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ABSTRACT
Some types of plumage color are difficult to characterize spectrophotometrically because the properties of the
reflected light change with viewing geometry (i.e. the relative positions of the light source and the observer, and the
orientation of the feather). This is the case for the noniridescent plumage coloration of the Swallow Tanager (Tersina
viridis), which seems to change from a human perspective as the angle between the light source and the observer
varies. In this study, we measured plumage reflectance with different angles of illumination and/or observation, and
used avian visual models to evaluate the change in sexual dichromatism and conspicuousness with viewing geometry
from a bird’s perspective. We also calculated different color parameters to assess how these changed with viewing
conditions. Sexual dichromatism showed large changes, with its maximum coinciding with the angle combination
between illuminant and observer that produced both the highest conspicuousness for males and the highest crypsis
for females. The conspicuousness of males also varied with viewing geometry, and was consistently less when viewed
by the visual system of a potential avian predator (VS) than by that of a conspecific (UVS). The change in perceived
coloration was mainly related to large variation in hue and chroma in the plumage of males as the relative angle
between the illumination and observation probes changed. Our results show that viewing geometry can alter color
perception, even for noniridescent plumage coloration. Therefore, the relative position of the light source and the
observer should be considered in studies of avian visual communication, particularly for species with plumage
coloration similar to that of Swallow Tanagers.

Keywords: plumage coloration, sexual dichromatism, conspicuousness, viewing geometry, Swallow Tanager,
Tersina viridis, double scattering

La geometrı́a de visualización afecta el dicromatismo sexual y la conspicuidad de la coloración del
plumaje no iridiscente de Tersina viridis

RESUMEN
Algunos tipos de colores del plumaje son difı́ciles de caracterizar espectrofotometricamente debido a que las
propiedades de la luz que reflejada varı́an con la geometrı́a de visualización (es decir, la posición relativa de la fuente
lumı́nica, el observador y la pluma). Este es el caso de la coloración no-iridiscente de la Tersina viridis, que parece
cambiar desde la perspectiva humana al modificarse el ángulo conformado entre el observador y la fuente de luz. En
este trabajo medimos la reflectancia del plumaje con diferentes ángulos de iluminación y/o observación y empleamos
modelos visuales avianos para evaluar el cambio en dicromatismo sexual y conspicuidad. También calculamos
parámetros descriptores de la coloración para determinar cómo cambian éstos en función de la geometrı́a de
visualización. El dicromatismo sexual mostró una amplia variación, siendo máximo con la combinación de ángulos
entre iluminante y observador que también produjo el máximo de conspicuidad en los machos y el máximo de cripsis
en las hembras. La conspicuidad de los machos también varió con la geometrı́a de visualización y además fue
consistentemente menor para sistemas visuales avianos menos sensibles al UV (como los de los máximos potenciales
predadores de esta especie) que para sus conspecı́ficos, que serı́an más sensibles a longitudes de onda del UV. El
cambio percibido en la coloración estuvo principalmente relacionado a una gran variación en el tono y la saturación en
el plumaje de los machos al cambiar el ángulo conformado entre la fuente lumı́nica y el observador. Nuestros
resultados muestran que la geometrı́a de visualización puede alterar la percepción del color, aún en plumajes no-
iridiscentes. Por lo tanto, es importante considerar la posición relativa de la fuente de luz y el observador en estudios
de comunicación visual en aves, particularmente en especies con coloración del plumaje como la de la Tersina viridis.

Palabras clave: coloración del plumaje, dicromatismo sexual, conspicuidad, geometrı́a visual, Tersina viridis,
dispersión doble
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INTRODUCTION

Plumage coloration patterns in birds are the subject of

intense study because of their roles in sexual selection and

detection by potential predators (Dunn et al. 2015). Avian

visual capabilities differ from those of humans as birds are

able to see ultraviolet (UV) colors, to which humans are

blind, and have a higher color discriminatory capacity. This

is the result of the presence of a fourth cone in their retinas

that is sensitive to UV light and a system of oil droplets

associated with their photoreceptors (Bowmaker et al.

1997, Cuthill et al. 2000). To address the limitations of

human vision–based measurements, light reflectance has

been extensively used to objectively describe plumage

coloration and its variation (Bennett et al. 1994, Mont-

gomerie 2006). Moreover, avian visual models (Vorobyev

and Osorio 1998, Endler and Mielke 2005, Stoddard and

Prum 2008) have been increasingly applied to describe

color reflectance as perceived by birds (Eaton 2005,

Stoddard and Prum 2008, Burns and Shultz 2012).

