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Abstract.—There is growing interest in models of marine ecosystems that deal with the effects of climate

change through the higher trophic levels. Such end-to-end models combine physicochemical oceanographic

descriptors and organisms ranging from microbes to higher-trophic-level (HTL) organisms, including

humans, in a single modeling framework. The demand for such approaches arises from the need for

quantitative tools for ecosystem-based management, particularly models that can deal with bottom-up and

top-down controls that operate simultaneously and vary in time and space and that are capable of handling the

multiple impacts expected under climate change. End-to-end models are now feasible because of

improvements in the component submodels and the availability of sufficient computing power. We discuss

nine issues related to the development of end-to-end models. These issues relate to formulation of the

zooplankton submodel, melding of multiple temporal and spatial scales, acclimation and adaptation,

behavioral movement, software and technology, model coupling, skill assessment, and interdisciplinary

challenges. We urge restraint in using end-to-end models in a true forecasting mode until we know more about

their performance. End-to-end models will challenge the available data and our ability to analyze and interpret

complicated models that generate complex behavior. End-to-end modeling is in its early developmental stages

and thus presents an opportunity to establish an open-access, community-based approach supported by a suite

of true interdisciplinary efforts.
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There is growing interest in models of marine

ecosystems that include descriptors of climate as it

affects higher trophic levels (Travers et al. 2007; Cury

et al. 2008). These so-called end-to-end models

typically combine submodels of physicochemical

oceanographic processes with descriptors of lower-

and higher-trophic-level organisms into a single

modeling framework (Travers et al. 2009). There are

currently several established modeling efforts along

this line, including OSMOSE (Shin and Cury 2001),

Ecospace (part of Ecopath with Ecosim; Walters et al.

1999; in press), ATLANTIS (Fulton et al. 2004a,

2004b), and SEAPODYM (Lehodey et al. 2003).

These models and others were recently reviewed in

Plagányi (2007). Newer efforts are also under way,

such as a multispecies fish extension to the NEMURO

family of models. While none of these newer models

yet constitutes a comprehensive end-to-end model, the

great variety in their underlying approaches and details

provides a promising foundation for the development

of the next generation of end-to-end models.

Traditionally, in marine ecosystem modeling models

of lower trophic levels (LTLs) and higher trophic levels

(HTLs) have been developed quasi-independently

(Jennings et al. 2001; Travers et al. 2007). The LTLs

have been modeled in terms of single-element

(typically nitrogen or carbon) dynamics among the

various forms of nutrients and multiple functional

groups of autotrophs (i.e., phytoplankton) and hetero-

trophs (i.e., bacteria and zooplankton), as typified by

nutrient–phytoplankton–zooplankton (NPZ) models

(Fasham et al. 1990; Fennel and Neumann 2004).1

Models of HTL organisms (e.g., fish) are typically

based on biomass or age-, stage-, or size-classes (e.g.,

Tuljapurkar and Caswell 1997; Quinn and Deriso

1999) and embody simplified physical (environmental)

conditions and LTL (ecological) representations (La-

tour et al. 2003). These models include single-species

population dynamics models (Quinn and Deriso 1999)

and multispecies models that represent the predator–

prey and competitive interactions among the HTL

species (Pauly et al. 2000; Rose and Sable 2009).

When included, humans are typically represented in a

highly simplified manner in such models. However,

several models have begun to include more dynamic

representations of human activities, mostly in terms of

the dynamics of harvesting (Plagányi 2007). End-to-

end models attempt to meld the physical–LTL and

HTL modeling approaches and include important

feedbacks among these three factors. Ultimately, end-

to-end models should more broadly include humans as

members of the HTL community that react and adjust

to changing conditions (Liu et al. 2007; Perry et al.

2010).

The increasing interest in developing end-to-end

models is the result of several developments: the

worldwide movement toward ecosystem-based man-

agement, advances in ecosystem modeling, improve-

ments in computing power, and the ever increasing

appreciation of the complexity of the interacting factors

that control ecosystem dynamics. A major driver is the

demand for quantitative tools to support ecosystem-

based management initiatives (Pikitch et al. 2004). It

has long been recognized that there are strong

interactions and feedbacks among climate, upper-ocean

biogeochemistry, and the LTL components of marine

food webs. Ecosystem approaches are now considered

necessary because of the growing appreciation of the

interconnectedness between climate and fish and other

HTL organisms and because of the recognized

deficiencies in the commonly used single-species

approach to fisheries management (Latour et al.

2003). Climate scale variability and its impact on fish

population dynamics have been documented in many

ecosystems (e.g., Chavez et al. 2003; Beamish et al.

2004; Lehodey et al. 2006). Regional and global

climate change can affect HTL organisms in a

multitude of ways. For example, the growth, mortality,

reproduction, and movement of fish are directly

affected by changes in the physical and chemical

properties of the ocean (temperature, salinity, mixing,

advection, and pH) and directly and indirectly by

changes affecting phytoplankton, zooplankton, ben-

thos, and other fish in their roles as predators, prey, and

competitors (Ito et al. 2010).

