and Groenevelt–Grant models fitted to
soil water desorption curve, θ(h), data (Figs. 9a, 9b).

Parameter or metric Weibull model van Genuchten model Groenevelt–Grant model

Measured initial water content, θS (m
3·m−3)a 0.52 0.52 0.52

Fitted final water content, θF (m
3·m−3) 0.12 — —

Fitted residual water content, θR (m3·m−3) — 0.01 —

Assumed initial tension head, hS (cm) 0.1 0.1 0.1
Fitted final tension head, hF (cm) 17,558 — —

Scale constant, kW (cm−1) 0.0063 — —

Scale constant, α (cm−1) — 0.1954 —

Scale constant, k0 (cm
−1) — — 36.0438

Scale constant, k1 (m
3·m−3) — — 0.4520

Shape constant: c, n, or p (—) 0.4720 1.1971 0.3655
Adjusted coefficient of determination, RA

2 (—) 0.9981 0.9891 0.9929
Normalized mean bias error, MBEN (%) −0.04 0.19 0.12
Normalized std. err. of regression, SERN (%) 1.63 3.95 3.19
Corrected Akaike inform. criterion, AICC (—) −84.41 −68.54 −72.40
Prob. that best model: PW, PvG, or PG-G (%)b 100.00 0.04 0.24

Note: Fitted parameters included θF, c, and kW for Weibull; θR, α, and n for van Genuchten; and k0, k1, and p for Groenevelt–
Grant.

aθS is measured saturated soil volumetric water content at assumed initial tension head, hS.
bCalculated using eq. 18–20, where subscripts W, vG, and G-G represent the Weibull, van Genuchten, and Groenevelt–Grant

models, respectively.
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models did not “track” the wet and dry ends of the −dθ/
dh vs. h relationship as well as Weibull (Fig. 9b). As a
result, Weibull was by far the most probable of the three
models with PW = 99.72%, whereas van Genuchten and
Groenevelt–Grant were PvG = 0.04% and PG-G = 0.24%,
respectively (Table 10). Better tracking of −dθ/dh vs. h by
Weibull (at least for this example) is particularly interest-
ing, as it implies potentially better representations of
water transmission and storage processes than the other
two models, as well as more accurate estimates
of the differential water capacity term (dθ/dh) in the
physically based Richards equation for soil moisture
flow (Richards 1931).

4. Discussion
Although the above agricultural applications are

limited in scope, they nonetheless provide a good dem-
onstration of the potential and utility of the adapted
Weibull–Mitscherlich–Rayleigh family of functions. In
every case, at least one of the three models provided a
highly plausible model-data fit (Figs. 3–9) with excellent
fit metrics (RA

2 ≥ 0.9266, |MBEN| ≤ 1.49%, SERN ≤ 8.08%;
Tables 4–10), and 95% confidence intervals that were nar-
row and near-symmetric about the Yi

M vs. Yi
P regression

line (Table 3). In addition, the partial F test (FP) showed
when Weibull produced a significantly better fit
(P < 0.05) than the simpler Mitscherlich and Rayleigh
functions; and the normalized suitability metric (PX)
provided clear probability rankings among the fitted
models (Tables 4–10). However, as has been noted by
others (e.g., Archontoulis and Miguez 2015), there is cur-
rently no single metric (or suite of metrics) for
definitive determination of the “best fitting”, “most
appropriate” or “most probable” model. It also needs to
be remembered that PX is a relative measure only, and
therefore, cannot determine the best model in an
absolute sense. In other words, some other model
(e.g., Gompertz, Logistic, Gumbel, etc.) may provide
better representations of the datasets than the
Weibull–Mitscherlich–Rayleigh family. At present, esti-
mating the best absolute representation of a dataset
requires fitting a wide range of diverse (but plausible)
models, and then applying the PX metric as above
(e.g., Banks and Joyner 2017).

