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Chromosome aberrations have been one of the most
sensitive and reliable biomarkers of exposure to ionizing
radiation. Using the multiplex fluorescence in situ hybridiza-
tion (M-FISH) technique, we compared the changes, over
time, in the frequencies of translocations and of dicentric
chromosomes in the splenic lymphocytes from specific
pathogen-free (SPF) C3H/HeN female mice continuously
exposed to 0.05 mGy/day (18.25 mGy/year) gamma rays for
125 to 700 days (total accumulated doses: 6.25–35 mGy) with
age-matched non-irradiated controls. Results show that the
frequencies of translocations and of dicentric chromosomes
increased significantly over time in both irradiated and non-
irradiated control mice, and that the frequencies were
significantly lower, not higher, in the irradiated mice, which
differs from our previous reports of increased chromosome
aberration frequencies at higher radiation dose rates of 1
mGy/day and 20 mGy/day. These results will be useful when
considering the radiation risk at very low-dose rates
comparable to regulatory dose limits. � 2022 by Radiation Research

Society

INTRODUCTION

One of the major problems in radiation risk assessment is
the uncertainty in the estimation of the health effects of
radiation exposure at low doses and/or at low dose rates (1,

2). Although human epidemiological studies have been
extensively used as basis for radiation risk assessment, they
cannot provide sufficient data for doses below 100 mGy,
and this is mainly due to the presence of confounding
factors as well as statistical limitations. The frequency of

chromosome aberrations has been considered to be one of
the most sensitive and reliable indicators of exposure to
radiation and thus suitable for complementing epidemio-
logical studies and addressing the gap at low-dose and low-
dose-rate exposures. The introduction of sensitive tech-
niques such as fluorescence in situ hybridization (FISH) (3)
has further increased the sensitivity and reliability of
chromosome assays.

Chromosome aberration analyses have been applied to

various population cohorts exposed to low dose or low-
dose-rate radiation, including workers at nuclear facilities
(4, 5), residents in contaminated areas (6), and residents in
high-background-radiation areas (7–10). As studies using
human populations are not exempt from confounding
factors, cultured human cells and laboratory animals are
often used. Most of these studies showed dose dependent
increases in the frequency of chromosome aberrations (1,
11, 12). Dose-dependent relationships were observed at
doses of more than 20 mGy in the studies involving high-
dose-rate exposures. In the low-dose-rate studies, the lower
limits appear to be substantially higher. Some studies (9, 10)
on residents in high background radiation areas (1.5–35
mGy/year dose rates), however, reported no detectable
increases in the frequency of chromosome aberrations.

We have been analyzing the frequency of chromosome
aberrations, using sensitive techniques including multiplex
fluorescence in situ hybridization (M-FISH), in the
lymphocytes collected from the spleen of the laboratory
mice kept under environmentally controlled, specific
pathogen free (SPF) conditions for entire lifespans and
exposed to 137Cs gamma rays at various dose rates from 0.05
mGy/day to 800 mGy/min, in the unique animal irradiation
facilities of the Institute of Environmental Sciences (13).

Editor’s note. The online version of this article (DOI: https://doi.
org/10.1667/RADE-21-00159) contains supplementary information
that is available to all authorized users.
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Our recent reports (14–17) showed the linear dose-

response relationships of translocations and dicentric
chromosomes in splenic lymphocytes from the mice

irradiated at a low-dose rate of 20 mGy/day for 400 days.

Dose dependent increases in the frequency of these

chromosome aberrations have also been successfully

detected in mice irradiated at a lower 1 mGy/day dose rate.

In the present study, we examined chromosome aberra-
tions in the mice irradiated at an extremely low-dose rate of

0.05 mGy/day (¼18.25 mGy/year), which approximates the

occupational dose limit of 100 mSv/5 years (18) and is

comparable to the dose rates found in the high background

radiation areas (10).

