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A

 

BSTRACT

 

Mating structures are of interest to a wide range of biologists because, in many taxa, mating
structures are incredibly diverse and range widely in elaboration even between closely re-
lated species. As a result of this diversity, mating structures have been useful in species
identification. Historically, the evolution of diverse mating structures has been attributed to
post-zygotic selection for pre-zygotic isolation to avoid production of hybrid offspring. More
recently, sexual selection has been proposed as an alternative explanation for the rapid di-
versification of mating structures. Mating structures could diversify between populations
through sexual selection if sexual selection acted differently on mating structures in differ-
ent populations. Eberhard (1985) wrote a comprehensive book explaining how sexual selec-
tion could result in the diversification of mating structures and providing examples to
support the hypothesis, but none of the examples were experimental tests of the hypothesis.
Since 1985, a few studies have experimentally tested this hypothesis. However, there have
been no empirical studies that connect intraspecific selection with interspecific diversifica-
tion. In this paper, I review the reproductive isolation and sexual selection hypotheses and
two recent experimental tests of the sexual selection hypothesis. Then, I provide a descrip-
tion of a system that may allow one to establish a connection between sexual selection on
mating structures within a species and diversification of mating structures between species.

Key Words: genitalia, diversification, sexual selection, 
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R

 

ESUMEN

 

Las estructuras de apareamiento son de interes de una amplia variedad de biólogos por que,
en muchos taxa, las estructuras de apareamiento son increiblemente diversas y se extiende
ampliamente en elaboración aun entre especies estechamente relacionadas. Como resultado
de esta diversidad, las estructuras de apareamiento han sido útiles en la identificación de es-
pecies. Históricamente, la evolución de las estructuras de apareamiento diversas ha sida
atribuida a la selección poscigótico para el aislamiento precigótico para evitar la producción
de descendientes híbridos. Más recientemente, la selección sexual ha sido propuesta como
una explicación alternativa para la diversificación rápida de las estructuras de aparea-
miento. Las estructuras de apareamiento puede diversificar entre poblaciones por medio de
la selección sexual si la selección sexual actua diferentement en las estructuras de aparea-
miento en poblaciones diferentes. Eberhard (1985) escribió un libro comprehensivo expli-
cando como la selección sexual puede resultar en la diversificación de las estructuras de
apareamiento y proveyendo ejemplares para apoyar su hipótesis, pero ninguno de los ejem-
plares fueron pruebas experimentales de la hipótesis. Desde 1985, unos pocos estudios han
probados experimentalmente esta hipótesis. No obstante, no han habido estudios empíricos
que relacionan la selección intraspecífica con la diversificación interspecífica. En este papel,
examino las hipótesis del aislamiento reproductivo y la selección sexual y dos pruebas expe-
rimentales recientes de la hipótesis de la selección sexual. Después, proveo una descripción
de un sistema que puede permitir establecer una conección entre la selección sexual de las
estructuras sexuales dentro de una especie y la diversificación de las estructuras de aparea-

 

miento entre especies.

 

Morphological structures involved in coupling,
and in transferring and receiving sperm have long
been of interest to taxonomists because of their
utility in distinguishing between species (e.g.,
Hubbell 1932; Kennedy 1919). These structures
(hereafter called “mating structures”) are also of
interest to evolutionary biologists for two reasons
(e.g., Alexander & Otte 1967; Arnqvist 1998; Eber-
hard 1985; Tatsuta & Akimoto 2000). First, they
are much more complex in appearance than would

seem necessary for mating. For example, in the
damselfly genus 

 

Argia

 

, male genitalia vary from
rather simple structures to extremely complex
structures (Fig. 1). It seems unlikely that the diffi-
culty of transferring sperm would differ enough
between species in this genus to account for the
differences in complexity in genitalia. Second,
mating structures show much more rapid diversi-
fication than structures that are not involved in
mating. This is again exemplified by the diversity
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of forms of genitalia within the genus, 

 

Argia

 

(Kennedy 1919; Fig. 1). Similar diversification oc-
curs in female structures that receive and store
sperm (e.g., grasshoppers: Slifer 1943; water strid-

ers, 

 

Gerris

 

: Andersen 1993; Fig. 2). Further, we
also see this diversification in other structures
that are involved in matings such as modified an-
tennae and legs that males use to grasp females

Fig. 1. Diversity of male genitalia in the damselfly genus Argia. Figure from Eberhard 1985, reprinted with per-
mission of author and courtesy of Harvard University Press.
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Fig. 2. Diversity of female structures that receive and store sperm in the water strider genus 

 

Gerris

 

. Drawings
from Andersen 1993, reprinted courtesy of the canadian Journal of Zoology.
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during copulation in some water strider species.
This diversification is seen across many taxonomic
groups (Eberhard 1985). Two main hypotheses
have been proposed to explain the diversification
of genitalia: the reproductive isolation hypothesis
and the sexual selection hypothesis.