Of the six example datasets, Mitscherlich was deemed
most suitable for change in corn grain yield (Fig. 5,
PM = 87.2%), Rayleigh was best for SOC distribution
(Fig. 7, PR = 96.4%), and Weibull was best for corn
seedling emergence (Fig. 3, PW = 100%), nitrous oxide
emissions (Fig. 4, PW = 100%), nitrogen mineralization
(Fig. 6, PW = 58.4%), and soil water desorption (Fig. 9,
PW = 100% and Fig. 10, PW = 99.7%). The greater success
rate for Weibull is perhaps not surprising, as it has one
more fitting parameter (c) and thereby much greater
flexibility. However, goodness of fit and parsimony
metrics may not necessarily be the only criteria for
deciding model suitability. Perhaps consideration should
also be given to how well the fitted model tracks the data
derivative function (dY/dx), or to the model that yields
more physically realistic end points for the derivative
function. For example, the derivative function for SOC
distribution (Fig. 7b) was not tracked as well by the
best-fit Rayleigh model (PR = 96.4%) as it was by the
second-best Weibull model (PW= 3.5%). Also, zero initial
nitrogen mineralization rate indicated by the best-fit
Weibull model (PW= 58.4%, Fig. 6b) may not be as physi-
cally realistic as maximum initial mineralization rate
indicated by second-best Mitscherlich (PM = 41.6%,
Fig. 6b). It may even be appropriate in some cases to
select a model primarily on its ability to track the data

Fig. 9. Comparison of Weibull, van Genuchten, and
Groenevelt–Grant fits to soil water desorption data:
(a) water content (θ) vs. tension head (h) (eqs. 4, 22.1, 23.1);
(b) rate of θ change, −dθ/dh vs. h (eqs. 1, 22.2, 23.2). All three
models were anchored to maximum water content and
pressure head, i.e., (θ,h)= (0.52,0.1); Weibull fitting
parameters were YF, k, and c; van Genuchten fitting
parameters were θR, α, and n, with m= 1 − (1/n); Groenevelt–
Grant fitting parameters were k0, k1, and p. Circles are
measured θ; diamonds are finite difference (FD) estimates of
the differential water capacity relationship obtained using
−Δθ/Δh vs. geometric mean h (eq. 21). Vertical “T bars” are
standard error (n= 10). [Colour online.]
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derivative function, or to provide physically plausible
derivative function end points, with goodness of fit and
parsimony metrics reduced to secondary consideration.
This possibility warrants further investigation.

The results of this study suggest that the time/space/
quantity behaviour of a wide range of agricultural proc-
esses is amenable to characterization and parameteriza-
tion using the Weibull–Mitscherlich–Rayleigh family of
functions. Some likely (or already partially demon-
strated) candidates include seed germination and seed-
ling emergence versus time or thermal time
(e.g., Fig. 3); greenhouse gas production and emissions
from soil versus time, soil moisture, or fertilizer source/
rate/timing/placement (e.g., Fig. 4); crop yield and bio-
mass production versus time, soil fertility, rainfall, tem-
perature, or soil biophysical condition (e.g., Fig. 5);
nitrogen mineralization dynamics versus time, tempera-
ture, or substrate composition (e.g., Fig. 6); SOC seques-
tration versus time, management practice, or depth
(e.g., Fig. 7); transmission and storage of soil air and
water (e.g., Fig. 8); and soil microbial population dynam-
ics versus time or depth below surface. Further investiga-
tion of the usability of Weibull–Mitscherlich–Rayleigh
functions for characterizing agricultural data and
processes appears well justified.

5. Conclusions
The Weibull–Mitscherlich–Rayleigh family of

functions was adapted to increase their utility for
characterizing agricultural processes (Figs. 1 and 2;
Tables 1 and 2). Using non-linear least-squares curve fit-
ting, goodness of model-data fit metrics, and model
selection metrics, it was demonstrated that the adapted
functions were capable of producing accurate and
unbiased fits to a wide range of agricultural data includ-
ing corn seedling emergence, nitrous oxide emissions,
change in corn grain yield, nitrogen mineralization,
SOC distribution, and soil water desorption (Figs. 3–9).
The fitted functions in turn provided several parameters
(e.g., Y0, YF, x0, k, and c) and metrics (e.g., xF, xD, xM, RM,
AI, SF, and KF) that were useful or potentially useful for
characterizing agricultural data (Appendix A, Tables 1
and 2). It was therefore concluded that the adapted
Weibull–Mitscherlich–Rayleigh family of functions has
substantial potential for informative application to a
wide range of agricultural data and processes.

Conflict of Interest
The authors declare that the research was conducted

in the absence of any commercial or financial relation-
ships that could be construed as an actual or potential
conflict of interest.

Author Contributions
Author D.R. conceived the research and conducted the

mathematical and computer analyses, while authors
D.R., C.D., X.Y., and I.A. supervised data collection. All

authors contributed to data interpretation and writing
of the manuscript.

Funding
Funding for this work was provided by the Science and

Technology Branch of Agriculture and Agri-Food Canada,
A-Base Study 2380.

