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Abstract 
The Mayflower orchid, Laelia speciosa, is an endangered orchid endemic to oak forests of central Mexico. 
Because of extractive pressure on remaining natural populations, in vitro propagation has been proposed as 
an alternative for the massive propagation of this plant for conservation and commercial purposes. However, 
it is unknown whether this orchid will be able to tolerate the increased air temperature that is projected to 
occur during the present century, especially for in vitro propagated individuals at early developmental stages. 
A laboratory assay that measured electrolyte leakage, a common indicator of cell membrane integrity, was 
utilized to determine the high-temperature tolerance for 8-year-old individuals rescued from a wild population 
and for 2-year-old micropropagated individuals of the Mayflower orchid. The plants were incubated under 
day/night air temperatures of 25/15, 30/20, or 35/25 °C. Chlorophyll fluorescence measurements of the 
quantum yield of photosystem II (Fv/Fm) averaged 0.74 ± 0.01, except for the micropropagated individuals 
incubated under 35/25 °C, whose quantum yield of 0.64 ± 0.02 was indicative of stress. Electrolyte leakage also 
responded to incubation temperature. An observed increase of temperature tolerance of 0.6–1.0 °C per 
increased degree of incubation temperature  indicates an ability to acclimate to rising air temperatures. 
However, the LT50 (the temperature that causes half of the maximum electrolyte leakage to occur) dramatically 
decreased (by 6.7-10.9 °C) for plants kept under 35/25 °C. In this case, the in vitro propagated individuals were 
less able to resist high air temperatures. It appears that the Mayflower will be able to survive climate change, 
provided that in vitro propagated individuals are sufficiently hardened. 
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Introduction 
Illegal harvesting from their native habitat is a leading cause for diversity loss among tropical 
epiphytes [1]. This is the case for the Mayflower, Laelia speciosa, an endemic orchid from central 
Mexico that has  great cultural significance in the state of Michoacán (Fig. 1) [2,3].The plant 
produces attractive flowers during the spring (hence its common name of flor de mayo; translation: 
Mayflower) that are illegally harvested and sold in streets and markets of the state capital. In 
addition, a mucilaginous juice is extracted from its pseudobulbs (the water- and nutrient-storing 
organs that many epiphytic orchids produce during their development) and mixed into a paste with 
the pith of dry maize stalks to craft religious art that is displayed in numerous Roman Catholic 
temples throughout Mexico. Because extensive harvesting has reduced its distribution range by 11% 
over the past two decades,  the Mayflower has been classified as endangered by the Mexican 
environmental authority [4,5].  
 

 

 
 
Fig. 1. The Mayflower orchid 
(Laelia speciosa) in bloom. A) In 
vitro propagated individuals 
and B) rescued individuals are 
currently kept in a shadehouse 
at the Instituto de 
Investigaciones en Ecosistemas 
y Sustentabilidad, Universidad 
Nacional Autónoma de México. 
Photograph in panel A kindly 
provided by Ms. Leonor Solís.   
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The conservation of endangered plant species can be aided by in vitro propagation, a technique that 
enables the massive production of plants for reintroduction or commercial purposes, thus relieving 
pressure on natural populations [6–8]. Species-specific protocols for in vitro propagation have been 
developed for several epiphytic orchids, including the Mayflower [6,7,9]. Numerous individuals 
resulting from in vitro propagation can be contained in relatively small spaces, at relatively low costs, 
and plant development can be arrested until the regeneration of fully formed plants is desired. 
However, as with most conservation practices,  restricted genetic diversity ensues from use of a 
limited number of genotypes, although it can be artificially enhanced via artificial mutagenesis, as 
has been done for Agave victoria-reginae; once thought extinct, this species was rescued from a 
single individual identified in a home garden in west-central Mexico [8,10].  
 
The eventual release of in vitro propagated plants requires a relatively long process of acclimation 
to natural or semi-natural environmental conditions in order to improve the chances of plant 
survival and establishment. This is especially true for epiphytes, because their environment is highly 
fluctuating, in stark contrast with the stable conditions prevailing in tissue culture rooms [11,12]. 
How well young propagated plants might withstand the natural environment needs to be 
determined so that their release can occur at the youngest age that yields adequate survival rates.  
 