Some plumage colors are difficult to quantify, even with

these broadly employed spectrophotometric methods,

because they vary with viewing geometry (i.e. the position

of the observer relative to the light source; Osorio and

Ham 2002, Meadows et al. 2011). This is true for iridescent

coloration, such as that observed in hummingbirds, the tail

of male Indian Peafowl (Pavo cristatus), and the neck of

some pigeons, for example, which varies in perceived hue

as the illuminating and/or observation angles change in
relation to the orientation of the feather (Prum 2006). To

quantify variation in iridescent plumage that is biologically

meaningful thus requires different measurement tech-

niques (Osorio and Ham 2002, Meadows et al. 2011, Van

Wijk et al. 2016). Most noniridescent structural feather

colors show little or no variation in hue with viewing

geometry under omnidirectional illumination conditions

(Prum 2006); this is because light is reflected from the

isotropic internal keratin structure of the feather in all

directions equally (Saranathan et al. 2012). However, a few

structurally produced and noniridescent feather colors do

show considerable hue variation when the observation

angle changes relative to the light source; this phenome-

non is termed diffuse coloration (Osorio and Ham 2002)

and is poorly understood.

The plumage of the Swallow Tanager (Tersina viridis)

affords an excellent study system for understanding

structurally produced noniridescent coloration that shows

considerable change with viewing geometry, even under

natural illumination, at least from the human visual

perspective. This species exhibits high sexual dichroma-

tism, with males having blue plumage and females green,

although males have an unusual pattern of reflectance with

a double peak (one main peak in green wavelengths and a

secondary peak located in the UV range; Barreira et al.

2008). Schaefer (1953:404) described the male Swallow

Tanager as ‘‘... nearly entire body turquoise blue, if seen

against the light in bright sunshine, but changing to

emerald green when seen with the light’’ (Appendix Figure

5). The observed color change of male Swallow Tanagers is

not equivalent to iridescence because it does not depend

on the orientation of the feather in relation to the observer

or the light source (Prum 2006), but rather the angle

between the two. This phenomenon is purportedly the

result of double scattering within the internal keratin

nanostructure of feather barbs (Noh et al. 2010, Sarana-

than et al. 2012). Double scattering has been described by

Saranathan et al. (2012) in a wide range of species with

structurally based plumage coloration, including non-

passerines (Coraciiformes and Psittaciformes), many pas-

serine families (Pittidae, Contingidae, Pipridae,

Paradisaeidae, Irenidae, and Fringillidae), and many genera

within Thraupidae (Tersina, Dacnis, Tangara, and Thrau-

pis; Appendix Figure 6).

The males of some species with iridescent plumage can

increase the visibility of their displays by selecting specific

viewing geometry and lighting conditions when conduct-

ing their sexual displays (Dakin and Montgomerie 2009,

Sicsú et al. 2013), which can greatly affect their mating

success (Dakin and Montgomerie 2013). Evidence suggests

that individual birds can increase or decrease their

exposure to others by displaying under specific viewing

conditions (Uy and Endler 2004, Dakin and Montgomerie

2009, 2013, Sicsú et al. 2013). Despite the diverse set of

species in which double scattering has been registered by

analysis of their plumage reflectance properties and

production mechanisms (Osorio and Ham 2002, Noh et

al. 2010, Saranathan et al. 2012), the effect of viewing

geometry on their visibility to predators or conspecifics, to

the best of our knowledge, has never been assessed. Here,

we hypothesize that viewing geometry will affect both the
sexual dichromatism and the conspicuousness of the

Swallow Tanager, and we speculate as to the biological

significance of this in the wild. We employ standardized,

objective, and quantitative techniques of measurement to

assess how these 2 factors vary from an avian perspective.

METHODS

We conducted this study using museum skins of the

Swallow Tanager deposited at the Museo Argentino de

Ciencias Naturales ‘‘Bernardino Rivadavia.’’ We only

employed specimens in an excellent state of preservation

as determined by close visual examination, with no signs of

color fading or preparation defects (i.e. plumage was not

stained, feathers were not evidently missing, and color did

not looked degraded), and with complete information on

sex, collection year, and collection locality. In total, we

examined 15 adult males and 11 adult females of the
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subspecies Tersina viridis viridis (Appendix Table 2).

Subspecific differences in plumage color have not been

reported for males, but females of the race T. v. grisescens

have been described as grayer than females of the

nominate subspecies (Hilty 2011). We specifically excluded

from the study individuals with mixed green and blue

plumage coloration typical of juvenile Swallow Tanagers

(Schaefer 1953).