Acknowledgements
We gratefully acknowledge W. Calder, J. Gignac, J.

Huffman, M. Reeb, and various summer students for
data collection; Essex-Windsor Solid Waste Authority,
Windsor, Ontario for provision of yard waste compost
(Section 3.3.); and the AAFC-Harrow farm crew for
ongoing operation and maintenance of the field sites.

References
Abernethy, R.B. 2010. The new Weibull handbook, 5th ed.

Robert B. Abernethy, North Palm Beach, FL, USA.
Aboutalebian, M.A., Nazari, S., and Gonzales-Andujar, J.L. 2017.

Evaluation of a model for predicting Avena fatua and
Descurainia sophia seed emergence in winter rapeseed. Span.
J. Agric. Res. 15(2): 1–7. doi:10.5424/sjar/2017152-10572.

Agomoh, I.V., Drury, C.F., Reynolds, W.D., Woodley, A., Yang,
X., Phillips, L.A., and Rehmann, L. 2021. Stover harvest and
tillage effects on corn seedling emergence. Agronomy J. 1–9.
doi:10.1002/agj2.20738.

Archontoulis, S.V., and Miguez, F.E. 2015. Nonlinear regression
models and applications in agricultural research. Agron. J.
107: 786–798. doi:10.2134/agronj2012.0506.

Banks, H.T., and Joyner, M.L. 2017. AIC under the framework of
least squares estimation. Appl. Math. Lett. 74: 33–45.
doi:10.1016/j.aml.2017.05.005.

Beauchamp, E.G., Reynolds, W.D., Brasche-Villeneuve, D., and
Kirby, K. 1986. Nitrogen mineralization kinetics with differ-
ent soil pretreatments and cropping histories. Soil Sci. Soc.
Am. J. 50: 1478–1483.

Bennett, A.J., Bending, G.D., Chandler, D., Hilton, S., and Mills,
P. 2012. Meeting the demand for crop production: the chal-
lenge of yield decline in crops grown in short rotations.
Biol. Rev. 87: 52–71. doi:10.1111/j.1469-185X.2011.00184.x.

Brown, R.F., and Mayer, D.G. 1988. Representing cumulative ger-
mination. 2. The use of the Weibull function and other
empirically derived curves. Ann. Bot. 61: 127–138.

Chu, P.C. 2013. Weibull statistics in ocean analysis and predic-
tion. OCEANS-San Diego, San Diego, CA, USA. pp. 1–4.
doi:10.23919/OCEANS.2013.6741376.

Chu, Y.-K., and Ke, J.-C. 2012. Approaches for parameter
estimation of Weibull distribution. Math. Comput. Appl.
17(1): 39–47.

Cousineau, D. 2009. Fitting the three-parameter Weibull distri-
bution: review and evaluation of existing and new methods.
IEEE Trans. Dielectr. Electr. Insul. 16(1): 281–288. doi:10.1109/
TDEI.2009.4784578.

Cousineau, D. 2011. The fallacy of large shape parameters when
using the two-parameter Weibull distribution. IEEE Trans.
Dielectr. Electr. Insul. 18(6): 2095–2102.

Drury, C.F., Reynolds, W.D., Yang, X.M., McLaughlin, N.B.,
Calder, W.C., and Phillips, L.A. 2021. Diverse rotations impact
microbial processes, seasonality and overall N2O emissions
from soils. Soil Sci. Soc. Am. J. (accepted). doi:10.1002/
saj2.20298.

Evans, J.W., Kretschmann, D.E., and Green, D.W. 2019.
Procedures for estimation of Weibull parameters. General
Technical Report FPL-GTR-264. U.S. Department of

698 Can. J. Soil Sci. Vol. 101, 2021

Published by NRC Research Press

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Soil-Science on 29 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use

http://dx.doi.org/10.5424/sjar/2017152-10572
http://dx.doi.org/10.1002/agj2.20738
http://dx.doi.org/10.2134/agronj2012.0506
http://dx.doi.org/10.1016/j.aml.2017.05.005
http://dx.doi.org/10.1111/j.1469-185X.2011.00184.x
http://dx.doi.org/10.23919/OCEANS.2013.6741376
http://dx.doi.org/10.1109/TDEI.2009.4784578
http://dx.doi.org/10.1109/TDEI.2009.4784578
http://dx.doi.org/10.1002/saj2.20298
http://dx.doi.org/10.1002/saj2.20298


Agriculture, Forest Service, Forest Products Laboratory,
Madison, WI, USA. 17 p.