Global climate change poses an additional threat to the persistence of L. speciosa and other 
epiphytic vascular plants. On the one hand, the oak forests of central Mexico, to which L. speciosa 
is restricted, are among the most endangered ecosystems in the country under various climate 
change scenarios [3,13–16]. On the other hand, epiphytes such as the Mayflower are especially 
exposed to changing environmental factors, such as insolation, changes in temperature, severe and 
frequent droughts, and even atmospheric pollution [11,12,17–19]. Higher exposure leads to 
increased risk unless a species is tolerant of stress, but studies of environmental stress tolerance are 
scant for non-timber species from oak forests. Moreover, besides broad biogeographical and 
morpho-physiological patterns, high-temperature tolerance is unknown for orchids in general 
[18,20].   
 
Air temperature influences all biological processes, from controlling the rates of enzymatic activity, 
to determining plant phenology over the course of a year, to limiting the distribution of a species 
[21]. For plants, high air temperature, which is often coupled with high insolation, can range from  
temporary inhibition of photosynthesis to  permanent physiological damage [22,23]. These 
processes can be monitored by means of chlorophyll fluorescence [24,25]. High quantum yields can 
be indicative of growth for orchids [26]. In contrast, the quantum yield (Fv/Fm) shrinks by half for 
epiphytic orchids from the Yucatán Peninsula during the dry season, when air temperatures are the 
highest [18].  
 
While mean air temperatures are a most useful predictor of plant performance in the field, extreme 
air temperature events (very high or very low), however rare, can actually kill an entire population 
[21,27], and plant responses to extreme events can be delayed up to several years [28,29]. 
Therefore,  a useful laboratory method for quickly determining  extreme temperature tolerance by 
plants has been developed that measures  cell viability following the exposure of plant tissue to 
increasingly extreme high or low temperatures [21,27]. By expressing cell viability—scored as 
electrolyte leakage or as cells taking up a vital stain—as the proportion of cells that remain viable 
after exposure to extreme temperatures, a parameter can be found, LT50, which is a good predictor 
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of tolerance to extreme temperature. The high-temperature LT50 can reach values of up to 70 °C for 
Cylindropuntia acanthocarpa, 64 °C for Agave americana, 55 °C for the hemiepiphytic cactus 
Hylocereus undatus, and 43 °C for the understory legume Lupinus elegans [27,30,31]. When plants 
are incubated at different mean air temperatures, differences in the LT50 indicate a plant's ability to 
acclimate to changing environments. In particular, the LT50 for C. acanthocarpa increases by 0.6 °C 
for each degree that the incubation temperature  is raised; acclimation is 0.3, 0.1, and 0 °C per 
degree that the incubation temperature is raised for A. americana, H. undatus, and L. elegans, 
respectively [31–33]. Alas, both the LT50 and the acclimation capacity of orchids are unknown.  
 
Because it is uncertain whether the Mayflower will be able to survive the substantially warmer 
environment projected to occur during the present century or increasingly frequent high air 
temperature episodes, we tested its high-temperature tolerance and acclimation for two-year-old 
in vitro propagated plants and adult individuals of natural origin, to evaluate the utility of in vitro 
propagation for conservation of this endangered orchid. 
 
Methods  
High-temperature tolerance was determined for in vitro propagated individuals of Mayflower 
(Laelia speciosa (Kunth) Schltr.) and compared with that of mature individuals that were originally 
obtained from a wild population. In particular, one-year-old in vitro propagated individuals of L. 
speciosa were acclimated to greenhouse conditions (mean air temperature of 25 °C, ranging from 
15 to 38 °C) at the Instituto de Investigaciones en Ecosistemas y Sustentabilidad (19°38'55.9"N; 
101°13'45"W; 1967m), Universidad Nacional Autónoma de México, for an additional year prior to 
the start of the experiment [9,34]. The mature wild-grown individuals had been rescued in 2004 
from a construction site about 7 km from campus. These plants were kept on their original substrate, 
i.e.,, branches of Quercus deserticola, and placed on a mesh bench inside a shadehouse (mean air 
temperature of 23 °C, ranging from 15 to 35 °C), allowing the plants to remain under semi-natural 
conditions. The individuals used in this experiment had an average of eight pseudobulbs, and were 
presumably eight years old, as this species produces one new pseudobulb every year [3]. 
 
