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yearly trends in price commodity 
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Abstract 
The economic injury level (EIL) concept integrates economics and biology and uses chemical 
applications in crop protection only when economic loss by pests is anticipated. The EIL is de-
fined by five primary variables: the cost of management tactic per production unit, the price of 
commodity, the injury units per pest, the damage per unit injury, and the proportionate reduction 
of injury averted by the application of a tactic. The above variables are related according to the 
formula EIL = C/VIDK. The observable dynamic alteration of the EIL due to its different param-
eters is a major characteristic of its concept. In this study, the yearly effect of the economic 
variables is assessed, and in particular the influence of the parameter commodity value on the 
shape of the EIL function. In addition, to predict the effects of the economic variables on the EIL 
level, yearly commodity values were incorporated in the EIL formula and the generated outcomes 
were further modelled with stochastic linear autoregressive models having different orders. Ac-
cording to the AR(1) model, forecasts for the five-year period of 2010–2015 ranged from 2.33 to 
2.41 specimens per sampling unit. These values represent a threshold that is in reasonable limits 
to justify future control actions. Management actions as related to productivity and price com-
modity significantly affect costs of crop production and thus define the adoption of IPM and 
sustainable crop production systems at local and international levels. 
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Introduction 
 
The economic injury level (EIL) is an im-
portant concept in crop production and 
agriculture because it quantifies the 
cost/benefit ratio that underlies all pest control 
decisions to be adopted in integrated pest 
management (IPM) and sustainable agricul-
ture. IPM involves coordinated use of multiple 
tactics for optimizing the control of all classes 
of pests (insects, pathogens, vertebrates, and 
weeds) in an ecologically and economically 
sound manner (Dickler and Schäfermeyer 
1991; Dent 1994; Altieri and Nicholls 2000; 
Agra CEAS 2002; Damos and Savopoulou-
Soultani 2012).  
 
Concerns about consequences related to the 
use of non-selective insecticides have in-
creased the interest in the development of 
alternative means for pest control that have 
little or no impact on humans, beneficial or-
ganisms, and sensitive ecosystems (Higley 
and Pedigo 1993, 1996; Ehler 2006; Ifoulis 
and Savopoulou-Soultani 2006). Traditionally, 
conventional plant protection strategies are 
associated to a variety of problems, including 
environmental side effects, insecticide re-
sistance, negative impacts on natural enemies, 
safety for pesticide applicators, and important 
implications for the food supply due to unac-
ceptable pesticides residues (Altieri and 
Nicholls 2000; IPM Europe 2000). Moreover, 
the type of pest management actions, as relat-
ed to productivity and price commodity, 
significantly affects the costs of crop produc-
tion and thus defines the adoption of IPM and 
sustainable crop production systems at a local 
or even international level (Altieri and 
Nicholls 2000; IPM Europe 2000). 
 
Lately, the major IPM principles have been 
outlined by the European Commission and the 
European Parliament (adopted in the second 

reading, European Commission 2009a, b). 
Particularly, eight general principles IPM are 
currently identified and related to the follow-
ing topics (European Commission 2009a, b; 
Damos and Savopoulou-Soultani 2012): 
 

1. Measures for prevention and/or 
suppression of harmful organisms  

2. Tools for monitoring  
3. Threshold values as basis for decision-

making  
4. Non-chemical methods to be preferred  
5. Target-specificity and minimization of 

side effects  
6. Reduction of use to necessary levels  
7. Application of anti-resistance 

strategies  
8. Records, monitoring, documentation 

and check of success  
 
In practical terms, the major goal of IPM is 
not to eradicate pest populations but to accept 
the presence of a tolerable pest density, 
conserve environmental quality, and improve 
user profits (Pedigo et al. 1986; Higley and 
Pedigo 1993; Boller et all. 2004). However, 
this approach relies on the development and 
application of economic injury levels (EIL) 
and economic (action) thresholds (Cross and 
Dickler 1994; Buntin et al. 1996; Damos and 
Savopoulou-Soultani 2008, 2009, 2010).  
 
Generally, for the application of EILs, the 
development of a mathematical relation 
between insect pest injury and yield loss needs 
to be established first. This relation is called 
“damage function” or “damage curve” and 
consists of the biological part of the EIL 
concept (Buntin et al. 1996). If the damage 
function has been evaluated, the next step is to 
estimate future projections of the EILs in 
respect to the economic variables (Peterson 
and Hunt 2003; Damos and Savopoulou-
Soultani 2009, 2012). 

