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ABSTRACT—Ayu (Plecoglossus altivelis) is a teleost whose gonadal development is stimulated by short-
ened daylength and is a useful model to study the mechanism of photoperiodism. However, localization
and characteristics of the photoreceptor that mediates photoperiodism in gonadal development remain to
be determined. To identify the photoreceptive molecule that regulates photoperiodic responses, in the
present study, we have cloned and characterized the cDNA encoding an opsin gene expressed in the ayu
brain, a putative site of the photoreceptor for photoperiodism. The identified opsin was rhodopsin that is
identical to the rhodopsin expressed in the retina. Phylogenetic analysis demonstrated that this rhodopsin
belongs to the retina-type but not to the pineal-specific rhodopsin group. Genomic polymerase chain reac-
tion (PCR) demonstrated that the ayu rhodopsin gene is intron-less. Southern and Northern blots and
reverse-transcription PCR analyses indicate that the same rhodopsin gene is expressed in the retina and
the brain but not in the pineal organ of ayu. These results indicate that the rhodospin gene is expressed
in the retina and brain and mediates not only visual but also nonvisual functions such as photoperiodism

and entrainment of the circadian clock.
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INTRODUCTION

Light regulates physiological, behavioral and biochemi-
cal activities in vertebrates through photoreceptors. A typical
example is vision. Vertebrates perceive their environment
(shapes, colors and irradiance) through rod and cone pho-
toreceptors in the retina. In addition, non-visual functions
such as the entrainment of the circadian clock, melatonin
secretion, gonadal developments, and body color change
are regulated by light (Benoit, 1978; Falcon, 1999; Campbell
et al., 2001; Oshima, 2001).

Photoreceptive organs that mediate non-visual func-
tions known so far are the retina, skin, pineal organ, and
brain. The retina is involved in the photic entrainment of the
circadian clocks in the retina itself in vertebrates and in the
suprachiasmatic nucleus in mammals (for review, see Hast-
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ings and Maywood, 2000; Mangel, 2001).

The photosensitivity of skin was reported earlier in non-
mammalian vertebrates by direct illumination on the skin (for
review, see Oshima, 2001). These results propose that
there are photoreceptors in the skin regulating body color
change. In fact, a novel opsin named melanopsin has
recently cloned in amphibians and is considered as the most
probable candidate for the photoreceptive molecule that
regulates body color change (Provencio et al., 1998).

Although the photosensitivity of the pineal organ was
early inferred by von Frisch (1911), the first direct evidence
was obtained by an electrophysiological study (Dodt, 1963).
Electronmicroscopic and immunohistochemical studies
revealed that there are cone-like photoreceptors with well-
developed outer segments that are immuno-reactive against
opsin antibodies (see Falcén, 1999). Recently, pinopsin in
birds and vertebrate ancient (VA) opsin and exo-rhodopsin
(pineal-specific rhodopsin) in fish were cloned from the
pineal organ (Okano et al, 1994; Soni and Foster, 1997;
Mano et al.,, 1999; Kojima et al., 2000; Philip et al., 2000a).

It has been suggested that the fish brain contains the
photoreceptors that regulate body color and locomotor activ-
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ity (von Frisch, 1911; Scharrer, 1928). The existence of
photoreceptors regulating gonandal development was
subsequently demonstrated in the avian brain (Benoit,
1978). Thus, lines of evidence indicate that the brain of non-
mammalian vertebrates is a photoreceptive organ (Tabata,
1992).

