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Article

Evaluating the Effectiveness of Brazilian
Protected Areas Under Climate Change:
A Case Study of Micrurus brasiliensis
(Serpentes: Elapidae)

Cléber Ten Caten1, Matheus de Souza Lima-Ribeiro2,
Nelson Jorge da Silva Jr.3, Ana Karolina Moreno2, and
Levi Carina Terribile2

Abstract

Climate change can lead to a geographic range shift of species in the future, which might challenge a species to maintain viable

populations with lower dispersal abilities over time. Therefore, protecting stable habitats is important for the conservation of

these species. Herein, we assess the effectiveness of the Brazilian protected areas to preserve the rare and threatened coral

snake Micrurus brasiliensis and explore the occurrence of stable habitat areas through its geographic distribution at the end of

21st century. We used ecological niche modeling to generate the potential distribution of the species in the present, and then

projected its distribution to past and future climatic scenarios. We assessed whether Brazilian reserves would encompass

suitable habitats in the future and proposed areas in which conservation efforts could be directed based on habitat stability

(refugia) over time. Our findings show that the potential distribution of M. brasiliensis have shifted over the time, and there is

an expected decrease of more than 60% in the amount of suitable areas in the future. The protected areas will contain

climatically less suitable areas in the future. We strongly suggest expanding the existing reserve network as well as the

creation of corridors between protected areas, allowing the dispersal of M. brasiliensis, enhancing the opportunities for

preserving viable populations in the long term.
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Introduction

In the last century, anthropic activities raised the atmos-
pheric mean temperature about 0.6�C to 0.8�C, affecting
the distribution and survival of many species worldwide
(Colwell, Brehm, Cardelus, Gilman, & Longino, 2008;
Parmesan, 2006; Parmesan & Yohe, 2003). By the end of
the 21st century (2100), somemore pessimistic scenarios of
climate warming predict that global mean temperature
will increase around 4.8�C, changing patterns of precipi-
tation (IPCC, 2014). Hence, future climate changes are
expected to affect individual species or entire ecosystems
(Thomas et al., 2004; Walther et al., 2002).

Range shift is one of the most common responses of
species in the face of climate change. It has been
observed, for example, that some species are tracking
suitable habitats and expanding their geographical

ranges to higher latitudes and altitudes as a consequence
of global warming since the industrial revolution (Araújo,
Thuiller, & Pearson, 2006; Hughes, 2000; McCarty,
2001). Additionally, species may overcome stressful con-
ditions through phenotypic plasticity or evolutionary
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adaptations to novel climatic conditions (Hoffmann &
Sgrò, 2011; Williams, Shoo, Isaac, Hoffmann, &
Langham, 2008). However, such adaptations are more
likely to occur in species with short life cycles, large popu-
lation sizes, and high genetic variance (Bradshaw,
Holzapfel, & Crowder, 2006). Species with low dispersal
abilities or lower reproductive and adaptive rates may not
be able to overcome rapid climate change, and thus, they
would be especially endangered under a scenario of future
global warming (Walther et al., 2002).

Few studies have investigated the impacts of climate
change on snakes, although some examples have pro-
vided evidence that, under a rapidly changing climate,
most species would be committed to extinction (Lawing
& Polly, 2011; Penman, Pike, Webb, & Shine, 2010).
Coralsnakes (Family Elapidae) is a group particularly
vulnerable to reduction in climatically suitable habitat
due to its specialized habitat requirements and low dis-
persal abilities (Marques, Almeida-Santos, & Rodrigues,
2006), making it difficult for them to colonize suitable
areas outside the existing range. Moreover, the high
level of habitat fragmentation in tropical regions may
impose additional restrictions for these species to colonize
new areas, reducing their distribution to islands of nat-
ural areas embedded in a landscape of unsuitable habitats
(Araujo, Cabeza, Thuiller, Hannah, & Williams, 2004;
Ferro, Lemes, Melo, & Loyola, 2014). Within the coral
snakes, the species Micrurus brasiliensis is probably
highly susceptible to the combination of climate change
and habitat fragmentation (Silva Jr., 2007). It is a small
species (around 60 cm in length on average), character-
ized as having specialized fossorial or semi-fossorial
habits and low dispersal ability (Almeida, Prudente,
Curcio, & Rodrigues, 2016; Silva Jr., Pires, & Feitosa,
2016), which is distributed in the Brazilian savannas
(also known as the Cerrado biome) as well as the transi-
tion zone between the Cerrado and Caatinga biomes. The
few known individuals of M. brasiliensis were found in
rugged terrain with open vegetation and sandy soils in
areas known as dry forests; it is considered an endangered
species due to the expansions of the soybean and sugar
cane monocultures in the Central-West and Northeast
geopolitical regions of Brazil (Silva Jr., 2007).