Another driver for the development of end-to-end

models is concern about the overharvesting of many

fish populations. Much attention has been given to a

series of controversial papers purportedly showing that

many of world’s fish populations have been overhar-

vested (e.g., Myers and Worm 2003; but see Hilborn

2007). Whether or not the dire state of fisheries has

been exaggerated, there is no doubt that overharvesting

and low population biomasses are a concern (Mullon et

al. 2005; Worm et al. 2009). As a result, current

fisheries management practices, which rely heavily on

single-species approaches (Rose andCowan 2003), are

1 Throughout this paper, we use the term ‘‘NPZ’’ to refer to
a common class of mass-based models of LTL organisms that
simulate the dynamics of nutrients, phytoplankton, and
zooplankton. We also include models that represent multiple
nutrients, multiple functional groups of phytoplankton and
zooplankton, and detritus under this term. The term ‘‘LTL
models’’ is a more general one that includes NPZ models as
well as other types of models, such as stage-based population
dynamics models of copepods.
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being called into question, and multispecies and

ecosystem approaches are being advocated (Latour et

al. 2003; Plagányi 2007; Cury et al. 2008).

The emergence of end-to-end models is also timely

because advances in the modeling of hydrodynamics

and HTL organisms, combined with improvements in

computing power, now make it possible to link

component submodels explicitly. Recent advances in

physical modeling include accurate and efficient

solution schemes, sufficient spatial resolution to

simulate mesoscale features, the nesting of grids to

enable fine-scale simulation within a relatively broad

spatial domain, and the ability to reproduce patterns in

field data for nearshore and coastal areas (e.g.,

upwelling regions) that are utilized by many HTL

organisms during their life cycle (Ito et al. 2010; Lett et

al. 2009). We are now able to simulate mesoscale

phenomena in the physical and LTL models, which

provides more realistic spatial and temporal tempera-

ture, salinity, and food fields for the simulation of the

reproduction, growth, mortality, and movement of

individual fish as well as the short-term population

dynamics. The physical and LTL models can also

reconstruct decadal-scale phenomena (e.g., regime

shifts) critical for simulating the low-frequency varia-

tion in HTL organisms. We do not want to overstate

the current abilities of the physical and LTL models.

The degree to which simulations with these models

match reality can always be questioned. For example,

artificial numerical ‘‘fixes’’ are still used in many LTL

models to ensure that certain behaviors are realistic

(Cropp and Norbury 2009). However, recent advances

in physical and LTL modeling have partially shifted the

emphasis from inadequate modeling methods to the

lack of appropriate data for parameterization and

validation (see Anderson 2005; Flynn 2005).

There have also been advances in the modeling of

HTL organisms. There is now far greater appreciation

of the ways to handle ontogeny at scales that are

appropriate for end-to-end models. While the differen-

tial and difference equation representations are still

very useful in many situations, especially for the low

and mid trophic levels (e.g., Gentleman et al. 2008), an

individual-based approach that simulates discrete

Lagrangian entities offers several advantages over the

more traditional age- and stage-based approaches at the

higher trophic levels. The individual-based approach

has become very popular in ecology (DeAngelis and

Mooij 2005) and is well suited for representing HTL

organisms in end-to-end models. The individual-based

approach allows for conceptually straightforward

linking of the HTL processes of growth, mortality,

and reproduction to the detailed spatial and temporal

scales of the physical and NPZ submodels. Competi-

tive and predatory food web interactions can be

represented on local scales, and physical-based and

behavioral movement can be implemented (DeAngelis

and Rose 1992; Breckling et al. 2006). The individual-

based approach has been used in single- and multiple-

species models (DeAngelis and Mooij 2005), but far

less in community-level analyses because of computa-

tional costs (Rose and Sable 2009). Data collection has

also progressed, the advances including remote sensing

that permits synoptic measurements to be made over

broad areas, the ability to obtain spatially resolved

measurements in the field, and the ability to acquire

fine-scale information (such as that obtained through

acoustic and sonic tagging) on the movements of

animals (Rose et al. 2001). A mix of stage-, age-, and

individual-based modeling approaches will probably be

needed to represent the complex food webs and

community dynamics of HTL organisms in end-to-

end models.

Computing power is ever increasing, such that end-

to-end models are now computationally feasible. We

have the computing power to simulate physical

phenomena at fine scales using highly resolved models

with the spatial coverage (domain) and ability to

perform the decadal-length simulations that are needed

to capture the dynamics of HTL organisms. Computing

limitations will always be present, however. High-end

computing is not widely available and requires special

expertise, and there are issues related to the storage of

and efficient access to the massive data and model

output that can be generated. One could easily

formulate an end-to-end model that would be limited

by computing power, especially in terms of data fitting

and uncertainty analysis. At present, however, uncer-

tainty about biological processes is more limiting than

computing power.

Another development that favors an end-to-end

approach is the dynamic and spatially variable nature

of the factors that control marine ecosystem dynamics.

Knowing the relative roles of bottom-up, top-down,

and wasp-waist controls (Cury et al. 2000; Frank et al.

2005; Bakun 2006; Field et al. 2006)—and how they

operate simultaneously and vary in time and space—is

vital for making accurate projections of the responses

of ecosystems to changing conditions (Cury et al.

2008). Evidence of the complexity of inter–trophic

level controls in coastal and marine systems (Hutchings

et al. 1998; Hunt and Stabeno 2002; Frank et al. 2005;

Ware and Thompson 2005) and the complexity of the

relationships between environmental conditions and

fish population dynamics (Rose 2000; Breitburg et al.

