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Introduction
Contaminants in water can cause adverse health effects. A 
poignant example of this is the contamination of Flint, 
Michigan, drinking water with lead and the subsequent ele-
vated blood levels in children. In that community, lead con-
tamination is a posttreatment issue, as the corrosive water from 
the Pontiac River solubilized lead from the distribution system 
that delivers water to individual households.1 The geospatial 
distribution of lead exposure in Flint is relatively easy to map as 
the source of the exposure (the drinking water) is easy to iden-
tify, and the latency period between the initial exposure and 
elevated blood lead levels is short.1

Unlike the relationship between lead in drinking water and 
elevated blood lead levels, there are other examples where the 
water contamination is diffuse and the latency period for 
adverse health effects may be years or decades. One such exam-
ple would be the development of cancers or birth defects when 
individuals are exposed to water contaminated with agrichemi-
cals.2 The agrichemicals can include pharmaceuticals, such as 
steroids or antibiotics used on livestock, nutrients, such as 
nitrates and phosphates, as well as herbicides and insecticides. 
Agrichemical residues have been found in food, water, and 
juices.3–5 Although the concentrations found are within set safe 
limits, the true health risk at these levels is not well understood 
and could be subjected to synergistic effects.6 Pesticides in par-
ticular have been detected in human breast milk, which has led 

to concerns about prenatal exposure and various health effects 
in children.7 In this case, the chemical source can be agricul-
tural fields, and efforts to map the geospatial organization of 
the exposure must invariably involve mapping large areas 
upstream from the communities whose water is affected.

Efforts to map the geospatial distribution of diseases are 
often conducted by first compartmentalizing the relevant 
geography into established geographical census units, such as 
census blocks and block groups, census tracts, zip codes, coun-
ties, or states. Although this may be appropriate for some envi-
ronmental exposures, it may not be at all appropriate for 
waterborne agrichemicals, steroids, and antibiotics because the 
pathways by which these contaminants travel do not respect 
anthropogenic geospatial boundaries.8 Rather, these contami-
nants become mobile when rainstorms induce surface runoff 
that transports the chemicals from land and deposits them into 
local waterways. These waters ultimately flow downstream 
within well-defined watersheds.

A watershed is a topographic area within which surface and 
shallow groundwater drain to a specific point.8–10 States or 
other geographic regions can easily be divided into specific 
watersheds, as everyone live within one watershed or another. 
Furthermore, when it comes to waterborne contaminant expo-
sure, two individuals who live miles apart, but within the same 
watershed, may experience similar exposures, whereas two 
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individuals who live close to each other, but in different water-
sheds, may experience very different exposure profiles.

The central hypothesis of this article is that there is an 
advantage in conducting geospatial analysis relative to adverse 
health outcomes using watersheds, rather than anthropogenic 
census tracts, particularly with respect to agrichemical runoff. 
We contend that the relationship between watershed geogra-
phy and contaminant distribution is critical for certain classes 
of chemical contaminants, and this article illustrates a method-
ology for investigating that relationship.

Relationship Between Watershed Boundaries and 
Population Geography
The watershed

From an epidemiologic perspective, exposure assessment is 
more complicated when dealing with environmental health 
studies than it is in occupational health studies. Exposure 
assessment is the process of measuring the magnitude, fre-
quency, and duration of exposure to a chemical,11 and occupa-
tional health studies typically have excellent assessments of 
exposure due to the defined geospatial boundaries (ie, the 
workplace) and the use of predefined exposure definitions by 
job title.