MATERIALS AND METHODS

Animals, Animal Husbandry and Irradiation

A total of 144 SPF female C3H/HeN mice, purchased from CLEA
Japan, Inc. (Shizuoka, Japan), were used in this study. The mice were
kept in animal rooms under SPF environmental conditions (19) and
the irradiated group was exposed to 137Cs gamma rays continuously at
a low dose rate of 0.05 mGy/day from 8 weeks (53–56 days) of age, as
described previously (17, 19). Radiation exposure was continuous for
22 h a day. The remaining 2 h were used to clean the animal rooms,
change cages, and provide a fresh supply of food and water. Splenic
lymphocytes were collected from 7 or 10 mice at 0, 125, 200, 300,
400, 500, 600, and 700 days (53–56, 178, 255–256, 353–360, 457–
460, 556–565, 656–670, and 761–774 days of age, respectively) from
the start of irradiation alongside age-matched non-irradiated controls
(Table 1). All experiments were conducted according to legal
regulations in Japan and following the guidelines for Animal
Experiments of the IES.

Justification for selection of mouse strain and sex. We elected to
use female C3H/HeN mice in this study for ease of comparison, since
our previously reported studies (14–17) also used the same strain.

Justification of radiation dose selection. We further reduced the
dose rate to 0.05 mGy/day since we have previously detected radiation
effects after long-term irradiation at the low-dose rates of 20 and 1
mGy/day.

Chromosome Analyses

On predetermined sacrifice days (see above), the mice were
euthanized with an overdose of isofluorane (Isoflut, DS Pharma

Animal Health, Osaka, Japan) and their spleens were collected under

aseptic conditions. Mice harboring neoplasms or having enlarged
spleens at the time of sacrifice were excluded from the study to

eliminate the influence of abnormal cell proliferations. Three mice
were removed from the 700-day irradiated group and 4 mice were

removed from the age-matched non-irradiated controls.

Processing of splenic lymphocytes for chromosome analyses has

been described previously (17) except for a shorter culture time of 44
h. We analyzed 1,014 to 3,225 metaphases from each mouse for

detecting translocations and dicentric chromosomes. Insertions and

inversions were counted as translocations. When more than 3 cells had
the same chromosome aberration, they were judged as clonal cells

according to ISCN 2013 (20) and were counted as 1 cell. A one-way
or reciprocal translocation between 2 chromosomes was scored as 1

translocation, whereas three-way translocations involving 3 chromo-
somes were scored as 2 translocations (21).

Statistical Analyses

The effects of mouse age and radiation exposure on the frequency
of chromosome aberrations (translocations or dicentric chromosomes)

were analyzed by use of the generalized linear model (GLM) with a
Poisson distribution and a log-link function. In the GLM, mouse age

(at sacrifice) and irradiation (i.e., dose rate) were included as
explanatory variables, and the frequency of chromosome aberrations

in each mouse was included as a response variable. Since there is a
possibility that the frequency of chromosome aberrations could

depend on the number of cells examined, the number of cells from

each mouse was included in the model as an off-set term to correct this
dependency. Thus, our model is expressed as:

Y ¼ exp bþ a0 3 t þ a1 3 r þ log Nð Þð Þ

where Y is the number of chromosome aberrations (i.e., translocations

or dicentric chromosomes) in cells, t is the age in days, r is the dose
rate (it is 0 for the non-irradiated control group and 0.05 for the

irradiated group), a0 and a1 are the regression coefficients, and b is the
intercept. N is the total number of cells examined. The tests were

conducted with R software, version 3.6.1 (22).

TABLE 1
Frequencies of Translocations and Dicentric Chromosomes in Splenic Lymphocytes from Female C3H Mice Exposed to

0.05 mGy/Day of Gamma Rays Compared to Age-Matched Non-Irradiated Controls

Sacrifice day
(Age in days)

Experiment
Group

Total dose
(mGy)

Number of mice
analyzed (n)

Translocations/cell
(95% CI)

Dicentric chromosomes/cell
(95% CI)

0 (53–56) non-irradiated 0 10 0.0026 (0.0020–0.0035) 0.0004 (0.0002-0.0009)
125 (178) non-irradiated 0 7 0.0026 (0.0019–0.0036) 0.0011 (0.0007–0.0019)

0.05 mGy/day 6.25 7 0.0032 (0.0024–0.0043) 0.0005 (0.0003–0.0011)
200 (255–256) non-irradiated 0 10 0.0046 (0.0037–0.0057) 0.0010 (0.0006–0.0016)