Immunohistochemical studies also suggested the exist-
ence of photoreceptors in the brain of nhon-mammalian ver-
tebrates. Opsin-like immunoreactivity was first found in
cerebrospinal fluid-contacting neurons in bird (Silver et al.,
1988) and later in reptiles and amphibians (for review, see
Yoshikawa and Oishi, 1998). In fish, immunocytochemical
studies demonstrated the existences of opsin-like molecules
in the hypothalamus of lamprey and Atlantic salmon (Gar-
cia-Fernandez et al., 1997; Philip et al., 2000b). In addition,
immunoreactivity to the antibody against transducin, G pro-
tein involved in photosingal transduction in the retina, was
observed in the diencephalon and the telencephalon of lam-
prey and Atlantic salmon, respectively (Garcia-Fernandez et
al., 1997; Philip et al., 2000b). Furthermore, cDNAs encod-
ing rhodopsin and pinopsin have been cloned from the
hypothalamus in pigeon and frogs, respectively (Wada et
al., 1998; Yoshikawa et al., 1998). In situ hybridization stud-
ies revealed the expression of melanopsin gene in the
hypothalamus in amphibian and VA opsin gene in the epith-
alamus in fish (Provencio et al.,, 1998; Kojima et al., 2000;
Philp et al., 2000b). Thus, it is highly probable that these
opsins expressed in the brain regulate physiological func-
tions in non-mammalian vertebrates.

The ayu, Plecoglossus altivelis, is an anadromous
teleost fish that belongs to the family Osmeridae. This fish
shows clear photoperiodism in gonadal development (Fush-
iki, 1979). Therefore, ayu is a useful model to study photo-
periodism in gonadal development in fish. Interestingly,
even after removal of the eyes and pineal organ, photoperi-
odic responses in gonadal development persisted (Suzuki,
1975), indicating the presence of another photoreceptive
organ(s). Considering from the experimental results des-
cribed above, we hypothesized that the photoreceptive
molecule in the brain is a principle regulator of gonadal
development in this species. In the first place to elucidate
this hypothesis, we have cloned and characterized a cDNA
encoding rhodopsin from the ayu brain.

MATARIALS AND METHODS

Molecular cloning of ayu rhodopsin cDNA

The brain and retina were dissected out from the ayu supplied
from Chiba-Prefectural Experimental Fresh-Water Industries Station
and Chiba-Prefectural Sea-Farming Center, quickly frozen in liquid
nitrogen and stored at —80°C until total RNA preparation. Total RNA
was extracted from these tissues using RNA extraction solution
(Isogen; Nippongene, Toyama, Japan) and used for cDNA synthe-
sis using Ready-To-Go™ T-primed first-strand cDNA synthesis kit
(Amersham Pharmacia Biotech, Tokyo, Japan) according to manu-
facturer’s instructions.

The cDNAs were subjected to polymerase chain reaction
(PCR) amplification with a pair of degenerate oligonucleotide prim-
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ers, Op-Fw and Op-Ryv, designed from nucleotides corresponding to
a region from sixth to seventh transmembrane domain of vertebrate
opsins (Yoshikawa et al., 1998). Partial opsin cDNA was amplified
in a reaction mixture (total volume of 20 pl) consisted of 1XPCR
buffer (Takara, Shiga, Japan), dNTPs (200 uM; Takara), Tag DNA
polymerase (0.5 U; Takara), Op-Fw (0.5 uM), Op-Rv (0.5 uM) and
cDNA template (1 ul). The first PCR was performed as follows:
denaturation at 94°C for 3 min, followed by 35 cycles of 94°C for 1
min, 42°C for 1 min, and 72°C for 1 min and then 72°C for 10 min.
A 10-fold-diluted reaction mixture of the first PCR served as a tem-
plate for a second PCR with the same primers and conditions. Sub-
cloning and sequencing of the cDNA fragments were carried out as
described elsewhere (Okubo et al., 2001).

We obtained two different cDNA fragments from the ayu brain.
BLASTN search (Altschul et al., 1997) in October 1999 revealed
that one cDNA fragment exhibited the highest homology to the
rhodopsin of a teleost, milkfish Chanos chanos (DDBJ accession
number AF148142) and the other cDNA to vertebrate ancient (VA)
opsin of a teleost, Atlantic salmon Salmo salar (DDBJ accession
number AF001499). In this study, we characterized the former
cDNA encoding rhodopsin (see below).

