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Abstract
Determination of physiological state in insects is useful in furthering the understanding of how 
insect behavior changes with age. Central to this determination is the identification of characters 
that allow assessment of physiological age. While non-destructive measures produce the most 
desired outcomes, internal markers may be more diagnostic and reliable. In this study, key 
morphological characters during previtellogenesis through vitellogenesis and ovulation were 
assessed as markers to determine physiological states of the oriental fruit fly, Bactrocera dorsalis
(Hendel) (Diptera: Tephritidae). Ovary length and width, ovarian index (length x width), and egg 
load of laboratory-reared B. dorsalis females recorded daily from eclosion up to 80 days old 
suggested significant differences in the ovarian index and egg load between females from each 
oogenesis stage. Parity status determined by the presence of follicular relics was found to provide 
high-accuracy classifications for B. dorsalis females. The presence of follicular relics with 
distinct morphological features provides a reliable identification tool to determine the 
physiological state of wild female oriental fruit fly. The potential applications of this technique to 
identify the physiological age of female fruit flies to study behavioral attributes in their natural 
habitat, and also the potential applications in relation to field control, are discussed. 
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Introduction

In female oriental fruit flies, Bactrocera 
dorsalis (Hendel) (Diptera: Tephritidae), 
ovarian development represents a time line 
from previtellogenesis to complete egg 
development for the purpose of male 
fertilization. Changes of the ovary’s 
morphological characters from oogenesis and 
ovulation are key signifiers of physiological 
age for long-lived female tephritids (Carey 
2001; Kendra et al. 2006). Changes in the 
length and width of the ovaries as a result of 
yolk protein accumulation in the follicles are 
followed by a concomitant expansion of egg 
chambers during vitellogenesis. The end of 
the egg production process is marked by the 
formation of follicular relics (corpora lutea) at 
the basal part of the ovarioles after ovulation 
(Fletcher et al. 1978). Nonrecurring changes 
of ovary morphology from continuous egg 
production in conjunction with accumulations 
of follicular relics are two main indicators of 
physiological age for dipteran pest species of 
medical and economic importance (Nation 
1972; Kapatos and Fletcher 1984; Magnarelli 
et al. 1984; Gryaznov 1995). 

The association between the age of females 
and their physiological status is the foundation 
of many control strategies developed for 
tephritid fruit fly pest management (Aluja 
1994; Prokopy 2003; Vargas et al. 2010). 
Age-related demographic parameters have 
been used for predicting field establishment of 
pest populations and for timing augmentative 
biological control programs (Vargas and 
Ramadan 2000). The physiological age of an 
individual modulates the behavioral ontogeny 
of a female tephritid in response to inherited 
genetic traits, food quality and quantity, 
temperature, and other environmental factors 
(Prokopy et al. 1994; Vargas et al. 1997; 

Wang et al. 2009). In this context,
physiological age involves behavioral 
modification of response threshold to stimuli 
with time. Females switch from food-foraging 
to host-searching oriented behaviors as they 
approach sexual maturity; this switch is a 
result of modifying threshold to odors in the 
environment (Siderhurst and Jang 2006; 
Siderhurst and Jang 2010). Monitoring 
programs with food or host attractants may 
thus provide quantitative information relevant 
to the age structure of a population.  