One opportunity for preserving species with low
potential for dispersal is to preserve areas that are climat-
ically or environmentally stable over time (Ashcroft,
2010; Oliveira et al., 2015; Terribile et al., 2012). Such
environmental refugia allow viable populations to survive
when conditions around them are unsuitable, enabling
them to colonize adjacent areas when climatic conditions
become favorable again (Ashcroft, 2010; Provan &
Bennett, 2008; Tzedakis, Lawson, Frogley, Hewitt, &
Preece, 2002). Moreover, refugia are extremely important
because they harbor a high level of genetic diversity and
variation between populations in different refugia

(Carnaval, Hickerson, Haddad, Rodrigues, & Moritz,
2009; Provan & Bennett, 2008). In the case of species
with lower dispersal abilities, refugia would allow the
occurrence of populations in situ without needing to dis-
perse long distances or be artificially translocated
(Terribile et al., 2012). Thus, by considering the ongoing
climate change and the expected high velocity of changes
in the near future, identifying and evaluating the quality
of refugia for such species is imperative so the impacts
can be softened and extinction risks reduced (Dobrowski,
2011).

Given that not all areas potentially considered as refu-
gia can be protected, since some of them have high poten-
tial for food productivity and are therefore useful for
economic purposes, an evaluation for the potential of
the existing protected areas to act as climatic refugia for
vulnerable species is needed (Araujo et al., 2004). From
this, additional refugia that complement the existing ones
can be proposed, ensuring the long-term persistence of
the species. Here, we used ecological niche modeling
methods to find the geographic distribution and identify
refugia for M. brasiliensis following the method of
Terribile et al. (2012), and assessed whether the
Brazilian reserves would be effective in protecting this
coralsnake at present and at the end of the 21st century
by considering climate change scenarios. Additionally, we
identified additional areas based on the existence of
populations within the continuous area of climatic refu-
gia and the proximity to the current protected areas to
guide future conservation efforts for this species.

Methods

Species Data and Climatic Variables

We obtained data on occurrence records for M. brasilien-
sis from Campbell and Lamar (2004), Silva Jr. (2007),
and from field expeditions conducted by NJS Jr between
2007 and 2012. These data were carefully checked to val-
idate species identity and locality data (Figure S1).
Occurrence records were mapped on a grid with
0.5� � 0.5� resolution of both latitude and longitude
that covered South America entirely.

We also obtained the climate data need for ecological
niche modeling (see below) to model the species
distribution at the present and project for the past and
the future. Thus, we used climatic simulations of three
time periods: from the preindustrial (representing current
climate conditions), Last Glacial Maximum (LGM,
21,000 years ago—21ky BP), and future (mean data
between 2080 and 2100 representing the climatic condi-
tions for the end of 21st century), derived from five
coupled Atmosphere-Ocean General Circulation Models
(AOGCM)—Community Climate System Model (CCSM),
Centre National de Recherches Météorologiques (CNRM),
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Goddard Institute for Space Studies (GISS), Model for
Interdisciplinary Research on Climate (MIROC), and
Meteorological Research Institute (MRI) (see Table S1,
in Supplementary Material). For the future prediction,
we used the RCP4.5 emission scenario, which is an inter-
mediate scenario between the more optimist (RCP2.6)
and the more pessimistic (RCP8.0) ones (Taylor,
Stouffer, & Meehl, 2012). These data are available in
the ecoClimate database at a 0.5� spatial resolution
(http://ecoclimate.org, Lima-Ribeiro et al., 2015, see also
Table S1 in Supplementary Material for more details
about the AOGCMs). The annual mean temperature,
annual amplitude of temperature variation, precipitation
of the wettest month, precipitation of the driest month,
and precipitation of the hottest quarter variables were
selected from 19 bioclimatic variables (according to
Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) through
a factorial analysis with varimax rotation. The factorial
analysis allows us to select orthogonal variables eliminat-
ing or decreasing the effects of the multicollinearity among
the predictors in the modeling processes. We selected vari-
ables with the highest correlation to each of the five result-
ant factors (see details in Terribile et al., 2012).