Folk, R.L. 1980. Petrology of sedimentary rocks. Hemphill
Publishing Co., Austin, TX, USA.

Forcella, F., Benech Arnold, R.L., Sanchez, R., and Ghersa, C.M.
2000. Modeling seedling emergence. Field Crops Res. 67:
123–139.

Gan, Y., Stobbe, E.H., and Njue, C. 1996. Evaluation of selected
nonlinear regression models in quantifying seedling
emergence rate of spring wheat. Crop Sci. 36: 165–168.

Gardarin, A., Durr, C., and Colbach, N. 2011. Prediction
of germination rates of weed species: Relationships
between germination speed parameters and species traits.
Ecol. Model. 222: 626–636. doi:10.1016/j.ecolmodel.2010.
10.005.

Gill, G.S., Cousens, R.D., and Allan, M.R. 1996. Germination,
growth and development of herbicide resistant and suscep-
tible populations of rigid ryegrass (Lolium rigidum). Weed Sci.
44: 252–256.

Gillis, J.D., and Price, G.W. 2011. Comparison of a novel model to
three conventional models describing carbon mineralization
from soil amended with organic residues. Geoderma, 160:
304–310.doi:10.1016/j.geoderma.2010.09.025.

Glen, S. 2020a. Memoryless property. From StatisticsHowTo.com
https://www.statisticshowto.com/memoryless-property/
[accessed 5 Sept. 2020].

Glen, S. 2020b. Rayleigh distribution: definition, uses, mean, vari-
ance. From StatisticsHowTo.com https://www.statisticshowto.
com/rayleigh-distribution/ [accessed 5 Sept. 2020].

Glen, S. 2020c. Expected value in statistics: definition and
calculating it. From StatisticsHowTo.com https://www.
statisticshowto.com/probability-and-statistics/expected-value/
[accessed 5 Sept. 2020].

Gregorich, E.G., Carter, M.R., Doran, J.W., Pankhurst, C.E., and
Dwyer, L.M. 1997. Biological attributes of soil quality. Pages
81–114 in E.G. Gregorich and M.R. Carter, eds. Soil quality
for crop production and ecosystem health. Developments in
soil science. Vol. 25. Elsevier, New York, NY, USA.

Groenevelt, P.H., and Grant, C.D. 2004. A new model for the
soil-water retention curve that solves the problem of residual
water contents. Eur. J. Soil Sci. 55: 479–485. doi:10.1111/j.1365-
2389.2004.00617.x.

Haj Seyed Hadi, M.R., and Gonzales-Andujar, J.L. 2009.
Comparison of fitting weed seedling emergence models with
nonlinear regression and genetic algorithm. Comput. Electr.
Agric. 65: 19–25. doi:10.1016/j.compag.2008.07.005.

Harmsen, K. 2000. A modified Mitscherlich equation for rainfed
crop production in semi-arid areas: 1. Theory. Neth. J. Agric.
Sci. 48: 237–250.

Hoben, J.P., Gehj, R.J., Millar, N., Graces, P.R., and Robertson,
G.P. 2011. Nonlinear nitrous oxide (N2O) response to nitrogen
fertilizer in on-farm corn crops of the US Midwest. Global
Change Biol. 17: 1140–1152. doi:10.1111/j.1365-2486.2010.
02349.x.

Horton, R.E. 1940. An approach towards a physical interpreta-
tion of infiltration capacity. Proc. Soil Sci. Soc. Am. 5:
399–417.

Izquierdo, J., Bastida, F., Lezaun, J.M., Sa Nchez Del Arco, M.J.,
and Gonzales-Andujar, J.L. 2013. Development and evaluation
of a model for predicting Lolium rigidum emergence in
winter cereal crops in the Mediterranean area. Weed Res.
53: 269–278. doi:10.1111/wre.12023.

Jamieson, P.D., Porter, J.R., and Wilson, D.R. 1991. A test of the
computer simulation model ARCWHEAT1 on wheat crops
grown in New Zealand. Field Crops Res. 27: 337–350.

Johnson, J.B., and Omland, K.S. 2004. Model selection in ecology
and evolution (review). Trends Ecol. Evol. 19(2): 101–108.
doi:10.1016/j.tree.2003.10.013.

Karadavut, U., and Tozluca, A. 2005. Growth analysis some
characters in rye (Secale cereal L.): growth of root and upper
ground parts. J. Crop Res. 2: 1–10.