Downloaded From: https://complete.bioone.org/journals/Journal-of-Insect-Science on 24 Apr 2024
Terms of Use: https://complete.bioone.org/terms-of-use



 

Journal of Insect Science: Vol. 14 | Article 59  Damos 

Journal of Insect Science | http://www.insectscience.org	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
  	
 	
 	
 	
 	
 	
 	
 3 
 
 

The EIL by definition consists of an empirical 
relation rather than a dynamic one, and 
therefore the aim of the current work is not to 
rediscover that the EIL varies with changing 
market values of crops. In contrary, using this 
basic principle, efforts are made to move 
beyond the traditional cost-benefit equation 
and to capture the non-linear trends of EIL, 
utile for short coming extensions and long 
term validations, using stochastic models. In 
this context, the aim of the current work is to 
develop a general model that describes and 
predicts the yearly trends of EILs. Based on 
prior studies, yearly trends of the price 
commodity in the EIL model are incorporated 
in order to make future predictions. By 
keeping the deterministic skeleton of the EIL 
formula, first a yearly time series is generated 
in respect of the yearly trends of the price 
commodity. Finally, a stochastic linear 
autoregressive model is applied to make 
predictions for the EIL for the forthcoming 
years.  

 
The concept of economic injury levels 
The EIL is cornerstone for IPM and crop pro-
tection because it defines how much pest 
injury can be tolerated. The concept of the 
EIL integrates biology and economics and us-
es control actions (mostly pesticides) only 
when economic loss is anticipated (Pedigo et 
al. 1996). The EIL is further used to define the 
economic threshold, which is the operational 
criterion used by plant protection advisors and 
farmers to define the population density at 
which control measures should be initiated to 
prevent an increasing pest population from 
reaching the EIL (Pedigo et al. 1996).  
 
The EIL is based on the relation of five prima-
ry variables and can be estimated according to 
the following formula EIL = C/VIDK, in 
which C represents the cost of management 
tactic per production unit, V is the price of 

commodity, I is the injury units per pest, D is 
the damage per unit of insect injury, and K is 
the proportionate reduction of injury averted 
by the application of a tactic (Buntin 1996; 
Damos and Savopoulou-Soultani 2009, 2012). 
The variables I and D are related to each other 
and are the biological characteristics of the 
function by representing the yield loss associ-
ated per pest. The parameters D and I can be 
obtained from the slope of the yield, or dam-
age function (Y = a + bx), where Y = yield 
loss; a = 0, x = number of pests per sampling 
unit; and b = yield loss/pest, representing the 
loss per insect, which is equal to I*D or D’ 
(Damos and Savopoulou-Soultani 2009). 
 
In order to model yearly trends of the EIL, a 
representative industrial peach cultivation was 
chosen as a case study. In particular, the val-
ues of the EIL were estimated during 14 
successive years (1996–2010) in respect to the 
price commodity of each year (as given by 
public peach corporations and the Greek min-
istry of rural development and food). 
Moreover, for simplicity reasons, in this study 
other variables of the EIL model were consid-
ered as constant. 
 
Stochastic modelling of the economic injury 
level 
To address the challenge of modelling the 
EIL, a stochastic linear autoregressive model 
was applied. By using the EIL formula, first a 
yearly time series based on the parameters of 
each year was generated (Damos and 
Savopoulou-Soultani 2009). These yearly val-
ues of the EILs result in a stationary stochastic 
process that can be further represented by a 
linear autoregressive model with infinite order 
and uncorrelated residuals. 
 
Thus, considering no density dependency but 
similar variations, the EIL process equals: 
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(Equation 1) 
 
where { }tε

+∞
−∞  is a sequence of random varia-

bles known as white noise, satisfying that: 
E t( )ε = 0 and E t( )ε σ2 2=  with zero auto-
covariance in all cases and δt deterministic 
component.  
 
Hence, εt=N(0,σ2), and N stands for the nor-
mal distribution having variance σ 2 , and δt  is 
a deterministic component that is predictable 
from its past history and is uncorrelated with 
εt j−  for all j, and { }θ
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where L represents the lag operator, such 
that L x xj

t t j≡ − , p=1,2,…,k is the time lag of 
the stochastic process, so that in any of the 
EIL time series ty  may be written as:  
 

0
( )
p

t j t j t
j

y u yα ε−
=

= + ∑  
 
(Equation 3) 
 
or: 
 

1 ...t j t p t p ty u a y a y ε− −= + + + +  
(Equation 4) 
 
where εt  has zero mean and variance σε

2  or εt 
= WN(0,σ2

ε) and u  is assumed to be negligi-
ble.  
 