In contrast to occupational exposure assessment, two of the 
largest problems encountered when attempting to define a 
chemical exposure through natural waters are the lack of 
defined boundaries and the spatial heterogeneity of exposure. 
Poorly defined boundaries (also known as fuzzy objects) occur 
when there is no clear boundary of an object in geographical 
information systems (GIS), an eventuality that is common 
when dealing with highly variable metrics within a geogra-
phy,12,13 such as soil type. Spatial heterogeneity of exposure 
occurs when there is an uneven distribution of various concen-
trations of chemicals and exposures within a given spatial area, 
and it has been a problem in studies of exposures to airborne 
contaminants.12,14 When the population was organized by 
population geography, spatial heterogeneity of exposure has 
caused problems in studies looking at agricultural exposures 
and birth defects,15,16 environmental movement of contami-
nants and neural tube defects,17 urban environment exposures 
and cancer incidence,18 and iodine exposure and thyroid 
cancer.19

We propose that environmental assessment of contaminant 
exposure via natural waters can best be dealt with when the 
watershed is used as the defining geospatial boundary. A water-
shed is defined as an “area of land where drainage of streams 
and rainfall meet at a common outlet, such as the outflow of a 
reservoir, mouth of a bay, or any point along a stream chan-
nel.”20 A watershed is also an area of connectivity where any 
activity that affects the water quality, quantity, or rate of move-
ment at one location can change the characteristics of a water-
shed downstream, providing a common level of exposure 
between contaminants.

The US Geological Society (USGS) has subdivided the 
United States into successively smaller hydrologic units (HUs) 
which can be classified as follows: regions (HU 2), subregions 
(HU 4), basins (HU 6), subbasins (HU 8), watershed HU (10), 
and subwatershed (HU 12), respectively. There are 21 major 
regions in the United States, and these are either major river 
drainage systems or drainage systems for several rivers, such as 
the Missouri Region and Texas Gulf Region, respectively.20 
Next, there are 222 subregions in the United States; these 
include drainage areas for a river system.21 There are 370 basins 
in the United States, which are nested within the subregions. 
The cataloging unit, which is what the term watershed most 
frequently is used to represent, has 2264 units across the 
United States.21

The population

Although the geospatial distribution of waterways can be rep-
resented through HUs, the most common way that geospatial 
distribution of humans is represented in the United States is 
through census entities. These entities include the nation, 
regions, divisions, states, counties, census tracts, census block 
groups, and census blocks (Table 1).

Relative to human health studies, the most commonly used 
population geographies are city23 and county.16,24–27

Studies that have looked at water exposure and human 
health outcomes often have limitations of potential classifica-
tion error.16,27,28 Classification error is a type of information 
bias in which study participants are assigned to an incorrect 
classification group. For example, if a person is assigned to a 
county, but the county contains multiple watersheds, this can 
cause misclassification, as the assumed exposure may be very 
different from the actual one. For studies focusing on exposures 
to natural surface water, we recommend using the watershed as 
the primary geography.

Overlap

For watersheds to be used in environmental exposure assess-
ment, it is necessary to overlap the human census data with 
the HU data. Unfortunately, watersheds and population 
geographies were developed by different groups of profes-
sionals for very different reasons, and, consequently, there is 
very little overlap between the two. The watershed geogra-
phy focuses on natural water flow, whereas the population 
geography focuses on governmental delineations and how 
the population is organized. For this reason, very few points 
of overlap are seen within the two (Figure 1). Unfortunately, 
the lack of overlap between watershed HU and human cen-
sus tracts is not improved when different levels of organiza-
tion are used. Due to this geographic mismatch, it is not 
prudent to assume that exposures to contaminated water are 
consistent across census groups, such as counties or state 
boundaries.
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Choosing the appropriate HU

To map the incidence of adverse health outcomes by watershed, 
one of the HUs needs to be selected above the others. In 
Nebraska, the selection of HU was driven by two different 
descriptors: the exposure profile (land use) found within the 
state and the underlying population density.

In Nebraska, soil and precipitation patterns change from 
East to West, as well as agricultural land use. The term “land 
use” is defined as the land’s purpose relative to human activity 
and is usually, but not always, related to land cover.29 For lands 
to be useful for agriculture, certain environmental factors are 
required, including soil conditions and climate (eg, soil texture, 
mineralogy, precipitation patterns) which determine the suita-
bility for crop production (eg, type of fertilizer/pesticide appli-
cation, type of crop). Furthermore, as the environmental 
conditions of Nebraska change geospatially, it is likely that 
agrichemical exposure also changes accordingly.