Karadavut, U., Kokten, K., and Kavurmaci, Z. 2010. Comparison
of relative growth rates in silage corn cultivars. Asian J.
Anim. Vet. Adv. 5(3): 223–228.

Lai, C.-D., and Xie, M. 2006. Chapter 5 — Weibull related distri-
butions. Pages 139–166 in Stochastic ageing and dependence
for reliability. Springer, New York, NY, USA. doi:10.1007/0-
387-34232-x5.

Mahanta, D.J., and Borah, M. 2014. Parameter estimation of
Weibull growth models in forestry. Int. J. Math. Technol.
8(3): 157–163.

Monahan, A.H. 2006. The probability distribution of sea surface
wind speeds. Part 1: theory and sea winds observations. J.
Clim. 19: 497–520.

National Institute of Standards and Technology/SEMATECH.
2013. e-Handbook of statistical methods. http://www.itl.nist.
gov/div898/handbook/. doi:10.18434/m32189 [accessed 5 Sept.
2020].

Navarro, M., Febles, G., Torres, V., Mesa, A.R., and Jay, Y.O. 2013.
Use of the Weibull function to evaluate the emergence of
Albizia lebbeck (L.) Benth seedlings. Pastos y Forrajes, 36(2):
222–226.

NCSS, Weibull. 2020. NCSS statistical software, Weibull mod-
ule. NCSS, LLC, Kaysville, UT, USA.

Piňeiro, G., Perelman, S., Guerschman, J.P., and Paruelo, J.M.
2008. How to evaluate models: observed vs. predicted or pre-
dicted vs. observed? Ecol. Model. 216: 316–322. doi:10.1016/
j.ecolmodel.2008.05.006.

Quinn, J.B., and Quinn, G.D. 2010. A practical and systematic
review of Weibull statistics for reporting strengths of dental
materials. Dental Mater. 26: 135–147. doi:10.1016/j.dental.
2009.09.006

Reliability Workbench, Weibull Analysis. 2020. Isograph Inc.,
Alpine, UT, USA.

ReliaSoft, Weibull 7.0. 2020. HBM Prenscia Inc., Southfield, MI,
USA.

Relyence, Weibull. 2020. Relyence Corporation, Greensburg,
PA, USA.

Reynolds, W.D., Drury, C.F., Yang, X.M., Tan, C.S., and Yang, J.Y.
2014. Impacts of 48 years of consistent cropping,
fertilization and land management on the physical quality
of a clay loam soil. Can. J. Soil Sci. 94: 403–419. doi:10.4141/
CJSS2013-097.

Reynolds, W.D., Nurse, R.E., Phillips, L.A., Drury, C.F., Yang,
X.M., and Page, E.R. 2020. Characterizing mass–volume–
density–porosity relationships in a sandy loam soil amended
with compost. Can. J. Soil Sci. 100: 289–301. doi:10.1139/cjss-
2019-0149.

Richards, L.A. 1931. Capillary conduction of liquids through
porous mediums. J. Appl. Phys. 1: 318–333. doi:10.1063/
1.1745010.

Schjønning, P., McBride, R.A., Keller, T., and Obour, P.B. 2017.
Predicting soil particle density from clay and soil organic
matter contents. Geoderma, 286: 83–87. doi:10.1016/
j.geoderma.2016.10.020.

Signor, D., and Cerri, C.E.P. 2013. Nitrous oxide emissions in
agricultural soils: a review. Pesq. Agropec. Trop. Goiânia, 43:
322–338.

Srivastava, S., Subba Rao, A., Alivelu, K., Singh, K.N., Raju, N.S.,
and Rathore, A. 2006. Evaluation of crop responses to applied
fertilizer phosphorus and derivation of optimum recommen-
dations using the Mitscherlich–Bray equation. Comm.
Soil Sci. Plant Anal. 37(05-06): 847–858. doi:10.1080/
00103620600564182.