Equation (4) consists of the autoregressive 
model of order p, AR(p), in which the constant 
term u satisfies the condition that data do not 
have a zero mean (Brockwell and Davis 1996; 
Grunwald et al. 2000) .  
 
In the current work, three autoregressive mod-
els of order 1, 2, and 3 were generated, and 
their performances were statistically com-
pared. 
 
Parameter estimation 
Parameter estimates of the AR(p) were based 
on prediction error decomposition and maxi-
mum likelihood estimates. Considering that 
the probability of the sequence of the EIL re-
siduals is given by: 
 
L p i

i p

N

=
= +
∏ ( )ε

1
 

 
(Equation 5) 
  
which by terms of the  joint density function is 
(Harvey 1993): 
 
f y a f y y a f y y y an n n( ; , ) ( ,..., ; , ) ( ,..., ; , )σ σ σ2

1 1
2

1 1
2= ⋅− −

 
(Equation 6) 
 
The rule is further applied for all successive 
observations obtaining: 
 
f y a f y y a f y y ai j

j p

n

p( ; , ) ( ; , ) ( ,..., ; , )σ σ σ2
1

1

2
1

2= ⋅−
= +
∏

 
(Equation 7) 
 
where y y yj j− −= ʹ′1 1 1( ,..., ) . 
 
Since each one of the conditional distributions 
of the AR model is: 
  
N a yjj

p
t j( , )

= −∑ 1
2σ   

 
(Equation 8) 
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Figure 1. Time series plot of the EIL (insect larvae/fruit) in respect to observation year. High quality figures are available online. 
 
 
 
 
 
 
 
 

and  
 
f y y ap( ,..., ; , )1

2σ  
 
(Equation 9) 
 
is the marginal distribution of the first p ob-
servations.  
 
The exact log likelihood for the AR(p) model 
is given by (Hamilton 1994): 
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2
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(Equation 10) 
 
Considering EIL as a time series and in the 
case of the AR having order 1, the relevant 
marginal distribution is: 
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(Equation 11), 
  
equation (10) results to: 
 
log[ ( ; , ) {log( ) log( ) ( )}f y a

a
y

a
1 1

2
2
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2 1

2 1
2
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1
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σ π
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σ

= − +
−

+
−  

 
(Equation 12). 
 
Model comparison 
In order to determine the effect of more pa-
rameters on the AR model the Akaike 
informational criterion (AIC) were used 
(Akaike 1974; Damos and Savopoulou 2010). 
Thus, if x is the vector of the time series ob-
servations used to estimate the parameters θ of 
the m model among M candidate models 
(m=1,2,…,M), then considering that 
g x xm(  ( ))θ  is the maximum likelihood func-
tion for model m and ρ is the number of 
parameters, then the AIC is: 
 
AIC m g x x

m
( ) ln (  ( ))= − +2 2θ ρ  

 
(Equation 13) 
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Figure 2. Individual moving range chart that tracks the levels and range of the EIL stochastic process and respective upper (UCL) and 
lower (LCL) 95% confidence intervals. High quality figures are available online. 
 
 
 
 
 
 
 
 

The above criterion permits inferences on how 
the different number of parameters adds to the 
explanatory power of the candidate model 
(Damos and Savopoulou-Soultani 2011). 
 
The short described mathematical framework 
and the related assumptions and principles 
were used to analyze the time series structure 
of the EIL. 
 
Results and Discussion 
 
Figure 1 depicts the generated time series 
of the EILs in respect to year. The plotted 
EIL values represent the number of indi-
vidual pests (i.e., moth larvae) detected at 
each sampling unit (i.e., fruit). These val-
ues were estimated in respect to the mean 
seasonal trends of the price commodity for 
representative industrial peach varieties of 

public fruit corporations of Northern 
Greece and by keeping other parameters 
constant. The observable dynamic altera-
tion of the EIL is the result of yearly 
changes on its different parameters (here: 
price commodity). However, one can not 
exclude that value of the EILs can be 
slightly modified with respect to the other 
economic parameters, such as the mean 
market price for different pesticide catego-
ries. 
 