Reflectance Spectrophotometry
We measured plumage reflectance spectra with an Ocean

Optics USB2000 spectrophotometer with a PX-2 pulsed

xenon light source (with an emission range from 220 to

750 nm) calibrated against a WS-1 diffuse reflectance

standard (Ocean Optics, Dunedin, Florida, USA) as a white

standard and with the light source off (permitting no

external light to enter) as a dark standard. The spectro-

photometer resolution was 0.35 nm, and each spectrum

was the average of 10 readings with an integration time of

100 msec. We used a boxcar smoothing function of 10.

We used 2 different probes, 1 connected to the light

source for illuminating the plumage and 1 connected to

the spectrophotometer to collect the reflectance data. We

constructed 2 probe holders of epoxy resin with several

probe entrances at fixed angles, and covered them (both

internally and externally) with black matte paint to avoid

light reflection within the probe holder. This allowed us to

collect reflectance spectra at a fixed distance from the

plumage surface, isolated from ambient light, and with 9

different angle combinations (Table 1, Figure 1). Structural

noniridescent plumage color hues depend on the observ-

er’s position relative to the light source and, to a much

lesser extent, on the orientation of the feather (Osorio and

Ham 2002, Noh et al. 2010); thus, we determined the angle

formed between the illumination and collection probes (a;
Table 1, Figure 1). This included angle combinations that

produced the same values of a but with different

observation and illumination angles (Table 1).We expected

less variation in color between angle combinations with

the same a values (e.g., 20a and 20b in Table 1) than

between those with different a values. We recalibrated the

equipment before measuring the plumage reflectance of

each individual and for each angle combination. The angle

combination that resulted in a ¼ 08 was obtained with a

single bifurcated probe that illuminated the plumage and

collected the reflected light simultaneously.

We measured reflectance spectra once from 4 plumage

patches (head, back, rump, and chest) on each sex and

then averaged measurements for each individual and a. We

selected these plumage patches because they appeared

homogeneously colored, were large enough to allow

accurate measurements, and were all blue in males and

all green in females. These 4 plumage patches showed

similar values for color descriptors for all angle combina-

tions (Appendix Figure 7), and have previously been

shown to have similar reflectance patterns (Barreira et al.

2008); therefore, we averaged them to obtain a single

reflectance spectrum per individual, representative of this

species’ overall blue and green coloration. We averaged the

reflectance data in 1 nm bins for both the sexual

dichromatism and conspicuousness analyses (see below).

Color descriptors. DS values, estimated from the

Vorobyev–Osorio avian visual model, are a measure of

color differences as would be perceived by a bird

(Vorobyev and Osorio 1998; see below) and are, therefore,

the most biologically meaningful descriptors of color

differences. However, these are not easy to interpret

relative to the specific aspects of plumage coloration that

determine such perceptual differences. Therefore, we also

compared traditional color descriptors (Montgomerie

TABLE 1. Observation and illumination angles, and the resulting
angle combination (a), used for color reflectance measurements
taken of the plumage of Swallow Tanagers.

Observation angle (b) Illumination angle (x) a (jb � xj)

258 258 08
258 458 208a

1358 1558 208b

258 708 458a

458 908 458b

258 908 658a

908 1558 658b

258 1158 908
258 1558 1308

FIGURE 1. Schematic representation of the setup used to
measure plumage reflectance spectra of Swallow Tanager
museum skins with different angle combinations. ‘‘I’’ represents
the orientation of the illuminant probe from which the plumage
was illuminated, and ‘‘x’’ is the angle formed between ‘‘I’’ and
the museum skin’s longitudinal axis. ‘‘O’’ represents the
observational direction from which the reflected light was
collected, and ‘‘b’’ is the angle formed between ‘‘O’’ and the
museum skin’s longitudinal axis. The angle formed between I
and O is represented by a.
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2006) between sexes for each of the angle combinations

employed. We estimated: (1) hue as the wavelength of

maximum reflectance (kRmax); (2) average brightness

(AvBr) as the sum of reflectance values over the entire

range of wavelengths divided by the number of datapoints

in the reflectance spectrum (RR300–700 nm / 1152); (3)

chroma, a measure of the color’s spectral saturation, as the

difference between the maximum and minimum reflec-

tance values divided by average brightness ((Rmax� Rmin) /

AvBr); and (4) UV chroma, an index of the proportion of

UV light reflected in relation to overall reflectance that

describes color variation within a range of wavelengths to

which humans are blind, as the ratio between the sum of

reflectance between 300 and 400 nm and the sum of

reflectance over the entire spectrum of wavelengths to

which birds are sensitive (RR300–400 nm / RR300–700 nm). We

estimated these 4 parameters for each plumage patch and

averaged them for each individual and a value.