0.05 mGy/day 10 10 0.0025 (0.0019–0.0032) 0.0007 (0.0004–0.0011)
300 (353–360) non-irradiated 0 10 0.0024 (0.0018–0.0033) 0.0015 (0.0010–0.0022)

0.05 mGy/day 15 10 0.0038 (0.0030–0.0049) 0.0010 (0.0006–0.0017)
400 (457–460) non-irradiated 0 10 0.0050 (0.0041–0.0061) 0.0012 (0.0008–0.0018)

0.05 mGy/day 20 10 0.0036 (0.0029–0.0046) 0.0008 (0.0005–0.0014)
500 (556–565) non-irradiated 0 10 0.0089 (0.0075–0.0106) 0.0024 (0.0017–0.0033)

0.05 mGy/day 25 10 0.0049 (0.0039–0.0061) 0.0014 (0.0009–0.0021)
600 (656–670) non-irradiated 0 10 0.0092 (0.0078–0.0108) 0.0025 (0.0019–0.0035)

0.05 mGy/day 30 10 0.0067 (0.0055–0.0082) 0.0014 (0.0009–0.0021)
700 (761–774) non-irradiated 0 10 0.0125 (0.0108–0.0144) 0.0029 (0.0021–0.0039)

0.05 mGy/day 35 10 0.0076 (0.0063–0.0092) 0.0017 (0.0012–0.0026)
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RESULTS

SPF female C3H/HeN mice were continuously exposed to
gamma rays at a very low-dose rate of 0.05 mGy/day for up
to about 700 days. Using M-FISH technology, we examined
the change, over time, in the frequency of chromosomal
aberrations in the splenic lymphocytes, specifically translo-
cations [considered relatively stable over multiple cell
generations (23)] and dicentric chromosomes (considered
unstable). We used 7 or 10 mice per sacrifice point and
analyzed 1,014 to 3,225 cells per mouse. The results are
summarized in Table 1 and Fig. 1, where the statistical unit
is the individual mouse rather than a cell. Since Fig. 1 is
very crowded with the data points of individual mice, the
mean values are plotted in Supplementary Fig. S1 (https://
doi.org/10.1667/RADE-RADE-21-00159.1.S1).

As the mice aged, we observed that the frequencies of
chromosome aberrations increased regardless of exposure
to radiation. Curiously, the frequencies of translocations
and dicentric chromosomes in the irradiated mice appeared
to be lower than those of the non-irradiated control mice.
The translocation frequencies in the irradiated mice were
significantly lower compared to the age-matched non-
irradiated control mice at the days 200, 500 and 700 of

irradiation [the 95% confidence interval (CI) of the
irradiated mice was lower than that of the non-irradiated
controls without overlapping at each of these points]. We
therefore analyzed the effects of two variables, mouse age
and radiation exposure, on the frequency of translocations
and of dicentric chromosomes, using the generalized linear
model (GLM). Table 2 shows that the effects of both age
and irradiation were highly significant (P , 0.001). We
concluded that under our experimental conditions, contin-
uous radiation exposure at a very low-dose rate of 0.05
mGy resulted in a decrease, not increase, in the frequency
of chromosome aberrations, contrary to our findings for
the higher dose rates of 1 mGy/day and 20 mGy/day (14–
17).

DISCUSSION

The linear no-threshold (LNT) model for biological
effects of radiation has long been used as basis for radiation
protection (1). Even though it is now understood that there
exist some human epidemiological studies that do not fit
this model, and that confirmation of this model by
epidemiological studies does not seem to be possible due
to severe statistical limitations at very low doses and at very

FIG. 1. Frequencies of chromosome aberrations in splenic lymphocytes from female C3H mice continuously
irradiated with gamma rays at 0.05 mGy/day from 56 days of age compared with age-matched non-irradiated
controls. Each data point indicates the frequency of translocations (panel A) or dicentric chromosomes (panel B)
in an individual mouse. The curves are based on the results of the analysis using the generalized linear model
(GLM) wherein the control is indicated by the solid line and the 0.05 mGy/day group is indicated by the dotted
line.
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low-dose rates, this model is still recognized as extremely

useful for radiation protection purposes. In the range of very

low doses and very low-dose rates, mechanistic studies

using biological methodologies may supplement the results

of human epidemiological studies. In the early days, the

data used for theoretical considerations of radiation dose

response or dose-rate response relationships were mostly

those of chromosome aberrations.