2009) is accumulating. While it has long been known

that nutrients are related to fish production (Caddy

1993; Nixon and Buckley 2002), some studies have
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suggested that fish themselves can affect nutrient

availability (Hjerne and Hansson 2002; Wilson et al.

2009). How to represent the complexity of the food

web continues to be investigated for NPZ models (e.g.,

Friedrichs et al. 2007), and it is even more complicated

when HTL organisms are added to the model. End-to-

end models will need to have the structure and

feedbacks to represent a complex mix of controlling

processes (e.g., an alternation of bottom-up and top-

down processes). In some situations, this will involve

feedbacks among the physical, NPZ, and HTL

components.

In this paper, we discuss nine issues related to the

further development and application of end-to-end

models. These are (1) the role of zooplankton as a link

between the lower and upper trophic levels, (2) the

inclusion of new organisms such as macroinvertebrates

and humans, (3) the melding of multiple temporal and

spatial scales across submodels, (4) acclimation and

adaptation by organisms, (5) the behavioral movement

of upper-trophic-level organisms, (6) the software and

technology for coding and sharing algorithms in an

open-access community, (7) one-way and two-way

solution techniques, (8) the assessment of model

performance and forecasting, and (9) the challenges

posed by the interdisciplinary aspects of end-to-end

modeling. We conclude with a general statement about

the future of end-to-end modeling and its relevance to

management decision making. This paper is based on

the discussions at a workshop entitled ‘‘Bridging the

Gap between Lower and Higher Trophic Levels’’ that

was held February 2009 in Plymouth, England. This

paper is not meant to be an exhaustive review of end-

to-end modeling of marine ecosystems. Our goal is to

make the participants’ deliberations at the workshop on

this rapidly advancing field available to a wider

audience.

Zooplankton as the Link between Lower and
Upper Trophic Levels

A major topic of discussion at the workshop was

whether the current representation of zooplankton in

the traditional NPZ models is an appropriate to way

link LTL organisms to fish and other HTL organisms.

Zooplankton will be a linchpin as we develop end-to-

end models because of their importance as a consumer

of primary production and as prey for HTL organisms.

Historically, zooplankton was included in NPZ models

mostly to achieve realistic biogeochemical cycling (Le

Quere et al. 2005), while in models of fish population

dynamics, food (LTL) dynamics were either not

considered explicitly (e.g., age-structured models;

Caswell 2001) or represented very simply (e.g.,

Ecopath with Ecosim; Walters et al. 1997).

In end-to-end models, the goal of representing

zooplankton shifts from obtaining realistic nutrient

and chlorophyll concentrations in a biogeochemical

context to representing the quantity and quality of food

available to multiple species of fish over their lifetimes.

Two likely differences between traditional NPZ models

and end-to-end models are the representation of

biogeochemical processes and the definition of func-

tional groups.

Shifting the focus of zooplankton means that many

of the processes represented in traditional NPZ model

formulations need to be revisited. For example,

traditional NPZ simulations (e.g., Fasham et al. 1990)

have either made reference to a single nutrient

(typically nitrogen) or assumed fixed, Redfield-like

stoichiometry. Setting aside the question whether

Monod–Redfield models can sufficiently describe

phytoplankton growth (Flynn 2010), variable elemental

stoichiometry has been shown to be important in

controlling NPZ dynamics (Andersen et al. 2004; Mitra

et al. 2007). Whether stoichiometry is a first-order

problem or not is unknown, but the importance of this

issue (and others) needs to be assessed in the context of

incorporating NPZ models into end-to-end models.

Another issue is the amount of detail needed in the

algorithms that represent prey selection by zooplank-

ton. Relating prey selection to food quality in a

simplified manner in NPZ models is a nontrivial matter

(Mitra and Flynn 2006), while including it in structured

copepod models can have profound impacts on

copepod dynamics (Flynn and Irigoien 2009). We do

not know the extent to which the traditional represen-

tations of processes in NPZ models will require

revision in the context of the demands imposed by

end-to-end models, but we caution against simply

adopting existing formulations.

A second major issue that arises with end-to-end

modeling is the representation of zooplankton func-

tional groups. Much of the literature still focuses on

ways to represent functional groups with respect to

biogeochemical cycling (Hood et al. 2006); end-to-end

modeling will dramatically shift the focus to ways to

represent LTL organisms because the emphasis will be

on their linkage to HTL organisms. Most real LTL

dynamics operate through microzooplankton, as repre-

sented by protistan grazers and the juvenile states of

mesozooplanton. Biogeochemically oriented NPZ

models typically employ closure terms that operate

on the mortality component of the zooplankton groups,

which (often without being stated explicitly) describe

the activities of HTL organisms (see Mitra 2009). End-

to-end modeling provides explicit description of

predatory activity in place of general closure terms.

End-to-end models inevitably require the inclusion
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of at least two zooplankton types: protistan zooplank-

ton for realistic LTL dynamics and mesozooplankton

(notably copepods) for the HTL link. The zooplankton

groups need to be represented so that key shifts in the

prey types eaten as fish develop can be realistically

simulated. Larval fish often require small prey sizes

and certain types (e.g., Checkley 1982; Munk 1997;

Kühn et al. 2008), and subtle changes in mortality

arising from growth differences or episodic events can

dramatically affect annual recruitment (Houde 1989).