Niche Modeling and Potential Distribution

We applied the ensemble forecasting approach (sensu
Araújo & New, 2007; see also Diniz-Filho et al., 2009;
Terribile et al., 2012) to generate consensus predictions
about geographic distributions after combining the
outputs from several different niche modeling methods
and AOGCMs. Thus, the niche of the species was
modeled using presence-only (BIOCLIM, Niche factor
analysis, Euclidian distance, Gower distances,
Mahalanobis distance), presence-background (maximum
entropy—Maxent), and presence-absence methods
(generalized linear models, generalized additive models,
flexible discriminant analysis; multivariate adaptive
regression splines; neural networks; and random forest;
see Franklin, 2009 and Peterson et al., 2011 for a review
of methods). As absence data are not available for this
species, to satisfy those modeling methods based on pre-
sence-absence, we randomly selected pseudo-absences
through the set of cells from which the species was not
recorded, keeping prevalence equal to 0.5 (thus generat-
ing a dataset consisting of 50% presence and 50%
pseudo-absence records). For each model, occurrence
data were divided into two subsets: 75% of presence
cells selected for calibration and 25% for testing the
model’s predictive ability, repeating the sampling process
50 times. Thus, 3,000 models were generated through the
combination of 12 modeling methods, 5 climatic models,
and 50 repetitions (12� 5� 50) for the present, and pro-
jected into the past and future climatic scenarios. Each of
the 50 models were converted into binary distribution

(presence and absence, or 1 and 0, respectively) maps
based on thresholds established by the area under the
receiver operating characteristic curve, known as the
area under the curve (Fielding & Bell, 1997). The fre-
quency of presence of the species in each cell in these 50
models was used to generate the species habitat suitability
maps, varying from zero (the species was recorded as
absent in a cell in all the 50 results) to one (the species
was recorded as present in all the 50 results; Figure S2).
To generate the final maps of potential distribution
through time, the habitat suitability maps from the com-
bination of ecological niche models and AOGCMs were
truncated by the lowest suitability in a presence record,
which was 0.59 (lowest presence threshold; Pearson,
Raxworthy, Nakamura, & Peterson, 2007).

Changes in Habitat Suitability Over Time and the
Effectiveness of the Protected Areas

We assigned 0 (not protected) or 1 (protected) to each grid
cell based on its overlap with the network of protected
areas (hereafter PAs) from The World Database on
Protected Areas (database available on http://www.pro-
tectedplanet.net). Then, we compared the mean habitat
suitability by considering the following questions: (a)
Does the current distribution of M. brasiliensis show
higher suitability than the distribution projected for the
future, regardless whether it is inside or outside of PAs?
(b) Do the PAs exhibit higher suitability than the areas
outside them for present and for future? To answer these
questions, we first considered the variation in habitat
suitability over time as the focus of the analysis and
used a paired t-test with grid cells to compare suitability
between present and future scenarios. We compared pre-
sent versus future suitability inside and outside PAs,
as well as across the entire South America (i.e., with
no distinction between protected and nonprotected
areas). Second, we considered the PAs as the focus of
analysis and compared if protected areas attain higher
suitability for M. brasiliensis than nonprotected areas.
In this case, we compared suitability inside protected
areas versus outside them separately for both present
and future scenarios. All comparisons were performed
using the package stats, with random resampling to set
p-values in R (v. 3.2.3).