Various methods have been evaluated for age 
determination in insects, including approaches 
based on adult morphology, physiology, and 
biochemistry (Hayes and Wall 1999; Hugo et 
al. 2008). Accumulation of pterin fluorescent 
pigment compounds over time in the head 
capsule of Anastrepha ludens (Loew),
Bactrocera cucurbitae (Coquillett), and
Ceratitis capitata (Wiedemann) was measured 
to determine age dependent linear regressions 
(Hayes and Wall 1999). This method needs to 
factor in increasing pterin level due to ambient 
temperature, light level, and protein feeding 
(Hugo et al. 2008). For sterile insects released 
into the environment, the degree of wing 
abrasion gives a useful estimate of survival 
age (Dyck et al. 2005). Cuticle deterioration in 
age determination has the advantage of being 
independent of factors affecting the 
reproductive system, such as protein 
availability, although other factors, for 
example temperature or habitat, may influence 
fly activity and hence the rate of degradation. 
Physiological age-grading systems are useful, 
particularly for female insects, where 
physiological (rather than chronological) age 
determines key life history traits such as 
lifespan, fecundity, and foraging behaviors 
(Tyndale-Biscoe 1984). The study of 
physiological age distribution gives insights 
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for understanding population biology and 
describing behaviors of tephritid populations. 
Knowledge of the physiological age 
distribution of a particular tephritid population
holds a crucial key to successful pest 
management. Tephritid pests, such as olive fly 
(Bactrocera oleae Gmelin), walnut fly 
(Rhagoletis juglandis Cresson), cherry fruit 
fly (R. indifferens Curran), and Chinese citrus 
fruit fly (B. minax Enderlein), have been 
reported to synchronize their ovarian 
development to coincide with host-fruit 
ripening (Delrio and Cavalloro 1977; Kapatos 
and Fletcher 1983; Messina et al. 1991; 
Carsten and Papaj 2005; Dorji et al. 2006). In 
orchards, these monophagous tephritids were 
effectively controlled when management 
efforts began after the capture of the first egg 
bearing female.

Many tropical tephritid pests are polyphagous 
fruit flies, which seek oviposition sites
according to available host fruits in the 
environment. Effective pest management 
depends on determining the movement of 
mature females. Studies have found that the 
response of Anastrepha suspensa (Loew) to 
proteinaceous odors and distance of attraction 
varied with sexual maturity of the females 
(Kendra 2009; Kendra et al. 2010). 
Physiological age and parity have not yet been 
investigated in the oriental fruit fly, a major 
economic pest in tropical and subtropical 
fruit-producing areas in Asia and Hawaii (Seo 
et al. 1982; Vargas et al. 1983; Mau et al. 
2007). Suitable tools are needed in order to 
assess the physiological age of a targeted 
population for optimal timing of application 
of food-based attractants. The objectives of 
this study were (1) to describe in detail the 
basic reproductive morphology as well as the 
overall development of the reproductive 
system of female B. dorsalis through time, (2) 
to describe the morphological features of 

oogenesis stages based on ovary length and 
width, and (3) to assess the characters of the 
parous females by examining the presence of 
retained mature eggs, corpora lutea, and other 
morphometric features of the ovaries

Materials and Methods

Flies
B. dorsalis were obtained from cultures 
maintained under laboratory conditions for > 
300 generations at the Pacific Basin 
Agricultural Research Center, Honolulu, 
Hawaii, and maintained in a room at 24 ± 2° C 
and 50 ± 5% RH, with a photoperiod of about 
16:8 L:D (Vargas et al 1984). Newly emerged 
adults were supplied with sugar and 
enzymatic yeast hydrolysate protein (United 
States Biochemical Corp., 
http://www.usbweb.com/) mixed in water in a 
3:1 ratio ad libitum. Four cages with 100 pairs 
of females and males each were sample 
cohorts. Ten female individuals were 
dissected daily from emergence to day seven 
to record the morphometric changes during 
the first gonotrophic cycle, and then every 10 
days for 80 days after the sampled cohort 
grew fully developed ovaries, which occurred 
at day seven. Fresh papaya was provided in 
the cage for oviposition from day seven 
onwards, when all sampled flies were bearing 
fully developed eggs. 

As oogenesis is asynchronous in dacine fruit 
flies, the classification of ovarian 
development was based on the condition of 
the most advanced follicles when assigning 
individuals to a particular oogenesis stage 
(Fletcher et al. 1978; Klowden 2007). Stage 1 
and 2 were part of the previtellogenic phase. 
Ovaries with no visible follicle cells presented 
were categorized as Stage 1. Stage 2 began 
when the developing oocytes entered the 
vitellarium region once it had been completely 
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surrounded by the follicular epithelium. The 
nurse cells were located at the anterior end of 
the follicle, and the oocyte at its posterior end 
(Stage 3). The size of the terminal follicle 
increased rapidly during the vitellogenesis 
phase (Stage 4) as yolk protein was being 
transported into the developing oocyte. The 
follicular epithelium and nurse cells 
degenerated at the end of vitellogenesis after 
the secretion of chorion was completed (Stage 
5). As ovulation proceeded, the egg was 
ejected from the ovariole while the empty 
follicle shrunk up and collapsed, forming a 
spherical body known as corpus luteum. 
Stretched, empty ovarioles and the presence of 
follicle relics at the calyx and lateral oviduct 
areas marked the parous phase (Stage 6).