Adult fish tend to eat larger prey and often consume a

mix of invertebrate and fish prey (e.g., Scharf et al.

2000). Detailed stage-based models of specific cope-

pod species have been successfully imbedded into

three-dimensional spatial models (e.g., Moll and

Stegert 2007), and others have invoked postprocessing

of NPZ model output to obtain sufficiently detailed

prey fields for modeling fish feeding (e.g., disaggre-

gating biomass into size structure; Daewel et al. 2008).

Several plankton–fish models have essentially aban-

doned the functional group approach and represented

LTL organisms by means of size distributions (e.g.,

Zhou and Huntley 1997; Maury et al. 2007). Defining

planktonic functional groups remains a longstanding

challenge in NPZ modeling (Anderson 2005; Le Quere

et al. 2005), and the additional requirement of

accurately representing the energy flow pathways and

phenology of multiple groups of zooplankton will

further complicate it. The extent to which multistage

LTL models will be required to describe the develop-

ment of important LTL species groups (e.g., copepods)

is a major unknown. Indeed, from a biological

standpoint, the modeling of mesozooplankton may

have more in common with modeling the more

challenging HTL organisms than with modeling

single-celled microbes (Carlotti and Poggiale 2010).

A critical element of making end-to-end models

realistic is correctly describing the LTL organisms. In

this regard the demands of end-to-end modeling differ

from those for biogeochemical cycling. We anticipate

that, at least in some situations, significant changes to

traditional NPZ model formulations will be needed to

fulfill the demands of end-to-end models. In other

situations, more moderate changes may suffice. Data

that describe the flux of materials and energy up

through their pathways are needed to confirm the

simulated dynamics of the fish-oriented zooplankton

functional groupings. This will reinforce the drive for

changes in the ways that phytoplankton and zooplank-

ton are traditionally represented. We will need NPZ

models that deal with multiple nutrients, that generate

energy flows through functional or size-groups that

provide a sound basis for ontogenetic changes in fish

prey demands, and that are robust to changing

environmental conditions. This issue will become

especially important as we extend the use of models

to conditions (e.g., global climate change) that are well

outside the domain in which the models were calibrated

and validated.

New Organisms

Two groups of organisms that have not been the

focus of marine ecosystem modeling to date but that

are likely to become important under changing climate

scenarios are macroinvertebrates and very-high-tro-

phic-level organisms. Macroinvertebrates such as salps,

appendicularians, and jellyfish seem to fall in-between

most NPZ and HTL modeling efforts. Salps can

channel small-sized phytoplankton and aggregate them

into large, fast-sinking particles, thereby making them

unavailable to the small stages of crustaceans and

interfering with the trophic link between zooplankton

and fish (Le Fèvre et al. 1998). Given the worldwide

concerns about jellyfish blooms (Mills 2001; Purcell

2005) and how they alter the energy flow through the

food web (Brodeur et al. 2002) and affect zooplankton

community dynamics (e.g., Kremer 1979) and fish

growth and survival (Purcell and Arai 2001), the

representation of jellyfish in end-to-end models

requires careful consideration.

Demersal fish species are another group of organ-

isms that will need to be considered in end-to-end

models. While HTL models of demersal fish species

have been developed (e.g., Bryant et al. 1995), they

have tended to include simplified physical conditions

and benthic prey dynamics. Most LTL–fish models that

include detailed physical conditions have focused on

the early life stages of pelagic fish species (Werner et

al. 2001; Lett et al. 2009; North et al. 2009), while the

initial attempts to formulate end-to-end models that

include demersal organisms have been simplified in

other aspects, such as the physical conditions or

behavioral movements (see Plagányi 2007). In many

situations, end-to-end models will need to consider

demersal fish species as integral parts of the HTL

community. This presents new challenges as to how to

represent the interface not only with LTL organisms in

the overlaying waters but also with the hydrodynamics

and physical conditions near the bottom and the

associated benthic food web. Some of the existing

benthic modules within ecosystem models (e.g.,

Ebenhoh et al. 1995; Blackford 1997) and the spatially

simplified models that include demersal species (e.g.,

Bryant et al. 1995; Okey et al. 2004) will provide a

starting point, but much further work is required to

determine the appropriate formulations for demersal-

related processes and linkages to the physical condi-

tions and pelagic food web.
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Finally, many of the models that include LTL and

HTL organisms have shifted the mortality closure term

problem further up the food chain. We have moved

from specifying zooplankton mortality in NPZ models

to achieve realistic biogeochemical cycling to specify-

ing HTL mortality in terms of predation by other HTL

organisms and human activities such as fishing. In

most models, fish mortality is treated in a simplified

manner by assuming constant annual natural and

fishing mortality rates. In end-to-end models, marine

mammals, birds, and humans may need to be included

as full members of the food web in order to obtain

realistic representations of the mortality and dynamics

of their prey. Integrating closure terms with model-

generated predation rates for functional groups whose

suite of possible predators is only partially represented

by explicit simulation might require model-specific

solutions (Fulton et al. 2003a). Representing very-high-

trophic-level organisms can require very different

modeling approaches than the traditional fish-oriented

approaches (Perry et al. 2010) and result in model

behaviors that would not be expected from the study of

the natural and social systems separately (Liu et al.