Areas of Habitat Stability

To identify areas of habitat stability (or refugia), we fol-
lowed the above-described approach by converting the
continuous frequency (suitability) maps from each time
period into binary presence–absence predictions using the
threshold equal to the lowest suitability value associated
with an occurrence record (Aranda & Lobo, 2011;
Pearson et al., 2007). Thus, cells with habitat suitability
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equal or higher than this threshold in the three time per-
iods (past, present, and future) were identified as areas of
habitat stability for the species.

Thinking of a worst case scenario, in which the species
would lose suitable areas or would change its geograph-
ical range by tracking suitable conditions in the future,
we proposed new areas where conservation efforts should
be directed directed by expanding the currently protected
areas as well as considering the creation of dispersal cor-
ridors within the areas of habitat stability. For this, we
overlapped and compared the spatial distribution of the
remaining Cerrado and Caatinga biome’s vegetation with
the refugia to identify the areas that (a) have confirmed
occurrence records for the species, (b) are near the pro-
tected areas, (c) are within the area of habitat stability,
and (d) that has native remaining vegetation in adjacencies.
By doing this, we identified the most important areas to
protect current populations and promote dispersal through
new areas within the refugia. The map of remaining vege-
tation for Cerrado and Caatinga biomes was obtained from
the Centro de Sensoriamento Remoto of IBAMA (Instituto
Brasileiro do Meio Ambiente e dos Recursos Naturais
Renováveis, http://siscom.ibama.gov.br).

Results

The current species distribution predicted by models
covers the central and northern region of the Cerrado,
the western part of Caatinga, and a smaller region in the
south of the Amazonia biomes (Figure 1). Predictions

using the LGM revealed a more restricted distribution
toward the centre and northwest region of Cerrado in
the past in comparison with the present (Figure 1(a)
and (b)). For the future, a displacement of suitable
areas toward the Caatinga biome (Figure 1(c)) is
expected. Moreover, a decrease in the suitable area of
more than 60% (702 to 261 cells) was observed for the
whole potential distribution between the present and
future scenarios (Figure 1(b) and (c)).

Besides range reduction, these areas will be, on average,
less suitable in the future in comparison with present,
meanpresent¼ 0.77, SD¼ 0.10; meanfuture¼ 0.68, SD¼ 0.05;
t(875.29)¼ 19.19, p< .001, regardless whether inside,
t(240.9)¼ 12.82, p< .001, or outside the PAs, t(634.03)¼
15.439, p< .001. We found no statistical difference in
mean suitability when comparing the areas inside
(mean¼ 0.77, SD¼ 0.11) and outside (mean¼ 0.78,
SD¼ 0.10) the PAs in the present, t(446.37)¼�0.62,
p¼ 0.52. For the future, however, cells inside the PAs
are expected to hold lower suitability (mean¼ 0.65, SD¼
0.04) than cells outside Pas, mean¼ 0.68, SD¼ 0.05;
t(114.36)¼�4.62, p< .001.

By considering the temporal and geographically
continuous distribution of areas with high suitability,
we found a potential refugia extending from the southern
Caatinga to the northeast of the Cerrado biomes
(Figure 2). Within this region, we identified three large
areas in the Cerrado that include six populations near to
small and fragmented PAs but that still have a high pro-
portion of remaining vegetation in adjacencies. We

Figure 1. Potential geographic distribution of Micrurus brasiliensis in the past (a), present (b), and future (c), defined as the area with

habitat suitability equal to or higher than 0.59 (i.e., the lowest suitability value associated with an occurrence record). Colors from yellow

to red represent the habitat suitability varying from 0.59 to 1.00, respectively.
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suggest these areas as a priority for the expansion of the
PAs (e.g., by creating dispersal corridors), thus reducing
extinction risk by preventing isolation of populations.

Discussion

Our results clearly indicate a decrease in suitable areas for
M. brasiliensis over time as a response to climate change.
Our findings showed an expressive range reduction in the
future, combined with a spatial displacement toward east-
ern Brazil and a decrease in the suitability in general.
Similar results were also observed for other groups of
organisms from the Cerrado biome (e.g., Collevatti
et al., 2012, 2013; Terribile et al., 2012). This pattern
probably reflects the effects of changes to the precipita-
tion regimes (Schaller, Mahlstein, Cermak, & Knutti,
2011), which are expected to be more drastic mainly in
the tropical regions of the world (in contrast to changes in
temperature expected for temperate regions). Changes in
the precipitation may directly affect M. brasiliensis,
because the activity patterns of the genus Micrurus are
strongly dependent of the seasonal rainfall regimes
(Marques et al., 2006).