Vandekerckhove, J., Matzke, D., and Wagenmakers, E.-J. 2015.
Model comparison and the principle of parsimony. Pages

Reynolds et al. 699

Published by NRC Research Press

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Soil-Science on 29 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use

http://dx.doi.org/10.1016/j.ecolmodel.2010.10.005
http://dx.doi.org/10.1016/j.ecolmodel.2010.10.005
http://dx.doi.org/10.1016/j.geoderma.2010.09.025
https://www.statisticshowto.com/memoryless-property/
https://www.statisticshowto.com/rayleigh-distribution/
https://www.statisticshowto.com/rayleigh-distribution/
https://www.statisticshowto.com/probability-and-statistics/expected-value/
https://www.statisticshowto.com/probability-and-statistics/expected-value/
http://dx.doi.org/10.1111/j.1365-2389.2004.00617.x
http://dx.doi.org/10.1111/j.1365-2389.2004.00617.x
http://dx.doi.org/10.1016/j.compag.2008.07.005
http://dx.doi.org/10.1111/j.1365-2486.2010.02349.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02349.x
http://dx.doi.org/10.1111/wre.12023
http://dx.doi.org/10.1016/j.tree.2003.10.013
http://dx.doi.org/10.1007/0-387-34232-x5
http://dx.doi.org/10.1007/0-387-34232-x5
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://dx.doi.org/10.18434/m32189
http://dx.doi.org/10.1016/j.ecolmodel.2008.05.006
http://dx.doi.org/10.1016/j.ecolmodel.2008.05.006
http://dx.doi.org/10.1016/j.dental.2009.09.006
http://dx.doi.org/10.1016/j.dental.2009.09.006
http://dx.doi.org/10.4141/CJSS2013-097
http://dx.doi.org/10.4141/CJSS2013-097
http://dx.doi.org/10.1139/cjss-2019-0149
http://dx.doi.org/10.1139/cjss-2019-0149
http://dx.doi.org/10.1063/1.1745010
http://dx.doi.org/10.1063/1.1745010
http://dx.doi.org/10.1016/j.geoderma.2016.10.020
http://dx.doi.org/10.1016/j.geoderma.2016.10.020
http://dx.doi.org/10.1080/00103620600564182
http://dx.doi.org/10.1080/00103620600564182


300–318 in J.R. Busemeyer, Z. Wang, J.T. Townsend, and A.
Eidels, eds. The Oxford handbook of computational and
mathematical psychology. Oxford University Press, New
York, NY, USA.

van Genuchten, M.Th. 1980. A closed-form equation for predict-
ing the hydraulic conductivity of unsaturated soils. Soil Sci.
Soc. Am. J. 44: 892–898.

Weibull, W. 1951. A statistical distribution function of wide
applicability. ASME J. Appl. Mech. 18: 293–297.

Weisstein, E.W. 2020. Rayleigh distribution. FromMathWorld—

a Wolfram web resource. https://mathworld.wolfram.
com/RayleighDistribution.html [accessed 5 Sept. 2020].

Weisstein, E.W. 2004. Exponential distribution. From
MathWorld — a Wolfram web resource. https://mathworld.
wolfram.com/ExponentialDistribution.html [accessed 5
Sept. 2020].

Yang, X.M., Drury, C.F., Reynolds, W.D., and Phillips, L.A. 2020.
Nitrogen release from shoots and roots of crimson clover,
hairy vetch, and red clover. Can. J. Soil Sci. 100: 179–188.
doi:10.1139/cjss-2019-0164.

Zok, F.W. 2017. On weakest link theory and Weibull statistics. J.
Am. Ceram. Soc. 100: 1265–1268. doi:10.1111/jace.14665.

Appendix A

Potentially useful metrics of the adapted Weibull
derivative and cumulative functions are derived below,
illustrated in Fig. 2, and summarized in Table 1.

A1. Weibull derivative function: mode, median,
skewness, kurtosis, and integral average

The derivative function mode gives the coordinates,
ðxM,YMÞ, and value of the derivative function peak, RM

(Fig. 2a). The mode is obtained by setting x = xM and
dðdY=dxÞ=dx = 0:

d
dx

�
dY
dx

�
= ðc − 1ÞðxM − x0Þ−1

�
dY
dx

�

−kcðxM − x0Þðc−1Þ
�
dY
dx

�
= 0

ðA1Þ

then solving for xM:

xM = x0 +
�
1
k

�
c − 1
c

��
1=c
; c ≥ 1ðA2Þ

and then back substituting xM into eqs. 1 and 4 to
produce

RM =
dY
dx

����
M
= ckðxM − x0Þc−1jYF − YMj; c ≥ 1ðA3Þ

where

YM = YF − ðYF − Y0Þe½ð1−cÞ=c�; c ≥ 1ðA4Þ

Interestingly, YM (eq. A4) is independent of x and k. Note
also that when c = 1, RM occurs at ðxM,YMÞ = ðx0,Y0Þ; and
when 0< c< 1, RM → ∞as xM → x0 (see e.g., Fig. 1a).