Flies were placed in a 0° C freezer for 30 
minutes prior to examination. The 
reproductive system was extracted from the 
abdomen under a stereomicroscope equipped 
with an ocular micrometer at 10–20×
magnification. Dissection was conducted by 
grasping the abdominal cuticle along the mid-
dorsal line with a fine forceps and tearing 
open the cuticle, exposing the ovaries in the 
abdominal cavity. Ovaries were removed and 
excised from the ovipositor and adhering 
tissues and rinsed with phosphate buffered 
saline (pH = 7 PBS). Ovary samples were 
stained with aqueous neutral red (dimethyl 
diaminophenazine chloride; toluylene red) 
saline solution (0.001%) for 30–40 seconds 
(Gryaznov 1995). The biometric parameters 
recorded included the length of the ovaries 
from the anterior end of the germarium to the 
calyx area and the width of the ovaries taken 
from the anterior end of the vitellarium. The 
Ovarian index, one of the parameters used to 
determine the stage of oogenesis, was 
obtained by multiplying ovary length by ovary 
width. Parous females were identified by the 
presence of follicular relics, which often were 

of light yellow color after the neutral red stain. 
The egg load was determined by counting the 
number of chorionated fully-developed 
oocytes in the egg chambers.

Data analysis 
One-way analysis of variance (ANOVA) was 
performed to compare changes in key ovarian 
characters and egg loads (SAS Institute 1998). 
The morphometric data of ovary length and 
width were square-root (x + 0.5) transformed 
prior to analysis. Data of ovarian index were 
log (x + 1) transformed prior to analysis. 
Tukey’s HSD was performed to determine the 
difference of morphometric data between each 
oogenesis stage. Student’s t-test was 
performed for two samples to determine the 
differences between the two measurements. 
The correlation between the morphometric 
parameters, ovary length, ovary width, and 
egg load were tested with Pearson correlation 
at p = 0.05.

Results

Table 1 presents the morphometrics of ovarian 
development in female B. dorsalis. The first 
oogenesis process was completed by seven 
days after adult eclosion. Stages 1 and 2 were 
the pre-vitellogenesis phase of the ovarian 
development. Each oocyte at the pre-
vitellogenesis phase lacked a visible egg 
chamber. Stage 1 lasted for the first three days 
after emergence, with the ovaries 
approximately equal in length and width 
(Figure 1A). The vitellarium was not 
distinguishable from the lateral oviduct in 
Stage 1. As the developing oocytes moved 
down the ovariole  and entered the vitellarium 
region between day three and four, the 
vitellarium area gradually became visible 
(Figure 1B). The length of the ovarioles 
averaged 0.4 ± 0.01 mm for Stage 1 and 0.6 ± 
0.03 mm for Stage 2. Developing oocytes 

Downloaded From: https://complete.bioone.org/journals/Journal-of-Insect-Science on 19 Apr 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Journal of Insect Science: Vol. 12 | Article 144 Chou et al.

Journal of Insect Science | www.insectscience.org 5

Table 1. Ovarian characters, chronological age range and egg load at each developmental stage of Bactrocera dorsalis. Means 
within a column followed by the same letter are not significantly different (Tukey’s HSD test (p = 0.05)).

1 Data were square-root (x + 0.5) transformed prior to analysis, non-transformed means are shown.
2 Data were log (x + 1) transformed prior to analysis, non-transformed means are shown.

increased the ovary length significantly from 
Stage 1 to Stage 2 with no significant change 
in the width.

Stage 3 (Figure 1C) was characterized by the 
onset of vitellogenesis, with nurse cells 
occupying the anterior end of the terminal 
follicle. There was a rapid transition between 
Stage 3 and 4 in four to six day old females 
once yolk began accumulating. The length and 
width of Stage 4 ovaries were significantly 
greater than both the pre-vitellogenesis phase 
and Stage 3. Stages 1–4 comprised the classes 
of nulliparous females (Table 1). The size of 
ovaries increased significantly from the 
growth of egg chambers during vitellogenesis. 
The duration of the vitellogenesis phase was 
on average 3 days from Stage 3 to the first 
batch of fully developed eggs. Nurse cells 
degenerated once the vitellogenesis was 
completed, and the process of forming chorion 
eggshells began. 