Figure 2 displays the individual control 
charts of the EIL variable of interest in re-
gards to of the successive-yearly 
observation points. These charts track both 
the process level and process variation, and 
at the same time detect outliers. Only one 
point is more than threefold standard devia-
tions from the center lines. This indicates 
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Figure 3. Autocorrelation (left) and partial autocorrelation (right) and respective 5% confidence intervals for the EIL regarded as a time 
series variable. High quality figures are available online. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Table 1. Parameter estimates and model evaluation statistics for the stochastic autoregressive model (AR) in respect to model order in 
modelling EIL variables. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

that almost all observed values of the EIL 
are normally distributed in their sampling 
space. 
 
Further more, Figure 2 by default estimates 
the process variation, s with MR/ d2, and 
the average of the moving range divided by 
an unbiasing constant. The moving range is 
of length 2, since consecutive values have 
the greatest chance of being alike. Special 
causes result in variation on the EIL that 
can be detected and, to some extent, be 
managed, while on the other hand common 
cause variation is inherent in the process. 
Hence, the EIL dynamic stochastic process 
is in control when only common causes 
(not special causes) affect the process out-
put because most values fall within the 
bounds of the control limits and do not dis-
play non random patterns (Damos et al. 
2011).  
 
To date, these values represent how meas-
urements of the EIL samples process may 
change over time and are practically used 
to define if the EIL is a weak stationary 

processes and can be described by an auto-
regressive model with normally distributed 
errors. 
 
Figure 3 depicts the autocorrelation and par-
tial autocorrelation function for the EIL 
variable. In both cases, the process is depend-
ent on short previous values. This is indicated 
by the decrease in the correlations of the suc-
cessive series points separated by k time units. 
The detection of significant time lags is fun-
damental for the description of any stochastic 
process (i.e., population feedbacks are funda-
mental characteristics of ecological organisa-
organisation). More important, such kind of 
information is a prerequisite for further auto-
regressive modelling. For instance, because 
autocorrelation and partial autocorrelation 
drop considerable from lag1 towards lag3, we 
come to the conclusion that the process has 
short memory. In other words, the EIL values 
of the foregoing years exert influence on the 
EILs of the coming year. Understanding how 
time lags contribute to the EIL projected val-
ues, we are able to detect seasonal trends and 
periodicity utile in forecasting. 
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Figure 4. Residual plots and forecasting performance of the AR(1) model in describing seasonal trends of the EIL. High quality figures 
are available online. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
Table 1 gives the estimated parameters of the 
three linear autoregressive models that were 
applied to describe the EIL as stochastic pro-
cess. The performance statistics in respect to 
model order are also given. According to the 
maximum likelihood estimates and the related 
AICs, the AR(1) model can be used to de-
scribe the EIL process because more number 
of parameters do not add to the explanatory 
power of the AR model. These estimates re-
veal the physical process that builds 
persistence in to EIL and are further used to 
generate future values (i.e., Figure 5). Moreo-
ver, despite the EIL being conversant at 
present only, it is actually composed of pa-
rameters either uncertain or entirely doubtful, 
none of which (unfortunately) can be predict-

ed directly. Therefore, this analysis advances 
the science behind EIL’s current autoregres-
sive approach and takes into account the 
magnitude of the likelihood that the EIL will 
take certain values. Thus, if there is a ‘true’ 
EIL, it should be stochastic rather than deter-
ministic, and from this standpoint the current 
approach may advance the EIL not only from 
a descriptive-deterministic representation to-
wards a statistical-stochastic one, but also to a 
tool used to perform predictions. 
 
Figure 4 illustrates the model performance of 
the AR(1) model in describing the seasonal 
trends of the EIL time series. According to the 
normal probability plot, the generated histo-
grams, and the residual error plots, it is 
observable that the data are normally distrib-
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Figure 5. Time series plot of the EIL (insect larvae/fruit) and AR(1) model fits in respect to observation year (1996–2010); updated EIL 
values (2011–2012) and forecast of the AR(1) models for the successive five-year period (2011–2015). High quality figures are available 
online. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

uted, and therefore the selected AR(1) model 
describes with high accuracy most observa-
tions.  
 
In a real time context, this model can be pro-
jected over the future (i.e., based on the 
autoregressive parameter values) and provide 
means to evaluate the profitability (or not) of 
certain varieties (or crops). For example, it is 
quite obvious that new varieties having higher 
EILs are advantageous compared to regular 
ones and are worth being planted in more are-
as. Furthermore, because selling of the crop is 
nearly always done shortly after harvest, while 
the EIL is applied earlier, the current long 
term analysis can be used to inform the 
necessity of short-term decision making using 
the predictions to gain threshold realities of 
the following year. 
 