2007).

Scaling

There are scale differences between LTL and HTL

dynamics that will need to be accommodated in end-to-

end models. Dealing with multiple biological, spatial,

and temporal scales is fundamental to all ecological

modeling (Levin 1992) and becomes even more acute

with end-to-end models. Deciding the best temporal

and spatial scales and processes is the art of modeling.

A model should be tailored to the specific questions to

be addressed, but because there are no general

guidelines for deciding the scales and processes to be

included for a given question, model development

includes judgments on the part of the model develop-

ers.

End-to-end models exacerbate the uncertainty in

model building because they include a more diverse set

of processes that operate on different scales and

organisms that span a wide range of sizes and life

histories. Examples include how to generate tempera-

ture and prey fields in an LTL model on scales that

harmonize with the way that fish feeding is represented

in the HTL model; how to include behavioral responses

when modeling the movement of fish and other HTL

organisms on a spatial grid dictated by hydrodynamics;

and how to have sufficient temporal and spatial

resolution in the physical conditions to realistically

represent fast-reaction dynamics (e.g., phytoplankton

and fish foraging) while simulating decadal dynamics

over a broad enough spatial domain to allow for

changes in large-scale migration and movement

patterns. We are challenged to harmonize fine-scale

physical models with biological processes that span a

wide range of temporal and spatial scales for fish

(Mullin 1993) and other HTL organisms. We are

confident that working on a single temporal and spatial

scale will not be sufficient (Fulton et al. 2003b). The

issue of scaling is not new, but with end-to-end

modeling it becomes even more challenging.

End-to-end models will probably create situations of

complex systems behavior that will complicate the

interpretation of model results. Complex systems

behavior occurs when the composite has properties

that are not obvious from the properties of the

individual components (Auyang 1999). Models do

not need to be complicated to exhibit complex systems

behavior. For example, very simple models can

generate chaotic and irregular patterns of population

dynamics over time (e.g., May 2001). The wide range

of scales in end-to-end models and the fact that the

individual-based approach allows simple rules to be

scaled up to the population and community levels via

local interactions provide fertile ground for the

emergence of complex systems behavior (Railsback

2001). While such model behavior is often beguiling,

we must be prepared to detect and diagnose it—via

analysis of model output and simulation experiments

(Grimm et al. 2005)—to ensure that the output is

indeed realistic and to fully understand the reasons for

our results.

Acclimation and Adaptation

Acclimation refers to the biochemical, morpholog-

ical, and behavioral ways an organism responds to

reoccurring changes in its environment. Acclimation

responses are usually short term and rapid and involve

the expression of phenotypic plasticity (see Scheiner

1993). If the response results in genotype changes, then

adaptation has occurred. The need to include acclima-

tion and adaptation is not unique to end-to-end models;

it arises from the general problem of how to model

responses to changing environmental conditions.

Phytoplankton and zooplankton have relatively rapid

turnover rates, so that the typical 50–100-year

simulations needed for HTL organisms could include

evolutionary adaptation on the part of plankton

(Fussmann et al. 2003; Yoshida et al. 2003). Large-

scale changes in plankton functional type dominance is

possible. High-trophic-level organisms can also exhibit

adaptive responses to selective pressures from harvest

and global climate change within 50–100-year simu-

lations (Jørgensen et al. 2007), although distinguishing

between phenotypic (acclimation) and genetic respons-

es (adaptation) is difficult (Naish and Hard 2008). The
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trade-offs among species traits as environmental

conditions change can affect species’ spatial distribu-

tions and productivity, predator–prey dynamics, and

community structure (Litchman and Klausmeier 2008).

Examples of the incorporation of acclimation and

adaptation into models include photoacclimation by

phytoplankton in response to changing light and

nutrient environments (Geider et al. 1996; Flynn

2003; Pahlow 2005; Armstrong 2006); optimal accli-

mation of nutrient uptake by phytoplankton (Flynn

2003; Smith et al. 2009); the emergence of alternative

phenotypes in phytoplankton (Follows et al. 2007);

changes in the migration of fish (Mullon et al. 2002;

Huse and Ellingsen 2008); and changes in the age at

maturity of fish as a result of selective pressures and

inheritability (Jager 2001). Methods are being devel-

oped, such as structural dynamic models (see Jorgen-

sen 1997), which relate model structure and parameters

to recent environmental and other conditions (e.g.,

Bendoricchio and Jørgensen 1997; Solidoro et al.

2010).

Long-term simulations under potentially highly

variable environmental conditions and the diverse

mix of organisms in end-to-end models will heighten

the need for mechanistic representations of acclimation

and adaptation. This is an active area of research, and

the examples cited above (and others) should provide a

basis for the eventual inclusion of acclimation and

adaptation into end-to-end models. The challenge will

be to avoid unsupportable and deleterious model

complexity.