 

Reproductive Isolation Hypothesis

 

Historically, diversification of mating structures
has been attributed to selection for prezygotic iso-
lating mechanisms that prevent hybridization. Ac-
cording to this “reproductive isolation” hypothesis
(a.k.a. “lock-and-key”), there is strong selection on
females to avoid mating with heterospecific males.
As a result, females evolve complicated reproduc-
tive structures that allow them to discriminate be-
tween conspecific and heterospecific males and to
avoid heterospecific fertilizations. The occurrence
of this process with each speciation event would re-
sult in a pattern of rapid diversification of genitalia
across closely related species.

The reproductive isolation hypothesis has two
main predictions. First, if the diversification and
elaboration of mating structures results from se-
lection for reproductive isolation, there should be
species-specific fits of male and female mating
structures. Second, there should be more diversi-
fication of mating structures in sympatry than in
allopatry. Certain systems are consistent with
these predictions (Eberhard 1985). However,
there are many systems for which we do not see a
species-specific fit between male and female mat-
ing structures; in these species, female structures
do not prevent intromission by males of other spe-
cies (Eberhard 1985; Shapiro & Porter 1989). This
finding alone is not sufficient to reject the repro-
ductive isolation hypothesis because it is possible
that (1) reproductive isolation is achieved not
through a mechanical fit but through a sensory fit
such that the male reproductive parts stimulate
females in a species-specific manner or (2) the
genitalia no longer serve as reproductive isolating
mechanisms because other mechanisms have
evolved (e.g., behavioral). 

Data from many taxa also do not support the
second prediction of the reproductive isolation hy-
pothesis. In several cases, rapid diversification of
mating structures appears to have occurred in al-
lopatry. There are patterns of extreme diversifica-
tion of mating structures of species that are
geographically isolated from any morphologically
similar species. For example, certain species of
the homopteran genus 

 

Oliarus

 

 appear to have
evolved separately on different islands of the Gal-
apagos (Fig. 3). The male intromittent organs of
species on different islands have diverged sub-
stantially (Eberhard 1985; Fennah 1967). In sum,
there are many cases of apparent rapid diversifi-
cation of mating structures that the reproductive
isolation hypothesis cannot explain.

 

Sexual Selection Hypothesis

 

An alternative to the reproductive isolation
hypothesis is that the diversification of mating
structures is a result of sexual selection. Sexual
selection results from differential access to mates
based on differences in phenotypic traits. How-
ever, in the last twenty years, it has become abun-
dantly clear that sexual selection does not end
once coupling has begun. Within the female re-
productive tract, there are battles between sperm
of different males and differential use of sperm by
females (Birkhead & Moller 1998; Eberhard
1996). Sexual selection could act on mating struc-
tures if differences in the shape or size of these
structures resulted in differential coupling and
fertilization success (Lloyd 1979; Short 1979).
The sexual selection hypothesis is that sexual se-
lection acting on mating structures differently in
different populations could result in diversifica-
tion of mating structures between populations.

There are three mechanisms by which sexual
selection can act, and all have been invoked in ex-
plaining the evolution of elaborate mating struc-
tures. First, sexual selection could act on mating
structures through mate choice. Male mating
structures may evolve through cryptic female
choice in which females preferentially use sperm
from males based on characteristics of the male
structures. Selection could also act on females, fa-
voring those that have structures that enable
them to be more selective amongst males.

Second, sexual selection could act on mating
structures through intrasexual competition. For
example, selection could act if certain character-
istics of male reproductive structures made them
better able to deliver sperm or remove or other-
wise compete with the sperm of other males.