The medianðxN, dY=dxjNÞ bisects the area under the
derivative function curve into two equal halves (Fig. 2a);

and is obtained by setting x = xN, then equating a
normalized form of eq. 4 to the 50th percentile, i.e.,

e−kðxN−x0Þ
c

=
ðYF − YÞ
ðYF − Y0Þ

= 0.5ðA5Þ

then solving for xN:

xN = x0 þ
�
−
1
k
ln

�
YF − Y
YF − Y0

��
1=c

= x0 þ
�
−
1
k
lnð0.5Þ

�
1=c

(A6)

and then back-substituting xN into eq. 1 to obtain:

dY
dx

����
N
= ckðxN − x0Þc−1jYF − YNjðA7Þ

where

YN = YF − ðYF − Y0Þe−kðxN−x0Þ
cðA8Þ

As might be expected, the median is less than the
mode when the derivative function is left skewed, equal
to the mode when the derivative function is symmetri-
cal, and greater than the mode when the derivative
function is right skewed (Fig. 2a).

The Fisher population skewness (SF) and kurtosis (KF)
of the derivative function are given by (e.g., Chu 2013):

SF =
Γ3 − 3Γ1Γ2 + 2Γ3

1

ðΓ2 − Γ2
1 Þ3=2

ðA9Þ

and

KF =
Γ4 − 4Γ1Γ3 + 6Γ2

1Γ2 − 3½Γ4
1 + ðΓ2 − Γ2

1 Þ2�
ðΓ2 − Γ2

1 Þ2
ðA10Þ

where Γi = Γð1 + ði=cÞÞ is the Gamma distribution
(available as a built-in function in most computer spread-
sheets — given as GAMMA(x) in Excel®). The SF is a
measure of function symmetry. Negative skewness
indicates left skew (excess of small x-values relative to a
normal distribution), positive skewness indicates right
skew (excess of large x-values relative to a normal distri-
bution), and zero skewness indicates a symmetrical
(normal) distribution (National Institute of Standards
and Technology 2013). The KF, in contrast, is a measure
of the degree of function tailing relative to a normal
distribution. Positive kurtosis (leptokurtic derivative
function) indicates more/heavier tailing (more small
and large “outlier” x-values) than a normal distribution,
and negative kurtosis (platykurtic derivative function)
indicates less/lighter tailing (fewer small and large out-
lier x-values) than a normal distribution (National
Institute of Standards and Technology 2013). The kurto-
sis of a normal distribution is zero when KF is defined
as in eq. A10. Table 2 gives proposed SF and KF categories
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based on the inclusive graphic classifications of
Folk (1980). As an example, the derivative function in
Fig. 2a is moderately right skewed (SF = 0.9620) and
slightly leptokurtic (KF= 1.0440) — indicating that it has
both a moderate excess of large x-values and slightly
more outlier x-values than the derivative function of a
normal distribution.

The integral average of the Weibull derivative
function ðAIÞ is obtained using the fundamental theorem
of integral calculus, i.e.,

AI =
dY
dx

����
AI

=
1

ðxF − x0Þ
Z

xF

x0

dY
dx

dxðA11Þ

which readily simplifies to

AI =
ðYF − Y0Þ
ðxF − x0Þ

h
1 − e−kðxF−x0Þ

ciðA12Þ

since:

ZxF
x0

dY
dx

dx = YðxFÞ − Yðx0ÞðA13Þ

The integral average of the derivative function
describes a rectangle of length ðxF − x0Þ and height
AI which has the same area as the area under the deriva-
tive function curve between x0 and xF (Fig. 2a). The AI

value can consequently be viewed as a mean rate of
change of Y with respect to x (i.e., mean dY/dx) between
x0 and xF.

A2. Weibull cumulative function: mean, inflection,
quantiles, and domain

The mean,ðx,YÞ, is given by (Lai and Xie 2006; NCSS,
Weibull 2020):

x = x0 +
h
kð−1=cÞ

i
Γ

�
1 +

1
c

�
ðA14Þ

Y = YF − ðYF − Y0Þe−kðx−x0Þ
cðA15Þ

where Γð1 + ð1=cÞÞ is the Gamma function (Fig. 2b). The x
value is an average x of the cumulative function
weighted according to the corresponding derivative
function (e.g., Glen 2020c), i.e.,

x =
Z

∞

−∞
x
dY
dx

dxðA16Þ

The x lies to the left of the modal x (xNÞ for negative-
skewed (left-tailed) derivative functions and to the right
of xN for positive-skewed (right-tailed) derivative
functions (Fig. 2a). Note also that although ðx,YÞ can be
back-substituted into the derivative function (eq. 1), the
resulting dY=dx value applies only at x and is, therefore,
not the same as AI (Fig. 2a).