Behavioral Movement

End-to-end models that include the juvenile and

adult stages of HTL organisms will need to deal with

behavioral movement. Movement based on physical

conditions has been investigated for a long time, often

as particle tracking. This approach has been used

extensively with the early life stages of fish (North et

al. 2009), the swimming abilities of which can be

simplified (i.e., vertical only) in favor of relying on

advective and dispersive transport to move the particles

around a spatial grid (Lett et al. 2009). Similar

approaches can be taken (with caution) to simulating

the transport of copepod stages (Speirs et al. 2006). As

we include the juvenile and adult stages of HTL

organisms, we must deal not only with movement

based on physical conditions but also significant

movement related to behavior. In contrast to the

movement of plankton, that of adult fish and other

HTL organisms (e.g., marine mammals) is poorly

approximated by treating them as passive particles.

Behavioral movement plays a strong role in many HTL

organisms and is a function of both environmental

factors and the state of the organism itself (Burrows

1994; Tyler and Rose 1994). Modeling behavioral

movement has involved a diverse set of approaches

(Giske et al. 1998) and is receiving increasing attention

(Sugden and Pennisi 2006). Several of the commonly

used approaches are fitness based (Railsback et al.

1999), kinesis (Humston et al. 2004), neural network

with genetic algorithm (Huse and Giske 1998), rule

based (Vabø and Nøttestad 1997; Roth et al. 2008),

random walk (Huse 2001; Zhang et al. 2007), and

event driven (Goodwin et al. 2006). There are also

approaches that relate algorithms to the optimality of

the overall spatial distribution (e.g., ideal free distribu-

tion; Kacelnik et al. 1992). At present, there are no

general guidelines as to which approach is appropriate

in certain situations or how the approaches relate to

each other within a general framework. Yet the choice

of a specific movement algorithm can affect the

predictions of fish growth and spatial distribution

(e.g., Wildhaber and Lamberson 2004). We recom-

mend that a group effort be made to examine the

methods of modeling behavioral movement. The

group’s charge would be to identify the approaches

that are available, indicate how they relate to each

other, and determine the conditions under which each

shows promise.

Software and Technology

End-to-end models require a substantial amount of

custom computer code, and an ‘‘off-the-shelf’’ end-to-

end model is neither realistic nor desirable. For large-

scale, complicated modeling, languages such as

FORTRAN and C are still preferred, mostly for

reasons of processing speed (Barnes and Hopkins

2003) and ease of coupling to existing model code. We

cannot declare a single programming language the best

for end-to-end models, but we do foresee continued

reliance on sequential languages. End-to-end models

will require extensive computer programming skills

into the foreseeable future. Common data standards

(including common units) and interfaces would make

sharing, exchanging, and testing model codes easier.

We anticipate new algorithms for one-way and two-

way coupling solutions, predator–prey interactions,

behavioral movement, and evolutionary adaptation, to

name a few. However, end-to-end models (and

individual-based models in general) are still very much

custom computer programs known and available only

to the model developers and perhaps some of their

collaborators. This creates challenges in comparing

results and sharing the lessons learned about algorithms

(Lorek and Sonnenschein 1999; Ropella et al. 2002).

As the building of end-to-end models is still in its

infancy, we have the opportunity to develop a
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community-based approach with open-source comput-

er code and rapid exchange of information. Data

standards, such as that of the Network Common Data

Form (NETCDF), would enable easy sharing of input

and output files. The community involvement in the

Regional Ocean Modeling System (ROMS) modeling

effort (Shchepetkin and McWilliams 2005) is a good

example of an open-source, community approach to

model development. If there is ever a time to establish

a common framework for end-to-end modeling, it is

now, when we are at the beginning of what we expect

to be a substantial effort in this area.

Solution Techniques: One-Way Linking or
Two-Way Coupling

The components or submodels of end-to-end models

can be solved by means of either one-way linking or

two-way coupling. Two-way coupling involves the

solution of all submodels simultaneously, thereby

allowing for dynamic feedbacks among them. Thus,

the hydrodynamic, LTL, and HTL submodels can

exchange information as the solution proceeds. Feed-

backs are critical for the accurate simulation of HTL

population dynamics because of the important role

played by density-dependent processes in those

dynamics (Rose et al. 2001). The simulated dynamics

of HTL organisms, in turn, affect the realism of the

dynamics of LTL organisms. Typically, fish consump-

tion (and thus growth) is determined from the available

zooplankton at that time step and then summed over

the HTL individuals and fed back into the LTL

submodel as zooplankton mortality (e.g., Travers et al.,

in press). In a tightly coupled system, fish consumption

affects the population dynamics of the zooplankton,

which then has a density-dependent effect on fish

growth. Density-dependent feedbacks, which occur

throughout the entire LTL–HTL system, impose

bounds on the population dynamics and enable

assessment of sustainable harvest levels of commer-

cially and recreationally important HTL organisms. It

is the compensatory density dependence in fish

populations that allows increased mortality from

harvesting to result in a stable population over time

and makes possible the evaluation of sustainable

harvest options (Rose and Cowan 2003).

One-way linking involves using the output of one

submodel as input to another submodel without

feedbacks. A common example is running the

hydrodynamic component and then using the stored

velocity, temperature, and other environmental fields to

drive the LTL model. In another type of one-way

coupling the output from one submodel is summarized

in terms of aggregate indicators and input into the other

submodels (e.g., Aydin et al. 2005). If the LTL

submodel is solved with the physical conditions

submodel but separately from the HTL submodel, the

consumption of zooplankton by fish has no effect on

the availability of zooplankton for other fish (i.e., the

crowding of fish has no effect on food availability).

The implicit assumption is that the ecological linkage is

also unidirectional.