During the wet season (spring and summer), the avail-
ability of food for coralsnakes is higher, since these

snakes feed on amphisbaenids and caecilians, which
also live predominantly in the subsoil and emerge to the
surface in wet seasons (Almeida et al., 2016). Moreover,
chemical signals from prey are more evident in the soil
during the rainy season, increasing the foraging activities
of coralsnakes (Marques et al., 2006). Also, there is some
evidence that oviparous snakes select wet locations for
oviposition, since their offspring are more likely to sur-
vive in wet areas (Brown & Shine, 2004). Thus, these
specialized ecological traits combined with the reduction
in the suitable areas due to climate change reported in
this study will probably have a negative effect on the
activities of M. brasiliensis, and consequently, on their
reproductive patterns and survival.

Furthermore, many studies have shown species range
contractions in the future (e.g., Lemes & Loyola, 2013;
Lemes, Melo, & Loyola, 2014; Loyola, Lemes, Faleiro,
Trindade-Filho, & Machado, 2012), which indicate the
necessity of identifying and protecting strategic areas to
act as buffers under ongoing climate change.
Unfortunately, the current network of protected areas is
inefficient to safeguard most species from these changes
(Araujo et al., 2004; Ferro et al., 2014; Urbina-Cardona
& Loyola, 2008), and our study does not show a more
optimistic scenario forM. brasiliensis. Furthermore, most

Figure 2. Area of habitat stability (light yellow) through the Cerrado (light gray) and Caatinga (dark gray) biomes; Areas indicated with

dash-dotted lines indicate the areas where conservation efforts should be directed considering the presence of recorded populations (red

dots); the fragmented and isolated protected areas are demarked with solid lines; and the remaining vegetation is shown in green.
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of the protected areas are fragmented (e.g., Sobral-Souza,
Francini, & Lima-Ribeiro, 2015), as we observed here.
The decrease of habitat suitability for M. brasiliensis
within PAs in the future enforces the need for identifying
complementary areas, preferentially surrounding cur-
rently protected ones, which can also serve as dispersal
corridors. Most importantly, such areas should be
selected considering their stability over time, enhancing
the chances of protecting the species while the climate is
changing.

Implications for Conservation

Although our proposition for expanding the protected
areas may sound quite general at first, it may be very
useful as a general approximation on which areas, once
connected, could enhance the viability of populations
under climate change (Beier & Noss, 1998). Moreover,
these remnants of native vegetation are in the core of
the species’ stability area, which is a further reason to
establish connections since there is very low uncertainty
about where this species is probably going to be in the
future. Indeed, isolated populations have a higher extinc-
tion risk (Diamond, 1975), mainly due to the effects of
the demographic stochasticity, metapopulation dynamics,
and inbreeding depression (Hanski, Pakkala, Kuussaari,
& Lei, 1995; Keller & Waller, 2002; Opdam, 1991).
Beyond that, fragmentation could increase the effects of
the ongoing climate change (Opdam & Wascher, 2004),
which is already causing extinction of snake populations
worldwide (Reading et al., 2010). Thus, as fragmented
habitats tend to hold fewer (sensitive) specialist species
(Brown & Kodric-Brown, 1977; Diamond, 1975), corri-
dors of suitable habitats might allow these species that
are usually sedentary to disperse among patches, reducing
the extinction risk due to rescue effect (Gilbert, Gonzalez,
& Evans-Freke, 1998).

Finally, although our study was focused on a single
species, its very particular habitat requirements and con-
servative ecological traits are shared for most species of
Micrurus, which are probably also under severe threat
due to climate change. Our approach exemplifies how
conservation strategies can be oriented for species with
low dispersal abilities, mainly based on preserving refugia
in situ, and also reducing the uncertainties of where, all
else being equal, conservation efforts should be focussed.
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(Serpentes, Elapidae) na área de contato Cerrado - Amazônia –
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