Sexual dichromatism. To assess how sexual dichroma-

tism in this species varies with viewing geometry from an

avian perspective, we compared plumage coloration

between and within sexes for each angle combination

using the Vorobyev–Osorio color discrimination visual

model (Vorobyev and Osorio 1998), implemented in the

SPEC package (Hadfield 2004) for R 1.6.2 (R Core Team

2013). The Vorobyev–Osorio model allows the calculation

of DS, which is a measure of color difference as would be

perceived by a bird between 2 color points described by

their reflectance spectra, considering only the chromatic

component of color (i.e. independent of brightness, but

dependent on the shape of the reflectance spectra). DS is a

function of the sensitivities of the visual cones and their

relative abundance in the retina, the reflectance spectra,

the irradiance spectrum, and the transmission of the

ocular media (Vorobyev and Osorio 1998, Vorobyev et al.
1998). DS is measured in units of ‘‘just noticeable

difference’’ (jnd), with the discrimination threshold located

between 1.0 and 2.0 jnd depending on the intensity of the

illuminant (Eaton 2005, Burns and Shultz 2012). The

spectral sensitivities and abundances of the different visual

cones in the Swallow Tanager have not yet been described;

therefore, we used those of the Blue Tit (Cyanistes

caeruleus; Hart et al. 2000) as proxies in all analyses.

There are 2 major classes of avian visual system defined by

the spectral tuning of the most shortwave-sensitive single

cones (Ödeen et al. 2011). The Blue Tit has an ultraviolet-

sensitive (UVS) type of color vision system, which means

that the spectral sensitivity of its shortwave-sensitive single

cone is in the UV range (355–380 nm; Ödeen et al. 2011).

It is likely that the vision system of the Swallow Tanager

also is of the UVS avian color vision type because its close

relative, the Red-legged Honeycreeper (Cyanerpes cyaneus;

Barker et al. 2015), possesses UV-sensitive cones (Ödeen

and Håstad 2010). We used ocular media and cone ratio

data for the Blue Tit for our calculations of DS. We did not

include irradiance in our analysis, because if color

constancy correction mechanisms are accounted for when

estimating avian color discrimination, then ambient light

has a negligible effect on the results (Stoddard and Prum

2008, Delhey and Peters 2008).

Conspicuousness. To test for changes in plumage

conspicuousness with viewing geometry in the Swallow

Tanager, we calculated the DS between plumage color and

the reflectance spectrum of the canopy of deciduous forest

trees obtained from the ASTER spectral library of NASA

(http://speclib.jpl.nasa.gov; Baldridge et al. 2009) as a

representative of a plausible background habitat for this

species (Schaefer 1953); thus, the contrast between the

color of Swallow Tanagers’ plumage patches and the

surrounding vegetation as would be perceived by an avian

observer served as a proxy of color conspicuousness

(Håstad et al. 2005). We estimated DS as above using the

cone sensitivities of Blue Tits as representative of a UVS

type of visual system (such as that of most passerines;

Ödeen et al. 2011), and those of the Red Junglefowl (Gallus

gallus; Govardovskii and Zueva 1977, Partridge 1989,

Bowmaker et al. 1997) as representative of the violet-

sensitive (VS) type of color vision thought to be typical of

falconiiforms (falcons, hawks, and their allies; Ödeen and

Håstad 2013, Lind et al. 2013), the most likely avian

predators of Swallow Tanagers (Schaefer 1953).

Statistical Analyses
As our data for color descriptors did not meet the

assumption of normality, we performed Mann-Whitney

U-tests to compare the 4 color descriptors between sexes

for each angle combination.We performed paired t-tests to

evaluate differences between the DS values obtained as

measures of conspicuousness for UVS and VS birds for

each angle combination. We performed all statistical
analyses with SPSS 15.0 for Windows (SPSS, Chicago,

Illinois, USA). Reported values are expressed as means 6

SD.