There are trade-offs between the one-way and two-

way approaches. Computational issues arise with two-

way coupling because of the disaggregation and long

run times needed in end-to-end models. One viable

way of dealing with this is to use coarser spatial and

temporal scales in the HTL submodel than in the

physical and LTL submodels (Fulton et al. 2003b;

Travers et al. 2007). There may also be numerical

solution algorithms that partially alleviate the compu-

tational limitations (e.g., Walters et al. 1999). In a two-

way system, the mortality from fish consumption must

be fed back into the LTL submodel at the spatial and

temporal scales of that submodel. If one uses a coarser

spatial grid and longer time step for the HTL submodel,

there will be a disaggregation problem: how to relate

predation mortality on one scale to prey dynamics on

another. One-way linking reduces execution time and

avoids disaggregation issues as long as the next

submodel in the chain is at the same or coarser time

and spatial scales (it is easier to aggregate going up the

food chain than to disaggregate going down it), but at

the cost of not allowing feedbacks. Possible feedbacks

that can be too important to ignore relate not only to the

density-dependent responses of HTL organisms (Rose

et al. 2001) but also to the interaction between

biological and physical processes. For example, biota

can affect sea ice dynamics (e.g., Leck et al. 2004) and

water temperatures (e.g., Marzeion et al. 2005). If we

assume one-way linkages, we have to be very sure not

only that the linkage is really one-way but that it will

remain one-way under all plausible simulation scenar-

ios, including climate change. This seems unlikely as a

general rule, but it may be the case in specific

situations. One can force the feedbacks (e.g., reduce

growth rates according to the fish biomass in the same

spatial area), but externally defined feedbacks are often

difficult to parameterize and can be a major driver of

model dynamics. It is usually easier to formulate and

justify feedbacks that emerge from model processes

and local considerations than ones that are simply

imposed (e.g., Rose et al. 2001).

An area worthy of exploration is coupling that is

intermediate between strictly one-way and two-way

coupling. Data assimilation techniques (Robinson and

Lermusiaux 2002) may be useful in linking LTL and

HTL submodels. In some situations they may permit

existing models to be used without major reparameter-
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ization (e.g., one can still use the closure mortality term

in NPZ models). The assimilation method would

enable some correcting of the two coupled submodels

during their simultaneous solution (Libralato and

Solidoro 2010). Data assimilation may also allow

communication between submodels at key points in

time while allowing them to be run in one-way mode at

others. The issue of solution techniques depends on the

specific situation at hand, but in general it is a major

unresolved problem in end-to-end modeling.

Other issues related to solving end-to-end models are

the need for long-term simulations and the complica-

tions arising from the representation of local interac-

tions, such as predator–prey encounters. Fish and other

HTL organisms have complex life cycles that require

multiple generations for changes in environmental and

biological conditions to be fully expressed at the

population and community levels. This translates into

long spin-up times and decadal or longer simulations,

especially if long-lived species (e.g., predatory fish and

marine mammals) are included. Both HTL and LTL

submodels require physical representations on relative-

ly fine scales in order to capture the important spatial

and temporal dynamics. For numerical reasons, the

super-individual approach (Scheffer et al. 1995) is

often used in models of HTL organisms that couple to

LTL models. Each such super-individual is worth some

number of identical individuals, which decreases

through time via mortality processes. The activities

(e.g., feeding) and abundance of the super-individuals

are scaled up to the population level by adjusting them

by their population worths (i.e., how many other

identical individuals they represent). Using super-

individuals addresses the problems of representing

the variability within large populations (billions of fish

in real populations) without representing every indi-

vidual and maintaining fixed-size arrays in the

computer program. However, super-individuals should

be used carefully to avoid introducing unwanted

numerical artifacts into the solutions (Parry and Evans

2008). Predator–prey interactions between HTL organ-

isms and LTL groups usually involve the meshing of

Lagrangian and Eulerian representations (Bian 2003;

Goodwin et al. 2006). Interactions between HTL

organisms (e.g., competition for food and predator–

prey) introduce issues as to their spatial scale and how

to maintain mass balance while super-individuals eat a

diverse set of prey, including other super-individuals

(e.g., McDermot and Rose 1999; Shin and Cury 2001).