Population density is defined as “the number of people living 
per unit of area (e.g. per square mile); the number of people rela-
tive to the space occupied by them.”30 Parts of Nebraska have a 
very sparse population density. The variance in population den-
sity is high not only within states but also between states. Some 

states, such as California (Figure 2A), are primarily urban and 
therefore are more densely populated. Even within traditional 
rural or farming states, such as Kentucky and Nebraska, the 
population density can vary greatly. For example, Kentucky 
(Figure 2B) is for the most part even populated with a scattering 
of urban centers. Nebraska (Figure 2C), however, is very sparely 
populated with very few densely populated urban centers.

Nebraska can be divided using 6 different HU codes 
(Figure 3). If the HU delineation were too large, then water-
sheds with vastly different agricultural practices and therefore 
exposures would be combined, thereby reducing the effective-
ness of the analysis. For example, HU code 2 encompasses the 
entire Missouri River Valley and the entire state of Nebraska. 
Obviously, this does not allow any discrimination of expo-
sures within the state and includes so much terrain that there 
is a vast amount of geographic variability within it. The HU 
codes 4 and 6 were also too large and had the same problems 
as HU code 2.

If the HU code selected is too small, then the population 
within each watershed designation would be too small to allow 
any meaningful analysis, as many, perhaps the majority, of these 
watersheds would not cover a geography where an adverse 
health impact had occurred.

Table 1.  Definitions of census groupings.22.

Nation Regions Divisions States Counties Census 
tracts

Census 
block 
groups

Census blocks

USA In the United 
States
West

9 in the United 
States

50 in the 
United States

3007 in the 
United States

Small, relatively 
permanent 
statistical 
subdivisions of 
a county or 
county 
equivalent and 
generally have 
a population 
size between 
1200 and 8000 
people

Statistical 
divisions of 
census tracts 
and generally 
contain 
between 600 
and 3000 
people

Consists of 
statistical areas 
bounded by 
visible features, 
such as streets, 
roads, streams, 
and railroad 
tracks, and by 
nonvisible 
boundaries, such 
as selected 
property lines 
and city, 
township, school 
district, and 
county limits

Northeast New England

Middle Atlantic

Midwest East North Central

West North Central

South South Atlantic

East South Central

West South 
Central

West Mountain

Pacific

Figure 1.  The interaction of counties and watersheds in Nebraska. (A) HU code 6, (B) HU code 8, and (C) HU code 10. The black lines are Nebraska 

counties and the dark purple lines are the watersheds. HU indicates hydrologic unit.
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Case Study Diseases and the Population at Risk
A geospatial analysis favoring a watershed approach lends itself 
much more readily to some adverse health outcomes rather 
than others. For example, waterborne contaminants have been 
linked to birth defects,31–34 pediatric cancers,35–38 and thyroid 
cancer.39–42 Although all 3 diseases differ in incidence, cause, 
and outcomes, the analysis of potential risk factors may benefit 
from the use of a watershed approach. For this reason, they will 
be used as case studies for this article.

Birth defects

The leading cause of infant mortality in the United States is 
birth defects or congenital abnormalities.43 The cost of birth 
defect–related hospitalizations for all age groups represents 
5.2% of total costs for all hospital discharges.44 Not only are 

birth defects costly but they also affect 1 in every 33 live births 
in the United States.45 In 2011, Nebraska had a higher burden 
of birth defect–related death in relation to the nation, with 
rates of 1.94 per 100 000 and 1.27 per 100 000, respectively.46

The risk factors for birth defects are mostly unknown and 
vary depending on the type. The most notable risk factors 
include alcohol, illicit drug use in pregnancy, smoking, obe-
sity, diabetes mellitus, phenylketonuria, multiple gestations, 
advanced maternal age, advanced paternal age, family history, 
folic acid deficiency, medication exposures, and radiation 
exposure.33

Several studies support the hypothesis that agrichemicals 
play a role in the cause of certain birth defects.15,31,47,48 Pesticides 
are known to be both reproductive and neurotoxic agents and 
have been shown to be teratogenic in animal studies.49 Pesticides, 
including atrazine, alachlor, and chlorpyrifos, are classified  

Figure 2.  Population density of census tracts for (A) California, (B) Kentucky, and (C) Nebraska in 2010. (States not to scale for comparison purposes.)