RESULTS

Color Descriptors
Average brightness showed significant intersexual differ-

ences, with males reflecting more light than females for all

angle combinations (all U .�4.28, all P , 0.001; Figure 2,

Figure 3A) except a ¼ 1308 (P ¼ 0.11). We found no

difference between the sexes in hue at a ¼ 08 (P ¼ 0.12),

where peak reflectance was located in green wavelengths

for both sexes (Figure 2, Figure 3B), but we found

significant differences for all other angle combinations

(all P , 0.01). For males, peak reflectance shifted toward

blue–violet wavelengths with increasing a, while for

females, peak reflectance was located in green–yellow
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wavelengths for all angle combinations (Figure 2, Figure

3B). The chroma values for female plumage were

significantly greater than those for male plumage for a
ranging from 08 to 458, inclusive (all P , 0.002; Figure 3C),

but were not significantly different between the sexes for a
values between 658 and 908 (all P . 0.05). This is probably

due to a secondary reflectance peak in UV wavelengths for

male plumage when illumination and observation angles

were similar, while the secondary and main reflectance

peaks merged as a increased (Figure 2). Female chroma

was also significantly greater than male chroma at a¼ 1308

(P¼ 0.005), but this angle combination produced the least

saturated reflectance measurement for both sexes (Figure

2, Figure 3C). Finally, we found significant sexual

dichromatism in UV chroma for all a values (all P ,

0.001), with males reflecting a larger proportion of UV

light than females in all cases (Figure 2, Figure 3D).

Although male and female mean values varied at different

a, UV chroma values showed similar differences in

magnitude between the sexes for all angle combinations

(Figure 3D). Therefore, of the 4 color descriptors used

here, UV chroma was the most reliable for characterizing

intersexual differences in this species, independent of

viewing geometry.

Sexual Dichromatism

In all cases, except for the intrasexual comparisons of

plumage color obtained with a ¼ 1308, DS values were

above the 1 jnd discrimination threshold. This means that

the color differences both between and within sexes should

be perceivable by UVS birds under good lighting

conditions (Figure 4A, 4B). However, the intersexual

comparisons produced values of DS that were between

2.8 and 5.1 times higher than the intrasexual comparisons

FIGURE 2. Mean reflectance spectra (6 SE) of male and female Swallow Tanager plumages for 9 different angle combinations (a,
defined in Figure 1). Each spectrum is the result of averaging the plumage reflectance of the head, chest, back, and rump. For the a
values of 208, 458, and 658, we had 2 different combinations of illuminating and collecting angles (indicated with the suffixes a and b;
see Table 1), and both reflectance spectra are shown for each sex in the same panel.
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at each a, with DS increasing with a to a maximum at a¼
658, and then decreasing to a minimum at a¼ 1308 (Figure

4A). In comparison, the values of DS for intrasexual

comparisons were fairly constant for the different a (Figure

4B). As expected, the DS values obtained for measure-

ments made with equal values of a (208a and 208b, 458a and

458b, and 658a and 658b; Table 1) were similar.

Conspicuousness

We obtained values of DS larger than 1 jnd for all

comparisons of plumage coloration with the foliage of

deciduous trees at all angles for both males and females,

and for both UVS and VS visual systems (Figure 4C, 4D).

However, the contrast between the plumage coloration of

males and the background foliage varied markedly for the

FIGURE 3. Mean scores (6 SE) for plumage color descriptors for male and female Swallow Tanagers for 9 different angle
combinations (a, defined in Figure 1). For the a values of 208, 458, and 658, we had 2 different combinations of illuminating and
collecting angles (indicated with the suffixes a and b; see Table 1). (A) Average brightness (AvBr), estimated as the average percent
reflectance across all wavelengths measured; (B) Hue, estimated as the wavelength of maximum reflectance; (C) Chroma, a measure
of color saturation; and (D) UV Chroma, the proportion of UV light reflected in relation to total reflectance. NS indicates
nonsignificant intersexual differences.
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different a, being lowest when the light source and

observer were oriented in the same direction (a ¼ 08)

and highest when they formed an angle of 658. The

conspicuousness of females against the background was

similar to that of males at low angles between the light

source and the observer (a¼08 and a¼208), but decreased

slightly at higher values of a. Male plumage was less

conspicuous to the VS visual system for all angle

combinations, with all contrasts being significant (all t14
. 4.4, all P , 0.001) except those for both a¼658 (both t14
,�1.4, both P . 0.20). The difference in conspicuousness

of males between the 2 visual systems (between 0.56 and

0.67 jnd; Figure 4C, 4D) was larger when the illumination

and observation angles were similar (a ¼ 08 and a ¼ 208).