The most important of the classical views based on these

early theoretical considerations is the explanation of the

dose-rate effect on chromosome aberrations: Many previous

studies (1), including ours (14–17), have shown that the

frequency of chromosome aberrations induced by low-LET

irradiation can be described by a linear dose-response

relationship in the low-dose rate or low-dose range, and by a

linear-quadratic relationship in the high-dose rate and high-

dose range, with a clear dose-rate effect. On the other hand,

the frequency of radiation-induced DNA lesions, specifi-

cally DNA double-strand breaks, which are the major

source of chromosome aberrations, seems to be linearly

proportional to dose, down to very low doses (24). The

lower estimated frequencies of DNA double-strand breaks

in the samples irradiated at low-dose rates compared to

those in the samples irradiated at high dose rates have been

attributed to ligation (repair) of the breaks during the long

irradiation periods (25, 26), rather than decreased induction

of the breaks at low-dose rates. The discrepancy between

the presence of the dose-rate effect on chromosome

aberrations and its absence with regards to the induction

of DNA double-strand breaks can be consistently explained

by the mechanism wherein multiple DNA double-strand

breaks, when present simultaneously and in close proximity

within a cell, can be illegitimately ligated by a DNA repair

system called non-homologous end joining (27), resulting in

chromosome aberrations (1, 28). This suggests that ligation

of the DNA double-strand breaks induced by low-dose rate

or low-dose radiation is, in most cases, macroscopically

legitimate, and contributes to the maintenance of a normal

karyotype. From the viewpoint of radiation protection,

however, it should be noted here that even in these cases,

the ligation points of chromosomes may microscopically

contain very small mutations (deletions, additions, or base

substitutions) due to the chemical structure of radiation-

induced DNA strand breaks (29) and the nature of non-

homologous end joining (27, 30).

At present, despite the increasing availability of various

molecular and cellular biological data, chromosome aber-

ration studies continue to remain important (31). In our

study, we performed long-term irradiation, at an extremely

low-dose rate, of laboratory mice under strictly controlled

environmental conditions in an effort to lessen disturbance

by various factors, and examined the changes in the

frequency of chromosome aberrations over time in a large

number of cells from several individual animals. We

consider the results of this study are very useful for

supplementing the results of human epidemiological

studies.

We believe that the results indicate that the exposure to

radiation at a very low-dose rate of 0.05 mGy/day

decreases, rather than increases, the frequency of chromo-

some aberrations. This is distinctly different from findings

of studies that used dose rates of 1 mGy/day or more (1),

including ours (14–17), where the frequency of chromo-

some aberrations shows dose-dependent increases, follow-

ing dose-response relationships that can be interpreted as

linear or linear quadratic. It would be inappropriate,

however, to comment on the validity of the current radiation

protection system based on the LNT model, except that the

system does not seem to underestimate risks at low-dose

rates.

Non-linear dose response findings have prior, sometimes

contradictory, examples in the literature associated with

varied explanations such as: 1. in cells irradiated at low-

dose rates, the amount of DNA damage, which reflects the

equilibrium between the induction by radiation and the

elimination by repair, does not follow a canonical dose-

response relationship (26); 2. at low doses or dose rates,

some of the cellular DNA repair systems are activated

(adaptive response) (32, 33); 3. at low-dose rates, the

activation of some of the cellular DNA repair systems is

diminished (inverse dose-rate effect) (34); 4. selective

apoptosis, wherein damaged or mutated cells are selectively

killed (35); 5. radiation induces genomic instability (36), but

the resulting cellular response does not follow the usual

dose dependence; 6. non-irradiated cells receive signals

from neighboring irradiated cells (bystander effects) (37),

but the response of the cells that have received signals does

not follow the usual dose dependence; and, 7. in tissues in

vivo, undamaged or unmutated cells outcompete damaged

or mutated cells and selectively proliferate (38).