Figure 3.  Hydrologic unit codes for Nebraska: (A) 2, (B) 4, (C) 6, (D) 8, (E) 10, and (F) 12.
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as endocrine disruptors, whereas bifenthrin and diuron are 
developmental toxicants.15 Studies have shown a potential asso-
ciation between pesticide exposure before or during pregnancy 
and various types of birth defects.16,50–53

Applications of spatial assessments for birth defects in rela-
tion to agricultural land use have provided further insight 
regarding the cause of birth defects. For instance, spatial attrib-
utes such as elevation, soil types, lithology, watersheds, fertilizer 
use, and neighborhood characteristics are associated with spe-
cific neurological birth defects.17,54

Pediatric cancers

Cancer is the second most common cause of death among chil-
dren in the United States.55 A child born in the United States 
has 0.35% chance of developing cancer before 20 years of age; 
this is equivalent to an average of 1 in 285 children being diag-
nosed with cancer before 20 years of age.56 The Nebraska rates 
of pediatric cancer were reported to be above the national aver-
age in 2010 to 2012; however, the trend has regressed back to 
the national average in recent years.57 The cause of childhood 
cancer is mostly unknown, but some cases can be linked to 
genetic causes.58,59 Despite the unknown cause for most child-
hood cancers, recent research has linked certain cancers to 
environmental factors, such as hematologic malignancies to oil 
and gas production,60 renal cancers to industrial and pesticide 
pollution exposure,61 retinoblastomas to pesticides,62 and leu-
kemia, neuroblastoma, and hepatic tumors to crop production 
proximity.63

Thyroid cancer

In recent years, there have been stable diagnostic rates for thy-
roid cancer from 2010 to 2012,64 with rates for men as 1 in 169 
and for women as 1 in 58,64 whereas in 2017, rates for thyroid 
cancer were reported as 1 in 163 for men and 1 in 57 for 
women.65 In Nebraska, the rates for thyroid cancer overall and 
for women are higher than the national average: 19.4 per 
100 000 (women, Nebraska), 12.7 per 100 000 (overall, Nebraska), 
and 17.3 per 100 000 (women, national), and 11.7 per 100 000 
(overall, national).66

There are 4 main types of primary thyroid carcinoma: pap-
illary, follicular, anaplastic, and medullary. These groups typi-
cally share risk factors but not always.67 Other risk factors for 
thyroid cancer include genetic predisposition, radiation expo-
sure, iodine intake, preexisting thyroid disease, age, sex, hor-
monal and reproductive factors, geographic factors, ethnic 
factors, diet, and drug exposure.68 Environmental factors 
other than radiation exposure have been examined in recent 
studies, including heavy metal69 and pesticide exposure.29

Population at risk

A population at risk is defined as the population that has a 
chance of developing a disease or condition of interest. This 

article features 3 different adverse health outcomes: birth 
defects, pediatric cancer, and thyroid cancer, and each of the 3 
has a different population at risk.

Defining the population at risk

Finding a population at risk for an adverse health outcome 
implies that the researcher understands who in the population 
is at risk. One way to define this population is to use your case 
definition, ie, how the cases are determined to truly be a case. 
For this article, the following definitions were used, and the 
cases were gathered from the Nebraska Birth Defects Registry, 
and the Nebraska Cancer Registry at the Nebraska Department 
of Health and Human Services.

Birth defects

The definition used for birth defects was any congenital anom-
aly from a baby resulting from a live birth that was recorded in 
the Nebraska Birth Defects Registry from 1995 to 2014.30 
Based on this definition, the population at risk was infants 
born alive in Nebraska from 1995 to 2014.