According to this result, the plumage of males was 23%–

38% more conspicuous to the eyes of conspecifics than to

FIGURE 4. Mean DS (a measure of color difference as would be perceived by a bird following the Vorobyev–Osorio avian visual
model; Vorobyev and Osorio 1998) values (6 SE) in the Swallow Tanager obtained for different angle combinations (a, defined in
Figure 1). The dotted line shows the 1 jnd (just noticeable difference) color discrimination threshold. (A) Levels of sexual
dichromatism measured as DS between the plumage coloration of each sex; (B) levels of intrasexual variation in plumage color
measured as DS, by sex; (C) conspicuousness, measured as DS between plumage coloration and the reflectance spectrum of the
canopy of deciduous trees as seen by a UVS (ultraviolet-sensitive, the color vision system of a conspecific) bird, by sex; and (D)
conspicuousness, measured as DS between plumage coloration and the reflectance spectrum of the canopy of deciduous trees as
seen by a VS (violet-sensitive, the color vision system of a potential avian predator) bird, by sex.
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the eyes of potential avian predators for these angle

combinations. The value of this percentage difference of

DS between visual systems cannot be interpreted as being

the same as the Vorovyev–Osorio visual model’s perceptual

threshold of 1 jnd because that threshold applies to the

comparison of 2 colors within a given visual system.

However, similar DS values have been considered biolog-

ically significant in past studies (Håstad et al. 2005).

The conspicuousness of females was similar across

visual systems, but significantly larger for the VS visual

system at a¼08 (t10¼�3.24, P¼0.005; Figure 4C, 4D), and

significantly and slightly larger for the UVS visual system

for all other values of a (all t10 . 3.21, all P , 0.009; Figure

4C, 4D) except a ¼ 208a (t10 ¼�0.88, P ¼ 0.40).

DISCUSSION

Using objective methods of color quantification, we found

marked variation in the sexual dichromatism and conspic-

uousness of male Swallow Tanagers in relation to viewing

geometry. These findings were related to changes in the

shape of reflectance spectra due to the relative positions of

the light source and the observer, resulting in fluctuations

in hue and chroma in male plumage. Notably, the angle

combination that produced the maximum sexual dichro-
matism was also that which produced the highest male

conspicuousness but the highest female crypsis. Plumage

coloration is often thought to evolve in response to

opposing selective pressures, with sexual selection acting

more strongly on males to produce more conspicuous

colors, but natural selection favoring crypsis to reduce

predation risk (Burns 1998, Gomez and Théry 2007, Olsen

et al. 2010, Dunn et al. 2015). However, the pattern of color

change with viewing geometry that we found in male

Swallow Tanagers suggests that the same plumage

coloration can increase and/or decrease exposure accord-

ing to viewing conditions, which individuals could

optimize by selecting specific lighting environments

(Dakin and Montgomerie 2009, Sicsú et al. 2013).

Burns and Shultz (2012) found that the blue-green

tanager clade (which includes the Swallow Tanager) was

the most sexually dichromatic within the tanagers.

However, in their study, the authors used only a single

probe that collected light and illuminated plumage

simultaneously (equivalent to our a ¼ 08, where we

obtained one of the smallest values of sexual dichroma-

tism, with both sexes reflecting maximally at green

wavelengths). We assert that sexual dichromatism in this

species is probably much higher than previously noted

because we found that male plumage reflected maximally

within the blue range, with a single reflectance peak at a¼
658, while females had a green hue. Plumage coloration

with high reflectance of short wavelengths is the most

efficient for increasing conspicuousness within canopy

birds, while green plumage coloration is optimal for

maximizing crypsis (Gomez and Théry 2004).

The change in conspicuousness of males with viewing

geometry followed the same pattern as sexual dichroma-

tism, with minor contrast between males and the

background obtained for small angles between the viewer

and light source and maximum contrast at a 658 angle. Our

results imply that male plumage will be less conspicuous to

the eyes of avian predators, which have a VS type of color

vision, than to conspecifics, which have a UVS type of

color vision, for almost all of the angle combinations

measured. This is consistent with the results of Håstad et

al. (2005), who found similar differences in conspicuous-

ness between visual systems for the coloration of several

passerine species; this is probably related to the high UV

reflectance in the spectra of males. Concordantly with our

results, Lind and Delhey (2015) determined that the

plumage coloration of the Swallow Tanager (among other

species) is better suited to detection by the UVS type of

vision, producing a higher contrast gain compared with the

VS type of color vision, although this study did not

investigate color variation with viewing geometry.