On 23-26 April 2008, 10 individuals from each age group were placed inside growth chambers 
(Percival Scientific, Boone, Iowa, USA) according to a randomized block design, where they were 
exposed to a 12-h photoperiod and allowed to acclimate to three day/night air temperature 
regimes: 25/15, 30/20, and 35/25 °C, for 30 days under 50% relative humidity. The plants’ 
photosynthetic performance under the experimental temperature regimes was assessed with 
measurements of chlorophyll fluorescence (quantum yield, Fv/Fmax) conducted with a FluorPen 
Handheld Fluorometer (Qubit Systems, Kingston, Ontario, Canada).  
 
Plant tolerance to high temperatures was also determined by electrolyte leakage, an indicator of 
cell viability that increases as the membrane degrades in response to stress [27,31,35]. In particular, 
several leaf discs (6 mm in diameter) were obtained with a cork borer from each plant and placed 
in 1.5 ml microcentrifuge tubes that contained cotton damped with distilled water to prevent tissue 
desiccation. The tubes were placed in a Tropicooler benchtop cooler/heater (Boekel Scientific, 
Feasterville, Pensilvania, USA) for exposure to high temperatures. A given high temperature was 
maintained during one hour, following which a leaf disc was removed from the tube, placed in a 
glass vial containing 15 ml of deionized distilled water and placed for 40 min in an orbital shaker set 
at 200 rpm. At the same time, a second disc was removed from the vial and boiled for 5 min to fully 
disrupt cell membranes and obtain the maximum electrolyte leakage, before being placed in the 
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orbital shaker as described above. Electrical conductivity of the incubation solutions was measured 
following agitation with an Orion 3 Star conductivimeter (Thermo Electron Corporation, Waltham, 
Massachusetts, USA), and electrolyte leakage was expressed as percentage of the maximum. For 
the remaining leaf discs, the incubation temperature was progressively raised in 5 °C increments 
(rate of 0.5 °C min–1) for additional successive 1-h incubation periods. This process was repeated 
until the electrolyte leakage reached 100% of the maximum. The temperature at which half of the 
maximum electrolyte leakage occurred (lethal temperature-50, LT50) was identified for both the 
propagated and the rescued individuals as an indicator of temperature tolerance in the field [27]. 
 
Chlorophyll fluorescence and LT50 were analyzed with a two-way ANOVA (factors were plant age × 
air temperature) followed by pairwise Tukey Tests (p < 0.05) [36].  Statistical analyses were 
performed with SigmaStat 3.5 (SYSTAT Software, Point Richmond, CA, USA). Data are shown as 
mean ± s.e. (n = sample size). 
 

Results  
The experimental temperature regimes had an effect on both chlorophyll fluorescence and high-
temperature tolerance of the Mayflower orchid, which depended on plant age (Table 1). In 
particular, the photosynthetic quantum yield (Fv/Fm) tended to be higher for the mature plants 
than for the propagated individuals, especially under the warmest treatment. Indeed, Fv/Fm ranged 
from 0.64 ± 0.02 for the propagated plants under 35/25 °C, to 0.77 ± 0.01 for the mature plants 
growing under 25/15 °C. The LT50 also changed with incubation temperature for both the 
propagated and the mature individuals (Table 1). In this case, some acclimation occurred as the LT50 
was 47.67 ± 0.40 °C for plants incubated under 20/10 °C, increasing by 3.34 °C for plants incubated 
under 25/15 °C, i.e., 0.67 °C for each degree that the incubation temperature was raised. The highest 
experimental incubation temperature led to a dramatic decrease of the LT50 regardless of plant age.  
 
Table 1. Acclimation parameters for micropropagated one-year-old and rescued three-year-old individuals of 
Laelia speciosa kept at the indicated day/night temperature regime during 4 weeks. LT50 refers to the 
temperature at which half of the cell membrane viability, expressed as percent of maximum, is lost. 
Acclimation refers to the displacement of the LT50 relative to that for plants kept at 25/15 °C. Data are shown 
as mean ± 1 S.E. (n = 10). For a given parameter different letters indicate a statistical difference with (p < 0.05).  
 