Pediatric cancer

The definition used for pediatric cancer was any malignancy 
occurring in someone aged 19 years and below, which was 
recorded in the Nebraska Cancer Registry from 1987 to 2014.70 
Based on this definition, the population at risk was any child 
living in Nebraska aged 19 years and below from 1987 to 2014.

Thyroid cancer

The definition used for thyroid cancer was any case of thyroid 
cancer occurring at any age that was recorded within the 
Nebraska Cancer Registry from 1987 to 2014.70 Based on this 
definition, the population at risk was any person living in 
Nebraska from 1987 to 2014.

Classifying population data based on watershed 
delineations

Converting the geography of populations into the geography 
of watersheds may result in misplacing individual cases in a 
geographically incorrect watershed. Clearly, the smaller the 
population geography unit, the lower is the probability of mis-
classification error. An example of this is shown in Figure 4. 
The initial watershed map (Figure 4A) shows Nebraska with 
the HU 8 watersheds overlaid on the state. As mentioned 
above, counties (Figure 4B) do not overlap well with water-
sheds. The mismatch is exacerbated by the method used to 
assign counties to watersheds in GIS, which is by county center. 
Zip codes (Figure 4C) and census blocks (Figure 4D) overlap 
better with watersheds. For this article, census blocks were 
chosen to categorize the population at risk.
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Which HU to use for these case studies

According to the US Cancer Statistics Working Group 
(USCS), relative incidence rates containing less than 16 cases 
are unstable and prone to error.71 Based on this proposition, the 
following minimum populations per watersheds are required. 
For example, for birth defects, a population of 600, on average, 
is necessary, to obtain more than 16 cases. For this reason, HU 
codes 10 and 12 were too small due to very low population 
numbers, particularly in the panhandle (western) section of the 
state. Based on these observations, HU 8 was used for prelimi-
nary mapping.

Incidence Rate Calculations
To determine which watersheds to include when mapping 
statewide adverse health impacts, it was first necessary to deter-
mine watershed incidence rate. The true incidence rate (IT) is 
the number of cases that occur over a given time divided by the 
current population at risk and is typically reported per 100 000 
(equation (1)). General incidence rate for each watershed is 
calculated as follows:

New Cases

Population at Risk *Time
*

Watershed

Watershed of analysis
1100,000

Incidence rate( )= IT

	 (1)

Due to the different time periods examined and the different 
sources of at-risk populations, there were 3 different incidence 
rates used in this analysis that were based on the general crude 
incidence rate calculation for each watershed. For example, thy-
roid cancer cases were aggregated more than 28 years and fea-
tured a population at risk that was equivalent to the entire 
population (all ages); therefore, Census 2000 population counts 
were multiplied by 28 years to calculate the total population at 
risk.72 In contrast, birth defects were aggregated more than 
19 years and featured a population at risk that was equivalent to 
all live births from 1995 to 2014.73 Regardless of the slight dif-
ferences in how incidence rates were calculated, the final data 
sets that were developed could then be mapped by watershed.

Although the 3 adverse health impacts that this article 
reports can all be considered rare, pediatric and thyroid cancers 
are rarer than birth defects. The probability of a birth defect is 
approximately 3%, and the incidence rate is likely be mostly 
stable in Nebraska.45 For pediatric and thyroid cancers, the 
probability is much lower (0.3% for pediatric cancers and thy-
roid cancers between 0.6% for men and 1.7% for women). 
What this means functionally is that that maps developed for 
pediatric and thyroid cancers are, by necessity, more variable 
than those developed for birth defects.