The values of DS that we obtained were almost always

higher than the 1 jnd threshold of visual discrimination for

optimal lighting conditions (and also higher than the more

conservative value of 2 jnd), even for intrasexual compar-

isons of plumage coloration. This implies that birds are

capable of discerning color differences even among
individuals of the same sex. Previous studies also have

obtained high values of DS within groups, suggesting that

color discrimination among individuals might be more

pervasive than previously thought (Delhey and Peters

2008, Cornuault et al. 2015). Sexually selected traits are

expected to show greater interindividual variation, as they

can serve to assess individual quality; for instance, Delhey

and Peters (2008) determined that plumage coloration was

more variable in plumage patches suggested to have a

sexual signaling function and/or condition-dependent

coloration. Past studies that have assessed the extent of

color differences between the sexes or among species

usually have only estimated the average DS between the

groups of interest and have not quantified variation in

color perception within these groups (Eaton 2005, Burns

and Schultz 2012). Thus, intragroup variation has been

largely overlooked in many studies employing avian visual

models, despite the fact that sexual dichromatism is

frequently considered an indicator of sexual selection

(but see Delhey and Peters 2008). Additionally, differences

in coloration among females can be as high as those

among males, suggesting that individual assessment

through plumage color can be important in both sexes

(Delhey and Peters 2008).

Sun location plays a key role in determining courtship

rate and body orientation in male birds with iridescent
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coloration (Dakin and Montgomerie 2009, Sicsú et al.

2013), which affects their reproductive success (Dakin and

Montgomerie 2013). Observations of Swallow Tanager

reproductive behavior suggest an important role of visual

communication and the selection of lighting conditions by

displaying individuals (Schaefer 1953). Swallow Tanagers

inhabit mainly the canopy and open areas and are active

mostly during early morning and afternoon, which

indicates that they are seemingly sensitive to changes in

light intensity (Schaefer 1953). Males select high branches

to perform complex sexual displays during mate selection,

and plumage color seems to play a role in both intra- and

intersexual interactions (Schaefer 1953). Our findings

suggest that striking variation in sexual dichromatism

and conspicuousness likely affects displays and exposure to

potential avian predators in this species (and probably

others with the same double scattering phenomenon). We

can make specific predictions, for future researchers to

test, regarding the relative positions of a male Swallow

Tanager, the sun, and a third interacting individual in

situations in which increased or decreased conspicuous-

ness and sexual dichromatism will be beneficial. For

example, against dominantly green backgrounds, males

should prefer to position themselves between the light

source and the observer during sexual interactions (a
values of 658 to 908), but facing both the light source and

the observer when exposed to predators (a values from 08

to 208). Alternatively, this sort of plumage coloration could

simply be a by-product of the generation of structural

colors with specific hues that results in the production of a
secondary reflectance peak due to double scattering (Noh

et al. 2010, Saranathan et al. 2012). It is necessary to

perform behavioral tests on species showing this kind of

plumage coloration to discern between these 2 possibilities

(biological signaling function vs. a by-product of structural

color production mechanisms).

Few studies of avian coloration have considered

variation in color in noniridescent plumage coloration

resulting from changes in viewing geometry (Osorio and

Ham 2002, Santos et al. 2007). This is, to the best of our

knowledge, the first study to document a substantial

change with viewing geometry in sexual dichromatism and

conspicuousness in noniridescent plumage coloration

from an avian perspective. Overall, our results highlight

the need to consider viewing geometry when trying to gain

an understanding of the use of visual signals in avian

communication, particularly for plumage coloration such

as that found in the Swallow Tanager, otherwise sexual

dichromatism and conspicuousness may be over- or

underestimated. It is particularly important for researchers

studying the plumage coloration of species with described

double scattering to consider viewing geometry in order to

quantify plumage reflectance in a biologically meaningful

manner. For species for which this phenomenon has not

been described, but that possess structural coloration, a

visual inspection employing varying angles of observation

and illumination could provide an approximate idea of the

presence of a similar effect (Appendix Figures 5 and 6).

Unlike what occurs with iridescent colors, the position of

the feather relative to the observer and/or the light source

does not qualitatively change the results for the coloration

pattern described here. However, the use of a goniometer

to fix illuminant and observer angles (such as those

employed by studies of iridescent coloration) would help

to improve the repeatability and standardization of color

measurements across studies (Meadows et al. 2011, Van

Wijk et al. 2016). Appropriate color descriptions, together

with more knowledge about the visual context during the

occurrence of sexual displays or signaling in the Swallow

Tanager, will be crucial to understanding the functionality

of structural plumage coloration with double scattering.
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Gomez, D., and M. Théry (2007). Simultaneous crypsis and
conspicuousness in color patterns: Comparative analysis of a
Neotropical rainforest bird community. American Naturalist
169:S42–S61.