Fig. 3. Male genitalia of species of the homopteran
genus Oliarus found on different islands of the Galapa-
gos. Figure from Eberhard 1985, reprinted with permis-
sion of author and courtesy of Harvard University
Press. Genitalia drawings from Fennah 1967, reprinted
courtesy of the California Academy of Sciences.
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Third, sexual selection could act on mating
structures through intersexual conflict over fertil-
ization. If male quality varies, then females
should be selected to choose sperm of high quality
males. Males should be selected to overcome the
female choice mechanisms and to manipulate fe-
male behavior to their advantage (Gavrilets et al.
2001; Holland & Rice 1999; Rice 1996) and selec-
tion should act on females to avoid this manipula-
tion (at least to some degree; Alexander et al.
1997; Cordero & Eberhard 2003) leading to an in-
tersexual arms race involving the mating struc-
tures of males and females.

Diversification of mating structures between
populations through sexual selection is most
likely to occur through female choice because fe-
male choice can act on arbitrary traits (Andersson
1994). Advances in the study of the evolution of
mating structures through sexual selection have
taken two forms: investigations of the form and
function of mating structures (e.g., Arnqvist 1998;
Arnqvist & Thornhill 1998; Eberhard 1992, 2001;
Eberhard & Pereira 1993; Fritz & Turner, 2002;
Robinson & Novak 1997; Waage 1979) and exper-
imental tests of selection acting on these struc-
tures (e.g., Arnqvist and Danielsson 1999;
Arnqvist et al. 1997; Cordoba-Aguilar 1999).

 

Studies of the Form and Function of Mating Structures

 

Investigations into the form and function of
male and female mating structures support the
hypothesis that sexual selection is acting on mat-
ing structures. For example, in Waage’s (1979)
classic work on jewelwinged damselflies, 

 

Calop-
teryx maculata

 

¸ he concluded that the intricate
structures of the damselfly penis were used not
only to transfer sperm to females but also to re-
move sperm of other males from the female repro-
ductive tract. Waage (1979) came to this
conclusion based on four lines of evidence. 1. Fe-
males who had previously mated had more sperm
in their reproductive tract before and after a sec-
ond mating than when mating was interrupted. 2.
When copulating pairs were dissected (after be-
ing killed), male genitalia were found in the fe-
male sperm storage organs. 3. Males have
backward-pointing spines on the parts of their
genitalia that reach the sperm storage organs. 4.
Clumps of sperm were found on the male genita-
lia after the male withdrew from the female. To-
gether, these results suggest that selection could
be acting on the size and shape of male genitalia
in Calopteryx. Subsequent studies suggest that
similar processes occur in other odonate species.

More recently, investigations into the form and
function of female reproductive structures have
supported the cryptic female choice hypothesis for
the diversification and elaboration of mating
structures. Mechanisms have been found by which
females could control the use of sperm (Eberhard

1996). This appears to be the case in the Carib-
bean fruit fly, 

 

Anastrepha suspensa

 

. In this spe-
cies, females have multiple spermathecae and
store different amounts of sperm in each sper-
matheca (Fig. 4). Females have thin spermathecal
ducts leading to the bursa copulatrix. Each of the
spermathecae has a separate valve that could po-
tentially be used by females to control the storage
and release of sperm. These data suggest that fe-
male 

 

A. suspensa 

 

have the ability to discriminate
between the sperm of different males by control-
ling the storage and release of the sperm. Whether
they use this ability has not been established.

These studies of form and function of mating
structures are important for understanding how
selection might act on these structures, but they
are not actual tests of the sexual selection hypoth-
esis. To demonstrate sexual selection, one must
show that differences in the mating structures re-
sult in differential access to gametes. Very few
studies have actually tested this. In fact, in the in-
sect literature, I am aware of only four studies
that actually test for differential fertilization suc-
cess based on differences in mating structures, al-
though there are other studies that relate
differences in mating structures to differences in
access to mates (e.g., Arnqvist et al. 1997). I will
review two recent studies that test for sexual se-
lection on mating structures.

 

Case Study I: 

 

Gerris lateralis

 

The first case is a recent study by Arnqvist and
Danielsson (1999) on the water strider, 

 

Gerris lat-
eralis

 

. They studied the effect of variation in re-
productive and non-reproductive structures on

Fig. 4. Female reproductive structures of Anastrepha
suspensa. Drawing by A. Fritz, printed with permission.
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sperm precedence of the first and second males to
mate with a female. There was evidence for sex-
ual selection acting on sclerites that are found in
the distal portion of the aedeagus. Although the
function of these sclerites is not known, they ap-
pear to play a role in the placement of the aedea-
gus within the female reproductive tract and/or
stimulation of the female.