Temperature 
(day/night °C) 

Chlorophyll fluorescence 
(Fv/Fm) 

 LT50 
(°C) 

Young Mature  Young Mature 

25/15 0.74 ± 0.01 a,b 0.77 ± 0.01 b  47.55 ± 0.73 a 47.78 ± 0.06 a 
30/20 0.72 ± 0.01 a 0.74 ± 0.01 a,b  50.87 ± 0.26 b 51.17 ± 0.16 b 
35/25 0.64 ± 0.02 c 0.72 ± 0.01 a,b  39.99 ± 1.32 c 44.48 ± 0.66 d 

 

Discussion 
High-temperature tolerance tended to be greater for the mature Mayflower individuals than for the 
two-year old plants from in vitro propagation. This agrees with a frequently found pattern among 
various life-forms, in which increasing plant age leads to greater tolerance of environmental stress 
[37]. For instance, cuttings of the hemiepiphytic cactus Hylocereus undatus are not able to withstand 
air temperatures above 45 °C, but adult individuals are often exposed to this temperature in 
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commercial plantations from the Yucatán Penninsula, Mexico [30,38,39]. Also, the high temperature 
LT50 for young stems of Opuntia ficus-indica is 6.5 °C lower than for those that are 10 years old [40].  
   
The quantum yield (Fv/Fm) was relatively stable for the Mayflower, except for the in-vitro 
propagated individuals incubated under the highest temperature treatment, which had a 
substantial reduction in variable fluorescence. Similarly, the quantum yield is reduced for epiphytic 
orchids from the Yucatán Peninsula during the time of year when the air temperatures are highest 
[18]. In contrast, high quantum yields can be indicative of growth for some orchids [26]. If this was 
the case for the Mayflower orchid, even the highest temperature treatment of 35/25 °C could lead 
to some growth for the mature individuals considered in the present study, but not for the two-year 
old plants from in vitro propagation. For the latter, the quantum yield was consistent with that of 
plants subjected to environmental stress [25]. 
 
While plant performance is greatly influenced by mean air temperature, extreme events, even if 
rare, can actually kill individuals that should otherwise be able to survive or even thrive at a given 
location [27,32]. It is likely that an increase in the frequency and the magnitude of high-temperature 
events will develop during the current century, including within the distribution range for the 
Mayflower [14,16,41]. However, the LT50 determined here for the Mayflower was the lowest among 
31 succulent plant species of different growth forms; the closest species is the hemiepiphytic cactus 
Hylocereus undatus, whose LT50 is still 5-16 °C higher than the one determined here for the orchid 
[30,33]. However, the LT50 for the Mayflower orchid as higher than that of the sympatric understory 
shrub Lupinus elegans (LT50 = 43°C) [31].  
 
Incubation temperatures, including the prevalent mean air temperature at a given site, can 
influence plant extreme temperature tolerance. Indeed, for 31 succulents, the LT50 increases by 0.42 
± 0.04 °C for each degree that the incubation temperature increases [27]. For the Mayflower orchid, 
the LT50 increased by 0.6-1.0 °C for each degree that the incubation temperature increased, up to 
30/20 °C, indicating a higher acclimation capacity for this orchid than for some of the other succulent 
species [30]. However, the fact that a further increase of the incubation temperature led to a 
substantially lower LT50 suggests that the Mayflower requires a fairly stable air temperature to 
remain physiologically active. The ability to acclimate to changing environmental conditions will be 
crucial for the survival of species that will be exposed to the accelerated temperature increase 
projected to occur during the present century. 
 

Implications for conservation 
In vitro propagation can be a useful tool for the conservation of plant species [8,10]. Consequently, 
specific propagation protocols have been developed for numerous species of orchids, including for 
the Mayflower orchid [6,42–44]. At least for the orchid considered in our study, high-temperature 
tolerance of in vitro propagated individuals is fairly similar to that of mature individuals, except 
under the highest experimental treatment, as discussed above. Either an acclimation protocol needs 
to be developed that induces temperature hardening for in vitro propagated individuals, or the 
actual age when acclimation becomes possible needs to be determined if a reintroduction program 
is to be implemented. However, because the lethal temperatures determined here are still rare in 
its area of distribution, including the city of Morelia, where most of the illegal trade in wild 
Mayflowers occurs, marketing of in vitro propagated individuals  able to tolerate current 
environmental conditions could relieve extractive pressure on wild populations.    
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