The mature oocytes with chorion shells first 
appeared in the sampled females (Stage 5) as 
early as day five (Figure 1E). The egg load 
increased significantly between day five and 
day seven during the development of the first 
egg batch (Figure 2A), and fully developed 
ovaries were recorded in all samples by day 
seven. Egg load was correlated to ovary width 
(Pearson correlation = 0.40; p < 0.001) and 
length (Pearson correlation = 0.61; p < 0.001). 
The first oviposition marked the transition to 
Stage 6 (Figure 1F), as determined by the 

presence of follicular relics (corpora lutea) 
formed after the release of the terminal 
follicles. The follicular relics accumulated and 
the calyx became swollen with increasing 
chronological age. One possible source of 
error in the determining the stage of an ovary 
was that a mature female might be recorded as 
a Stage 3 if she happened to be sampled in the 
interval between the laying of a complete 
batch of eggs and the maturation of the next. 
Empty ovaries with stretched and straightened 
vitellarium section were found in 20% (n = 
22) of the dissected parous females aged 
between eight and 80 days old. The index, 
length, and width of empty ovaries from 
parous females were significantly different 
compared to females at Stage 3. Once 
ovulation was initiated, the ovary width varied 
according to the egg load, but the length did 
not change significantly. Stage 6 was 
characterized by an overall decline in egg load 
(Figure 2A) and ovary width (Figure 2B) with 
increasing age. The average egg load in 
females older than eight days (Stage 6) was 
significantly lower (t = 4.14, p < 0.0001, df 
=32) than Stage 5 females (Figure 2A). In 
Stage 6, the egg load of parous females was 
an average of 20 (± 5.6 S.E.) eggs per female 
throughout the observation, regardless of age. 
Developmental asynchrony increased in 
secondary oogenesis with aging. Despite this 
increase, ovary width and ovarian index 
(Figure 2C) were significantly greater in Stage 
6 than in Stage 4. Follicular relics were found 
in 98% of the ovipositing females and were 
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absent only in some females that were at the 
beginning of deploying their first egg batch.

Discussion

The overall objectives of this study were to 
identify the morphometric parameters for each 
oogenesis stage and to identify characters to 
identify parous female B. dorsalis. The six 
stages of ovarian development proposed for B. 
cacuminata (Raghu et al. 2003) and B. oleae
(Fletcher et al. 1978) fit the stages reported 
here for B. dorsalis. The morphometry of the 
ovary increased significantly between each 
oogenesis stage during the first gonotrophic 
cycle whereas few changes were found in the 
parous females. The presence of corpora lutea 
and the ovary length were two key characters 
to identify parous females. The morphometric 
index was significantly different between 
parous and nulliparous females.        

The ovaries of the first oogenesis phase in B.
dorsalis initially increased in length and 
subsequently in width during the first seven 
days after eclosion. Our results support the 
seven to ten day (at 24 ˚C) preoviposition 
period previously recorded for the laboratory 
strain of B. dorsalis (Foote and Carey 1987; 
Vargas et al. 1997). Of the four characters 
examined, ovary length was the most reliable 
indicator for pre-vitellogenesis and 
vitellogenesis during the developmental stage. 
The vitellogenesis phase was marked by the 
appearance of nurse cells at the anterior end of 
the developing oocyte, and lasted until the 
complete development of chorion eggshell. A 
large amount of yolk protein was deposited 
into the developing oocyte during this stage, 
which caused a rapid change in the ovarian 
structure. Characters of the terminal follicles, 
in combination with the ovarian index, 
provided accurate identification for the stages 

of oogenesis and were consistent with the 
findings of Kendra et al. (2006). 