Govardovskii, V. I., and L. Zueva (1977). Visual pigments of
chicken and pigeon. Vision Research 17:537–543.

Hadfield J. (2004). SPEC: Processing spectral data. https://sites.
google.com/site/avicolprogram/useful-links

Hart, N. S., J. C. Partridge, I. C. Cuthill, and A. T. D. Bennett (2000).
Visual pigments, oil droplets, ocular media and cone
photoreceptor distribution in two species of passerine bird:
The Blue Tit (Parus caeruleus L.) and the Blackbird (Turdus
merula L.). Journal of Comparative Physiology A 186:375–387.
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APPENDIX TABLE 2. Detailed list of the study skins of Swallow Tanagers (Tersina viridis) deposited in the ornithology collection of
the Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’ employed for color reflectance measurements.

Sex Collection code Collection date Collection locality

Male MACN-Or 33286 September 25, 1951 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Male MACN-Or 43432 September 18, 1960 Arroyo Urugua-ı́ km 30, Misiones, Argentina
Male MACN-Or 34542 October 31, 1953 Tobuna, Dpto. Frontera, Misiones, Argentina
Male MACN-Or 33284 September 12, 1951 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Male MACN-Or 37272 November 25, 1954 Refugio Piñalitos, Dpto. Frontera, Misiones, Argentina
Male MACN-Or 39719 October 2, 1959 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Male MACN-Or 37269 October 3, 1954 Arroyo Urugua-ı́ km 30, Misiones, Argentina
Male MACN-Or 37268 October 3, 1954 Arroyo Urugua-ı́ km 30, Misiones, Argentina
Male MACN-Or 43041 November 14, 1966 Floresta da Tijuca, Rio de Janeiro, Brazil
Male MACN-Or 45732 December 18, 1958 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Male MACN-Or 3947a October 8, 1933 Corpus, Misiones, Argentina
Male MACN-Or-37271 November 25, 1954 Refugio Piñalitos, Dpto. Frontera, Misiones, Argentina
Male MACN-Or 37267 September 8, 1954 Arroyo Urugua-ı́ km 30, Misiones, Argentina
Male MACN-Or 71117 November 29, 2007 PN Iguazú, Misiones, Argentina
Male MACN-Or 71104 November 27, 2007 PN Iguazú, Misiones, Argentina
Female MACN-Or 39720 October 2, 1959 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Female MACN-Or 37270 October 13, 1954 Arroyo Urugua-ı́ km30, Misiones, Argentina
Female MACN-Or 39789 December 28, 1958 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Female MACN-Or 34539 October 25, 1953 Tobuna, Dpto. Frontera, Misiones, Argentina
Female MACN-Or 33909 September 17, 1952 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Female MACN-Or 39792 1959 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Female MACN-Or 39791 1959 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Female MACN-Or 39790 1959 Arroyo Urugua-ı́ km 10, Misiones, Argentina
Female MACN-Or 47336 December 12, 1938 Capitán Meza, Alto Paraná, Paraguay
Female MACN-Or 3851a May 1934 Santa Ana, Misiones, Argentina
Female MACN-Or 71104 November 27, 2007 PN Iguazú, Misiones, Argentina
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APPENDIX FIGURE 5. Images of female (A, B, E, F) and male (C, D, G, H) Swallow Tanager study skins taken under natural lighting
conditions (without flash). A–D were taken with the light source located in front of the camera, and E–H were taken with the light
source located behind the camera. Images A–B, C–D, E–F, and G–H show the same individual under the same lighting conditions but
in a different position, to illustrate that the perceived color change does not depend on feather orientation.
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APPENDIX FIGURE 6. Images of study skins of species of Thraupidae other than Swallow Tanagers with reported double scattering
(Saranathan et al. 2012), taken under natural lighting conditions (without flash). A–E were taken with the light source located in front
of the camera, and F–J were taken with the light source located behind the camera. A and F show Tangara ruficervix; B and G show
Tangara cyanicollis; C and H are of Thraupis episcopus; D and I are of Dacnis cayana; and E and J show Dacnis lineata.
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APPENDIX FIGURE 7. Average color descriptors (brightness, hue, chroma, and UV chroma) for each plumage patch (head, back,
rump, and chest) of Swallow Tanager study skins by sex for each angle combination measured (see Table 1).
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