Arnqvist and Danielsson (1999) found that the
shape of the lateral sclerites of the first male to
mate and the dorsal and ventral sclerites of the
second male to mate affect sperm precedence. In
addition, the degree of the effect of the ventral
sclerite of the second male on sperm precedence
depended on the size of the female. Together,
these results suggest that selection acts on male
mating structures in 

 

G. lateralis

 

 and that the
strength of selection depends on the distribution
of female phenotypes in the population. However,
two questions remain unanswered about the se-
lection process. First, it is unclear whether selec-
tion is acting directly or indirectly on the
sclerites. It is possible that selection is actually
acting on a trait that is correlated with the shape
of the sclerites and not on the sclerites them-
selves. The authors controlled for many possible
correlates, but, without manipulating the struc-
tures and randomly assigning males to treatment
groups with differently shaped structures, it is
difficult to infer causal relationships. Second, the
mechanism by which selection is acting is also
still unclear. It could be that (1) the shape of the
sclerites allow males to position their own sperm
or the sperm of other males in such a way that
they have an advantage or (2) females use sperm
of certain males preferentially depending on the
shape of their sclerites.

 

Case Study 2:

 

 Calopteryx haemorrhoidalis

 

A study of damselfly reproduction provides
more evidence of selection acting directly on a
mating structure. This study is on a species of ca-
lopterygid damselflies, the same group in which
Waage (1979) found sperm removal by males.
Cordoba-Aguilar (1999) found patterns of sperm
storage in 

 

Calopteryx haemorrhoidalis

 

 similar to
those that Waage (1979) found in 

 

C. maculata

 

,
suggesting that sperm removal was also occur-
ring in 

 

C. haemorrhoidalis

 

. However, in 

 

C. haem-
orrhoidalis

 

, the male genitalia could not get into
the spermatheca, ruling out the possibility of di-
rect sperm removal by males. Instead, Cordoba-
Aguilar (1999) proposed that males stimulate fe-
males to eject sperm. Females have two sclero-
tized plates in their reproductive tract each
bearing sensilla. When eggs pass by these plates,
the plates are distorted and this distortion sends
a stimulus through an abdominal ganglion to the
sperm storage organs. The sperm storage organs
respond by ejecting sperm for fertilization. Dur-

ing copulation, the male genitalia distort these
plates in a manner similar to that of eggs passing
through. Females with more sensilla store less
sperm when their copulations are interrupted
than females with fewer sensilla.

Cordoba-Aguilar predicted that males with
wider genitalia would stimulate the sensilla more
and stimulate the females to eject more sperm.
He tested this prediction experimentally by simu-
lating copulations using genitalia that he had re-
moved from males. He used only the portion of the
genitalia that normally makes contact with the
plates to control for the effect of any correlated
characters and to ensure that no sperm was re-
moved directly by the male genitalia. Females
mated with males with wider genitalia stored less
sperm after simulated mating than females
mated with males with narrower genitalia. How-
ever, the mechanism of sperm ejection is still
poorly understood. It is very difficult to distin-
guish whether this is a case of female choice,
male-male competition, or sexual conflict.

 

Connecting Intraspecific Selection with Interspecific
Diversification

 

These two case studies are among the first to
demonstrate sexual selection on mating struc-
tures. However, no studies have yet connected se-
lection on mating structures within a species to
diversification of mating structures between spe-
cies. A group of grasshoppers found in Florida of-
fers an excellent opportunity to study this
connection (Fig. 5) These are the brachypterous
(short-winged) species of the genus 

 

Melanoplus

 

(Capinera et al. 1999; Deyrup 1996; Hubbell
1932, 1984; Squitier et al. 1998). In Florida, most
of these species are found only in sandhill and
scrub habitat. Because much of this habitat oc-
curs in patches in Florida (Myers 1990; White
1970), some of the species are effectively isolated
from other similar species (Fig. 6). This group is

Fig. 5. Melanoplus ordwaye pair in copula at Gold-
head Branch State Park, FL.
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characterized by extraordinary diversification of
both internal and external male mating struc-
tures. For example, the cerci of different species
form what Lloyd (1979) predicted as “a veritable
Swiss Army Knife of gadgetry” (Fig. 7). The inter-
nal genitalia are similarly complex and diverse.

In addition to the interspecific variation in
mating structures, there is also much intraspe-
cific variation. For example, the cerci of 

 

Melano-
plus rotundipennis 

 

vary both within and between
populations. Figure 6 shows cerci from four popu-
lations of 

 

M. rotundipennis

 

. The cerci differ both
in curvature and in the width of the head relative
to the rest of the cercus.