Determining Which Watersheds to Include
The main way of excluding watersheds from analysis is based on 
a percent error calculation. In this approach, one calculates the 
difference adding one additional case per watershed would intro-
duce to the incidence calculation. The first step was to complete 
the percent error calculation (equation (3)), which includes two 
parts: the true incidence (equation (1), IT) and the “error” inci-
dence (equation (2), IE), which is the incidence if one additional 
case was present in the watershed. Generalized “error” incidence 
rate and percent error for each watershed is calculated as follows:

Cases +1
Population at Risk *Time

*1Watershed

Watershed of analysis
000,000

IncidenceError= ( )I E

	 (2)

I I

I
E T

T

−
=*100 Percent Error 	 (3)

For birth defects, thyroid cancer and pediatric cancer, the 
percent error cutoff chosen was 20. The USCS reported a high 
rate of error to be 25% and that is the cutoff they have used; 
however, due to the small population sizes in rural Nebraska, 
this was relaxed to 20% to limit the number of excluded water-
sheds.71 Based on this cutoff for birth defects, 22 of 72 water-
sheds were removed from analysis, whereas for pediatric cancer, 
35 of 72 watersheds were excluded from analysis, and for thy-
roid cancer, 29 of 72 watersheds were excluded from analysis.

Figure 4.  (A) Nebraska HU 8 profile by (B) county, (C) zip code, and (D) census block. Dark purple indicates the watersheds and gray indicates the 

county, zip code, and census block, respectively. HU indicates hydrologic unit.
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For birth defects and thyroid cancer, watershed exclusion 
based on percent error was conducted maps were created 
(Figure 5). For pediatric cancers, unfortunately, over 40% of the 
available HU 8 watersheds were excluded. Due to the overall 
low population values and high percent error, the decision was 
made to recreate the pediatric cancer graph using HU 6, to 
allow to more data to be usable within the state. Thus, pediatric 
cancers are reported using both HU 6 and 8 (Figure 6).

Results
In Figures 5 and 6, the unadjusted incidence rates for 
Nebraska, for birth defects, pediatric cancer and thyroid can-
cer are mapped. For birth defects (Figure 5A), the incidence 
ranges from 0 to 7692 per 100 000; for pediatric cancers 
(Figure 6B), the incidence ranges from 0 to 177 per 100 000; 

and finally for thyroid cancers, the incidence ranges from 3.25 
to 16.96 per 100 000.

When incidence rates across the 3 different adverse health 
outcomes were compared with each other, there were no sig-
nificant intercorrelations (Table 2). Intercorrelations might 
have occurred if one or more of the watersheds were contami-
nated with a key aquatic compound that is known to be associ-
ated with one of more adverse health outcomes. When the 
watersheds were viewed in composite, some light was shed on 
this lack of intercorrelation. For birth defects, the watersheds of 
interest include the Loup River (28), the north fork of the 
Elkhorn River (30), the lower Platte River (50), the lower 
Elkhorn (52), the upper Republican (58), and the south fork of 
the big Nemaha River (68). For pediatric cancers, the water-
sheds of interest include the Turkey River (3), the Cedar River 

Figure 5.  Nebraska HU 8 profile: (A) birth defect incidence (1995-2014) and (B) thyroid cancer incidence (1987-2014). HU indicates hydrologic unit.

Figure 6.  Nebraska pediatric cancer (1987-2014): (A) HU 6 and (B) HU 8. HU indicates hydrologic unit.

Table 2.  Correlation between birth defect, pediatric cancer, and thyroid cancer incidence in Nebraska by HU 8.

Birth defect incidence Pediatric cancer incidence Thyroid cancer incidence

Birth defect incidence 1  

Pediatric cancer incidence −0.07 1  

Thyroid cancer incidence 0.12 0.07 1

Abbreviation: HU, hydrologic unit.
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(29), and the Upper Elkhorn River (43). For thyroid cancer, the 
watersheds of interest include the Turkey River (3), the upper 
Middle Loup River (20), and the lower North Loup River (26). 
Clearly, the distribution of each adverse health outcome across 
the watersheds is a different pattern, and these patterns may 
have to do with the underlying cause of the disease.