The inflection, ðxI,Y IÞ, is derived in the same fashion as
the derivative function mode, leading to

xI = x0 +
�
1
k

�
c − 1
c

��
1=c
; c ≥ 1ðA17Þ

YI = YF − ðYF − Y0Þe½ð1−cÞ=c�; c ≥ 1ðA18Þ

and hence ðxI,Y IÞ is identical to ðxM,YMÞ. The inflection
locates the point where the cumulative function changes
from convex (upward bending) to concave (downward
bending) (Fig. 2b), thus demarking the maximum slope
of Y vs. x (i.e., maximum dY/dx), and thereby the peak
(mode) of the corresponding derivative function (Fig. 2a).

The quantiles, ðxQ ,YQ Þ, are specified points on the
cumulative function that represent fractions of the
function maximum, e.g., 0.2|YF-Y0|, 0.6|YF-Y0|, etc.
Quantiles are obtained by setting x = xQ , then equating
a normalized form of the cumulative function to the
Qth quantile, i.e.,

e−kðxQ−x0Þ
c

=
ðYF − YÞ
ðYF − Y0Þ

= 1 − Q ; 0 ≤ Q ≤ 1ðA19Þ

then solving for xQ :

xQ = x0 +
�
−
1
k
lnð1 − Q Þ

�
1=c

ðA20Þ

and then back-substituting xQ into eq. 4:

YQ = YF − ðYF − Y0Þe−kðxQ−x0Þ
cðA21Þ

Therefore, xQ = x0.2 (for example) is given by

x0.2 = x0 +
�
−
1
k
lnð1 − 0.2Þ

�
1=c

ðA22Þ

Interestingly, xQ = x0.5 is given by

xQ =x0.5=x0+
�
−
1
k
lnð1−0.5Þ

�
1=c

= x0+
�
−
1
k
lnð0.5Þ

�
1=c

=x0+
�
1
k
lnð2Þ

�
1=c
;

ðA23Þ

and hence, the 0.5 quantile ðx0.5,Y0.5Þ (Fig. 2b) also locates
the median ðxN ,dY=dxjNÞ (Fig. 2a). Note as well that time,
t, Y(t), and rate (dY/dt) at the 0.5 quantile are sometimes
used as diagnostic metrics in seed germination, seedling
emergence, and mineralization studies (e.g., Gardarin
et al. 2011; Gan et al. 1996; Yang et al. 2020). That is, 0.5
quantile time is given by x0.5 (eq. A23); germination,
emergence, or mineralization rate at x0.5 is given by

R0.5 =
dY
dx

����
0.5

= ckðx0.5 − x0Þc−1jYF − Y0.5jðA24Þ

and cumulative germination, emergence, or mineraliza-
tion at x0.5 is given by Y0.5 (eq. A21).
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The domain, xD, of our adapted Weibull function is
defined here as

xD = xF − x0ðA25Þ

where x0 is the initial (minimum) x-value, and xF is the
final (end-point) x-value (Fig. 2b). The corresponding
Weibull function range, YR, is therefore YR = YF − Y0,
where YF = Y(xF) and Y0 = Y(x0). It is clear from eq. 4
and Fig. 2b that the adapted Weibull cumulative
function is finite and defined at x0 but asymptotic to
the x -axis at xF (i.e., x → ∞ as Y → YF). Hence, x0 is
readily obtained, but xF must be estimated. We esti-
mate xF here by equating it to the 0.9999 quantile in
eq. A20, i.e.,

xF ≈ x0.9999 = x0 +
�
−
1
k
lnð1 − 0.9999Þ

�
1=c

ðA26Þ

which is the x-value that corresponds to

ðYF − YÞ
ðYF − Y0Þ

= 0.0001ðA27Þ

or

Y = 0.9999YF + 0.0001Y0ðA28Þ

Our estimated xF consequently approximates YðxFÞ
to ≥99.99 % of YF (Fig. 2b). Note also that the derivative
function departs from zero at x = x0 and returns to zero
at x = xF (Fig. 2a).
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