Once a mature egg is produced, the next distal 
follicle begins to mature, regardless of the 
stage of the proximate follicles in the other 
ovarioles. Laboratory and wild B. dorsalis
have similar reproductive cycles once the 
female reaches maturity (Vargas et al. 1984; 
Vargas and Carey 1990). The rapid 
development in the following oocytes 
therefore resulted in an increasingly 
asynchronous egg development in each 
ovariole. The follicular relics of B. dorsalis
observed in this study appeared as clumps of 
cells in the calyx (Figure 6F). Individual 
follicular relics were visible by stretching the 
tissue with a fine needle. However, the 
heterogenic number of follicular relics 
between the ovarioles, due to developmental 
asynchrony, resulted in the increased 
difficulty to determine the exact number of 
gonadotrophic cycles. The two-class age-
grading system widely used in field studies to 
determine the age structure of hematophagous 
dipterans, such as Anopheles and Culex
mosquitoes, and the screw worm 
(Cochliomyia hominivorax (Coquerel)), are 
also applicable to B. dorsalis (Hayes and Wall 
1999). The pre-oviposition development time 
in B. dorsalis colonies derived from wild flies 
was longer, with a larger range in variation, 
than the laboratory strain (Arakaki et al. 1984; 
Foote and Carey 1987), suggesting that 
morphological characters are suitable 
candidates in determining the physiological 
age of feral populations. This age-grading 
technique was applied to determine the parity 
status of field captured B. oleae, B. 
cacuminata, and B. dorsalis (Fletcher et al. 
1978; Raghu et al. 2003). Based on 
comparisons of the morphological characters 
examined in this study, follicular relics and 
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ovary length are reliable indicators to 
determine the age structure of B. dorsalis.

Physiological states (i.e., nutritional state, 
mating status, etc.) coordinated with 
oogenesis influence females’ foraging 
behaviors (Jang and Light 1991; Prokopy et 
al. 1991; Prokopy et al. 1995; Jang et al. 
1998). One of the main tasks for a newly 
eclosed female is to forage for the nutrients 
required for egg production. A surge in 
protein feeding was recorded in B. tryoni at 
this stage (Meats and Leighton 2004). 
Behavioral studies have confirmed that female 
tephritids with developing ovaries have a 
stronger response to proteinaceous odors 
compared to mature females, which respond 
more strongly to host-fruit odors (Prokopy et 
al. 1991; Nigg et al. 1995; Cornelius et al. 
2000; Rull and Prokopy 2000). Physiological 
changes triggered by mating consequentially 
alter female behaviors from food- and mate-
oriented olfactory behaviors to a strong 
preference for host-fruit stimuli. Fluctuations 
of the egg load with age suggest alternating 
between food seeking and oviposition-site
seeking behaviors in order to obtain the 
protein needed for egg development (Kendra 
et al. 2006). The physiological age of flies 
collected from food-based traps may provide 
more complete information for monitoring 
purposes. From an applied perspective, the 
classification of ovarian developmental stages 
in conjunction with assessment of egg load 
and parity status will facilitate the evaluation 
of the age structure of a fly population 
responding to specific lures in field trapping 
studies. Detailed behavioral studies are 
required to determine the effects of egg load 
on food-foraging behavior of female B. 
dorsalis, including its relationships with host-
seeking and proteinaceous food-seeking 
decisions. The proposed classification system 
based on B. dorsalis in this study has 

applications for both laboratory and field 
research based on the observed characters of 
ovarian development as indicators for the 
female physiological age. The method 
described to characterize the parity status of 
B. dorsalis is the main key to determine the 
target physiological age group for control 
using food-based attractants in natural 
environments.
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Figure 1. Stages of ovarian development in female Bactrocera dorsalis. Stage 1 (A, black circle) and 2 (B) represent 
previtellogenesis development. Stage 3 (C) marks the initiation of vitellogenesis, and 4 (D) indicates late vitellogenesis, at which 
point the yolk occupies more than half the follicle and nurse cells (black circle) occupy the anterior end of the oocyte. The 
presence of the first mature oocyte, characterized by an intact chorion with a reflective surface, indicates the beginning of stage 
5 (E). Stage 6 (F) denotes parous females at the onset of oviposition, with the presence of follicular relics (F.R.) at base of the 
ovary (circle). High quality figures are available online.
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Figure 2. Egg load and ovary measurements (means and standard errors) of Bactrocera dorsalis five to 80 days old. High quality 
figures are available online.
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