Model Confidence and Forecasting

End-to-end models involve a very diverse set of

calculations that need calibration and validation to

enable one to judge a model’s ‘‘skill’’ and how much

confidence to place in it. The calibration and validation

of hydrodynamics and LTL dynamics (especially in

NPZ versions) differ from those usually done with

HTL models. As with any modeling effort, calibration,

validation, and measures of model skill depend on the

questions to be addressed and the quantity and quality

of the available data (Stow et al. 2009). In general,

partial skill assessment can be achieved with the

hydrodynamics component by using relatively short-

term, spatially detailed measurements of the physical

conditions. Evaluation of some phenomena (e.g., the

physical responses to the El Ni~no–Southern Oscilla-

tion) requires long-term and broader-scale measure-

ments. The LTL component (especially as regards

mesozooplankton) is more challenging, as the temporal

and spatial patchiness in species’ distributions and their

multiple life stages make synoptic and comprehensive

monitoring more difficult. Finally, the complex life

cycles and longevity of HTL organisms have always

presented an enormous challenge to skill assessment

for fish population models (Schnute and Richards

2001), especially when those models provide the

foundation for fisheries stock assessment and manage-

ment decisions (Hilborn and Walters 2001). Long-

standing issues with calibration and validation carry

forward and will be amplified when fish and other HTL

organisms are imbedded in end-to-end models. Even if

sufficient data are available (which they never are),

simply getting the model to match the spatial and

temporal patterns in physical conditions, nutrients, and

HTL organisms will not be sufficient for some

applications. Different sets of assumptions and param-

eter values will probably generate reasonable patterns

within the resolution of the available data, and the

particular assumptions and parameter values can

greatly affect the predicted dynamics under new

conditions. The diversity of information needed for

the calibration and validation of end-to-end models

also has implications for how data should be collected

(e.g., common currency; sampling locations and

frequency; synoptic measurements) to facilitate mod-

el–data comparisons.

While end-to-end modeling is developing at encour-

aging speed, we urge restraint in using end-to-end

models in a true forecasting mode (Clark et al. 2001)

until we gain more experience regarding their perfor-

mance. In the near term, end-to-end modeling has

many potential applications in strategic scenario

analysis, pushing the envelope of modeling, and

identifying data needs for future analyses. End-to-end

models may appear to be an ideal way to meet the need

for ecosystem-based approaches, but we should resist

the temptation of using them to make forecasts for

management until their performance and robustness are
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adequately tested. We need to develop more end-to-end

models to work through the algorithms, identify the

critical knowledge gaps, and evaluate model perfor-

mance with different test cases. We believe that end-to-

end models will eventually reach the point at which

they can be used not only for scenario analysis but also

for direct management applications. At present,

however, there is a great deal of work to be done

before they can be used in a truly predictive mode.

Fisheries management has become extremely contro-

versial (National Research Council 2002), and allowing

end-to-end models to be prematurely pushed (or

pulled) into that arena could hinder further model

development. Certainly, end-to-end modeling can and

should be used on a case-specific basis to inform

management, particularly about the possible outcomes

of long-term strategies. This is all the more so because

there are often large uncertainties associated with the

models currently being used, especially those involving

long-term responses to alternative scenarios. But

looking to the future, the need to forecast should be a

major criterion guiding end-to-end model development.

True Interdisciplinary Efforts

End-to-end modeling will further challenge our

ability to forge true interdisciplinary research teams.

There are many multidisciplinary efforts under way in

marine ecosystem modeling. We now need to move

even further—from multidisciplinary to truly interdis-

ciplinary efforts. We view the difference between

multidisciplinary and interdisciplinary in terms of the

degree of communication and feedback that occurs

between the various research groups. A group of

people working on the same problem but in a quasi-

independent manner with periodic meetings to report

on progress may be considered multidisciplinary but

not truly interdisciplinary. Interdisciplinary research is

characterized by groups that work together closely,

with the constant exchange of information and

adjustments to plans in response to the needs of the

other groups.

The interdisciplinary challenge is not trivial. We

must recognize that end-to-end modeling is as much a

people challenge as a technical one. It requires

respecting and understanding others’ perspectives and

approaches and involves communicating information

in a form that is understandable by colleagues who

speak the languages of other disciplines. At times, it

will require trusting others’ abilities without fully

understanding what they are saying. The issues of

communication and trust can be as challenging as

ensuring that all of the needed disciplines are

represented on the team.

End-to-end modeling will require the involvement of

a wide variety of disciplines (e.g., hydrodynamics, LTL

organisms, climate, fisheries, community ecology,

economics, sociology, anthropology, etc.), which will

challenge the classical research models. Involvement of

a wide variety of disciplines will present a challenge to

funding agencies as to how to evaluate proposals as

well as to institutions taking the ‘‘silo’’ approach of

grouping like disciplines together and adhering to the

idea that credit is diluted when people from different

organizations are involved. End-to-end modeling will

be an excellent case study of interdisciplinary research

and collaboration among groups comprised of disci-

plines with different research traditions.

Concluding Remarks

The above comments are presented in the hope that

they will facilitate progress in the conceptualization

and development of end-to-end models of marine

ecosystems. Not all of the issues noted will be

important in every situation, and our list of issues is

not comprehensive. While the tasks ahead are formi-

dable, they are feasible and many are project critical.

At present, several research groups are developing

large-scale end-to-end models. We envision more such

groups getting involved and development activities

proceeding in parallel, with close collaboration among

the groups. The immediate next step is exploratory.

Most likely, the various research groups will

continue their development of end-to-end models

largely adhering to their own philosophies, structures,

and algorithms. We are in the proof-of-concept phase

to show that such models can be developed and

implemented and in a learning phase about the solution

techniques and algorithm development. In due course,

a joining of forces that brings the experiences of the

groups together will lead to the formulation of the next

generation of end-to-end models. While the modeling

community will grow and become more complex, we

advocate a unified comparative analysis involving

model intercomparisons (e.g., models applied to

common systems). Early agreement on common-

language issues would facilitate communication among

the groups. We are at the beginning of what we think

will be a growing and long-term effort toward the

development and application of end-to-end modeling.

We are being presented with a unique opportunity to

set up a community-based effort. We urge anyone

interested to get involved in what appears to be an

exciting scientific, collaborative, and computational

journey.
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