Figure 5 generates the predictions of the EIL 
values according to the applied autoregressive 
model having order one (AR(1)). Forecasts for 
2010–2015 ranged from 2.33 to 2.41 individ-
uals per sampling unit. These values represent 
a threshold that is in reasonable limits to justi-

fy future control actions taken by farmers. In 
other words, according to the applied model 
and the respective forecasts, high quality 
peach products (i.e., composts) can be pro-
duced for the next five years in the current 
frame of IPM and supply markets.  
 
Moreover, Figure 5 also presents the generat-
ed model predictions according to the 
autoregressive parameter estimate of the 
AR(1) model. Simulated data are generally in 
reasonable limits, and forecasts matched over 
the years 2011 and 2012 were quite close to 
observed values.  
 
The most related work, which deals with un-
certainty and variability in the variables that 
determine the EIL, including crop market val-
ue, is that of Peterson and Hunt (2003). 
Particularly, they have considered each EIL 
parameter separately and their probability dis-
tributions at a fixed point, and then 
propagated them into the output of the EIL 
model. Moreover, based on Monte Carlo sim-
ulations, they generated for each of the EIL 
parameters specific distributions, most of 
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them having kurtosis and positive skewness 
(e.g., lognormal), and defined a probabilistic 
economic injury Level (PEIL). 
 
In this work, however, we considered the EIL 
as a time process that is captured by a typical-
normal joint distribution and without boot-
strapping. Moreover, the approach 
differentiates conceptually, considering that 
we are interested in performing non-linear 
predictions rather than estimating the degree 
of EIL uncertainty associated with the type of 
distribution and mean percentiles. 
 
Conclusion 
Although economic-threshold models are de-
terministic in nature and either contain or are 
linked, to some extent, to population-dynamic 
models (Dennis et al. 1986), they take the 
form of prediction models by including varia-
bles that express random behaviour in very 
few studies (Peterson and Hunt 2003). How-
ever, this work handled the EIL’s concept as a 
dynamic stochastic process that is evolving in 
time and makes efforts to describe its behav-
iour based on linear autoregression models 
having different orders.  
 
By this context the EIL formula is used as a 
deterministic skeleton, which was used to 
generate different outcomes according to year-
ly fluctuations of the economic variables. 
Since alterations on yearly price commodities 
of crop products mostly behave randomly, 
they also result in non-deterministic behaviour 
of the EIL. By this context, a model can be 
fitted on EIL serial data to describe the sto-
chastic process and make forthcoming 
predictions. 
 
To date, there is no dynamic EIL reported in 
the literature that incorporates yearly stochas-
tic trends of the economic variables. In addi-
addition, most procedures are focusing on the 

estimation of the yield function, or further 
proceed on the estimation of constant EILs, 
and the probabilistic EIL differs conceptually 
in comparison to the time series approach that 
was followed (Pedigo et al. 1986; Onstad 
1987; Pedigo 1995; Peterson and Hunt 2003; 
Moschos 2005)  
 
From a biological standpoint, although the 
construction of the damage function is a very 
difficult task and a prerequisite of estimating 
EILs, the multidisciplinary aspect of the EIL 
concept enables the evaluation of economic 
variables (Southwood and Norton 1973; Plant 
1986; Pedigo 1995; Damos and Savopoulou-
Soultani 2012).  
 
The issue of temporal EIL modelling may be 
much more complicated, considering that bio-
logical parameters are also affected 
temporally and spatially. Because in most cas-
es insect feeding behaviour and development 
are temperature driven (Logan et al. 1976; 
Samietz et al. 2007), environmental noise can 
modify the damage function. Additionally, 
other factors that affect the damage function 
and EIL are time delays on insect develop-
ment and injury rates in respect to host 
performance (Higley and Pedigo1993). Never-
theless, it is feasible for a given species and 
cultivation to construct the damage function, 
estimate the parameter D, and proceed to es-
timation of the economic variables.  
 
Thus, for a regular presence of economically 
important pests in specific cultivation regions 
and for a given pesticide efficacy (K), the EIL 
is strongly governed by the cost of manage-
ment (C) and the commodity value (V). In 
other words, different combinations among 
the random economic variables affect the re-
spective EIL, and therefore the proposed 
stochastic approach in modelling EIL levels is 
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useful in predicting future pest and crop spe-
cific economic threshold levels.  
 
Finally, applying multivariate stochastic mod-
els can incorporate more potential variables 
and increase prediction capability of EILs and 
adoption of IPM systems towards sustainable 
agriculture. 
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