During copulation, the cerci appear to be used
by males to gain access to the genital chambers of
females (Fig. 8). The cerci squeeze against a flap
that lies flat against the female’s ventral surface,
just below her ovipositor blades. This flap, called

the egg guide, encloses the genital chamber,
which is attached to the spermathecal tube. Dur-
ing coupling, the male’s cerci appear to pinch ei-
ther side of the egg guide (pers. obs.). Pressure on
the sides of the egg guide results in the egg guide
popping open, exposing the genital chamber. Sex-
ual selection could act on the shape and size of the
cerci through female choice in which females
mate only with males whose cerci fit into the
grooves of their egg guides (Eberhard 1998).

The shape of the cerci differ between popula-
tions of 

 

M. rotundipennis

 

 (Fig. 6). This variation
suggests that selection could be acting differently
in different populations. One could test this hy-
pothesis in 

 

M. rotundipennis 

 

because it is possible
to manipulate the shape and size of cerci (e.g.,
Krieger & Krieger-Loibl 1958), thus, removing the
effect of correlated traits on reproductive success.
It is possible to manipulate the shape and size of

Fig. 6. Cerci of male Melanoplus rotundipennis from four sites in Florida. Map from Myers & Ewel 1990, re-
printed courtesy of University Press of Florida. A. Goldhead Branch State Park; B. Welaka State Forest; C. Ocala
National Forest; D. University of Florida’s Thomas Farm (Gilchrist Co.).

Downloaded From: https://complete.bioone.org/journals/Florida-Entomologist on 23 Apr 2024
Terms of Use: https://complete.bioone.org/terms-of-use



 

Symposium: Insect Behavioral Ecology—2001: Sirot 131

 

cerci by cutting them with microscissors. A similar
method was used to test for sexual selection on
male genitalia in the beetle, 

 

Chelymorpha alter-
nans 

 

(Rodriguez 1995). In this species, males with
longer genitalic structures (called “flagella”) sire
more offspring. This pattern could indicate direct
selection on flagellum length or indirect selection

on a correlated trait. Rodriguez distinguished be-
tween these possibilities by manipulating the
length of males’ flagella. Males with longer manip-
ulated flagella sired more offspring, demonstrat-
ing direct selection on flagellum length. By using
this method in 

 

M. rotundipennis

 

, one could test
whether and how cerci size or shape affected male
reproductive success. Cerci size or shape could af-
fect male reproductive success in a number of
ways including increasing a male’s sperm prece-
dence or the female’s oviposition rate or decreas-
ing the likelihood that the female will remate
(Eberhard 1996; Simmons 2001). Demonstration
of sexual selection for different sized or shaped
cerci in different populations would provide a con-
nection between sexual selection on mating struc-
tures within a species and diversification of
mating structures between species.

In conclusion, recent studies have established
that sexual selection is acting on male mating
structures. However, more work is needed in three
main areas for us to have a better understanding
of the evolution of mating structures through sex-
ual selection. 1. We need to investigate and at-
tempt to distinguish the processes by which sexual
selection is acting on mating structures. As exem-
plified by Cordoba-Aguilar’s (1999) research on

 

C. haemorrhoidalis

 

, it is often difficult to distin-
guish whether sexual selection on mating struc-
tures is a result of female choice, male competition,
or intersexual conflict. More than one of these pro-

Fig. 7. “Veritable Swiss Army Knife” of cerci of differ-
ent species of brachypterous grasshoppers of the genus
Melanoplus found in Florida. Drawings of cerci from
Capinera et al. 2001, with permission of author.

Fig. 8. SEM photo of external mating structures of M. rotundipennis pair in copula.
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cesses could be acting simultaneously. We can un-
derstand sexual selection on mating structures
more thoroughly by determining which of these
processes are occurring. 2. We need to study the
form and function of female mating structures and
how selection acts on these structures. Female
mating structures are a part of the selective envi-
ronment in which male mating structures evolve,
and vice versa. Understanding the biology of fe-
male mating structures will allow us to under-
stand the sensory and physical environment in
which male mating structures evolve. 3. We need
to connect the process of intraspecific sexual selec-
tion on mating structures with interspecific diver-
sification of mating structures. Current research
on sexual selection on mating structures is focused
predominantly on intraspecific processes. We must
conduct studies across populations of the same
species and closely related species to extrapolate
how intraspecific sexual selection can result in
interspecific diversification.
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