For example, thyroid cancer has been linked to higher aver-
age levels of nitrate in water supplies (exceeding 5 mg/L).74 
There was also a suggestion for the potential of a link between 
volcanic elements in water and papillary thyroid cancer, although 
this potential link needs to be investigated further.75 Although, 
overall, pediatric cancer has been linked to pesticides in water,37 
liver cancer has been specifically linked to arsenic in water  
supplies.76 Similarly, specific birth defects have been linked with 
various waterborne exposures, including central nervous system 
defects linked with trihalomethanes, carbon tetrachloride, 
trichloroethylene, and dichloroethylenes.53 Oral cleft defects 
were linked with trihalomethanes, carbon tetrachloride, trichlo-
roethylene, tetrachloroethylene, and dichloroethylenes.53 Major 
cardiac defects were linked with trihalomethanes, benzene, and 
1,2-dichloroethane.53 In addition, congenital cardiac disease 
was linked with trichloroethylene, dichloroethylene, and chro-
mium in ground water.77 Neural tube defects were linked with 
carbon tetrachloride, trichloroethylene, and benzene.53

Conclusions
The central hypothesis of this article was that there is an 
advantage in conducting geospatial analysis relative to adverse 
health outcomes using watersheds, rather than by anthropo-
genic census tracts, particularly with respect to agrichemical 
runoff. We contend that the relationship between watershed 
geography and contaminant distribution is critical for certain 
classes of chemical contaminants, and this article illustrates a 
methodology for investigating that relationship.

This use of HUs as geographic spatial polygons for systems 
that are not necessarily strictly hydrologic in nature has been 
documented previously.78,79 The HUs have previously been 
used in ecological modeling,80–84 which is commonly applied to 
human health behavior research.85

It has recently been noted that watersheds seldom circum-
scribe regions of similarity that influence water quality.79 
Omernik et al79 correctly point out that HUs are not only com-
posed of watersheds but they are also parts of watersheds. 
Consequently, from a strict hydrologic point of view HUs may 
not represent watersheds. Nevertheless, from an epidemiologic 
point of view, HU delineation brings a natural, rather than an 
anthropogenic, focus to the process of geospatial mapping of 
adverse health impacts. Although the delineation of the 3 
adverse health impacts featured in this article did not result in 
strong intercorrelations, we still think that the use of HUs is a 
novel and dramatic improvement.

Due to the preliminary nature of this methodology, two 
important factors were not previously discussed which include 

the inclusion of sociodemographic information and the poten-
tial effects of upstream processes on water quality within the 
watershed. Due to the nature of the case studies, used social 
demographic data were not included. This was done to avoid 
the potential of introducing an ecological fallacy within the 
data. However, if one were to conduct a cohort study, a case-
control study, or a cross-sectional study, then correction for 
sociodemographic data would easily be included and is neces-
sary to have corrected and usable incidence rates.

There is potential for upstream human pressure or agricul-
tural activities that influence water quality downstream taking 
into account water routing, evapotranspiration, precipitation, 
and other climate variables. This was not discussed previously 
in this article due to the preliminary nature of the study. 
However, in future refinements of this methodology, this will 
be included.

Future work

In the future, we plan to refine this methodology and incorporate 
water quality data into the approach. Environmental data sets on 
water quality will include the water quality data from the 
Environmental Protection Agency STORage and RETrieval 
(EPA STORET) data set, as it is comprehensive and includes 
data from several sources. This process may prove to be compli-
cated as was suggested by Omernik et al,79 for some HU deline-
ations may experience contaminant input from multiple sources. 
A method to average water quality over the spatial HU scale used 
in the analysis will need to be developed. A first step of this may 
be to compare the HUs used above with the land use maps for 
Nebraska to quantify the variation within each HU area. Future 
work also includes applying this process to other states within the 
Midwest to observe whether they show similar profiles.

Overall, the methodology demonstrated in this article is a 
way to identify areas of interest with respect to watersheds and 
human health. As demonstrated by this study, there appears to 
be link between specific watersheds and the incidence of birth 
defects, pediatric cancer, and thyroid cancers in the state of 
Nebraska.
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