TABLE 2
Effects of Mouse Age and Low-Dose-Rate Gamma-Ray Exposure on the Frequencies of Translocations and Dicentric

Chromosomes in Splenic Lymphocytes from Female C3H Mice

Variable Coefficient S.E. Z value P value

Translocation Mouse age 0.00226 0.00014 16.24 P , 0.001
Irradiation* –7.85 1.167 –6.73 P , 0.001

Dicentric chromosome Mouse age 0.00189 0.00027 7.14 P , 0.001
Irradiation* –10.07 2.308 –4.36 P , 0.001

* Irradiation is a variable, where it takes 0 for the non-irradiated control group and 0.05 for the irradiated group.
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Our results are in best agreement with the second, fourth,
and seventh examples of the non-linear dose-response
findings and their explanations. Studies of chromosome
aberrations in the high background radiation areas (10) refer
to the second explanation in particular. Further experiments
however are required to attribute the decrease in the
chromosome aberration frequency in the present study to
these or other mechanisms.

The statistical analyses found in Table 2 show that the
effect of radiation on the frequencies of chromosome
aberrations, as well as the effect of another factor, aging, is
highly significant: Chromosome aberrations increase with
age, especially later in lifespan. Comparing the results of the
non-irradiated groups in this study with those in previous
reports on mice (39) and humans (40) suggests that the
frequencies of chromosome aberrations in non-irradiated
controls are of the same magnitude in mice and humans, and
that the trends of increase with age are similar between the
two species. The rate of increase, however, is much faster in
mice than in humans, which may correlate with a large
difference in lifespan (41). There is a recent report (42)
showing a strong inverse relationship between the rate of
spontaneous somatic small mutations (detected by sequenc-
ing) and the lifespan across various mammalian species. It is
not clear, however, whether such a relationship applies to
chromosome aberrations, as the DNA repair systems
responsible for small mutations and those responsible for
chromosome aberrations are not necessarily the same (43).
In addition, it has been pointed out that gene mutations arise
frequently in younger ages, whereas cytogenetic mutations
accumulate mainly in older ages (39). There have been
some reports (44–46) that the mechanisms ensuring genome
stability are less stringent in rodent cells than in human
cells, which may account for the differences in the rates of
the age-dependent increases in chromosome aberrations as
well as small mutations between mice and humans. On the
other hand, it should also be noted that high-dose-rate
radiation seems to induce chromosome aberrations with
similar efficiencies in mice and in humans (47). Compre-
hensive elucidation of the molecular and cellular mecha-
nisms underlying the similarities and differences in the
frequencies of spontaneous and induced chromosome
aberrations and other mutations and their age-related
changes in short-lived and long-lived mammals is of great
importance, considering the role of the chromosome
aberration research in the establishment of the current
radiation protection system.

The pathway from radiation exposure to the appearance of
health effects such as cancer (adverse outcome) is composed
of many steps or events. When approaching the issues of the
appropriateness of the LNT model and the magnitude of the
dose-rate effect from biological and mechanistic studies, a
systematic quantification-oriented method, such as the use
of adverse outcome pathways, should be introduced (48),
and then the quantification of each event that constitutes the
pathway should be conducted. Chromosome aberrations

have been generally considered as the outcome of relatively
early events, such as induction of DNA damage by radiation
and DNA repair in cells, in the pathway. However, some
ambitious studies have used the chromosome aberration
analysis to understand the dynamics of damaged or mutated
cells in tissues or in bodies and their later outcomes (49).
We surmise that our results may also reflect the selective
removal or proliferation of specific cell populations within
tissues or bodies, as well as early events occurring within
cells. The identification of the mechanisms or pathways that
lead to non-canonical dose-response or dose-rate-response
relationships at very low doses or dose rates, such as the one
we have reported here, will be beneficial in improving the
system of radiation protection.

SUPPLEMENTARY INFORMATION

Supplementary Fig. S1. Frequencies of chromosome
aberrations in splenic lymphocytes from female C3H mice
continuously irradiated with gamma rays at 0.05 mGy/day
from 56 days of age compared with age-matched non-
irradiated controls. Each data point indicates the mean (with
95% CI) of the frequencies of translocations (panel A) or
dicentric chromosomes (panel B) in each experiment group
(the same data as shown in Table 1). The curves are
completely the same as those in Fig. 1 (calculated from the
data of individual mice rather than the means).
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