To obtain the full-length rhodopsin cDNA from the brain and
retina of ayu, poly (A)* RNA was extracted from the brain and retina
using Oligotex-dT30 (Takara), and then cDNA ligated adaptor
nucleotides including AP1 (5-CCATCCTAATACGACTCACTAT-
AGGGC-3) and AP2 (5-ACTCACTATAGGGCTCGAGCGGC-3)
sequences was synthesized using Marathon™ cDNA amplification
kit (Clontech, Palo Alto, CA, USA). Specific primers were designed
for rapid amplification of cDNA ends (RACE): fw1 (5-TCGTCCT-
GATGGAGATCTCCTACCTG-3’) and fwn1 (5-AGCGTGGCCTGG-
TACATCTTCTGC-3’) for 3-RACE; rvl (5-AAAGAAGGCCGGG-
GCTGTCATGAAG-3’) and rvn1 (5-CTTCCCTGATTGCAGAAGAT-
GTACCAG-3’) for 5-RACE. 3-RACE was executed with the prim-
ers AP1 and fw1 (0.5 pM each) in a reaction mixture (total volume
of 20 pl) consisted of 1xPCR buffer, INTPs (200 uM) and LA DNA
polymerase (1 U; Takara). The PCR was performed as follows:
denaturation at 94°C for 1 min, followed by 5 cycles of 94°C for 30
sec and 72°C for 1 min, and 5 cycles of 94°C for 30 sec and 70°C
for 1 min, and 30 cycles of 94°C for 30 sec and 68°C for 1 min then
72°C for 10 min. A 100-fold-diluted reaction mixture of the PCR
served as a template for a nested PCR with the primers AP2 and
fwn1 (0.5 uM each) in a reaction mixture (total volume of 20 ul) con-

Part E

Fig. 1. Schematic representation of the ayu brain (sagittal view)
that depicts dissection used for RT-PCR analysis of rhodopsin gene
expression in brain areas. The brain was divided into five parts; part
A, olfactory bulb and telencephalon; part B, diencephalon; part C,
optic tectum; part D, cerebellum; part E, medulla oblongata and spi-
nal cord. C, cerebellum; D, diencephalon; M, medulla oblongata; O,
optic tectum; OB, olfactory bulb; ON, optic nerve; SC, spinal cord; T,
telencephalon.
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sisted of 1xPCR buffer, dNTPs (200 uM) and Taqg DNA polymerase
(0.5 U). The nested PCR was performed as follows: denaturation at
94°C for 1 min, followed by 5 cycles of 94°C for 30 sec, 69°C for
30 sec and 72°C for 30 sec, and 5 cycles of 94°C for 30 sec, 67°C
for 30 sec and 70°C for 30 sec, and 30 cycles of 94°C for 30 sec,
65°C for 30 sec and 70°C for 30 sec, then 72°C for 10 min. 5'-

RACE was also executed with the primers AP1 and rv1 and then
nested PCR with the primers AP2 and rvn1 under the same condi-
tions used for 3-RACE. Finally, the cDNA including the entire cod-
ing region of the ayu rhodopsin was obtained by PCR amplification
with a pair of primers, fw2 (5-CCATGAACGGCACAGAGGGAC-3)
and rv2 (5-CGCTGGATCGCGGGGTCCATGAGAG-3’), which cor-

ccatctctct
cctgtccagccagacaaaacaacaccaccgaaggctgattgcaaccgcaagaccgcaace
ATGAACGGCACAGAGGGACCCTTTTTCTATGTCCCTATGTCAAATGCCTCCGGCATTGTC
M NGTEGPTFTFY VP MS (:) AS G IV
AGGAGTCCTTATGAATACCCTCAGTACTACCTTATCAACCCAGCAGCATACTTCATGCTG
R SPYEYPQYYLTINPAAYTFML
GCCTGCTACATGTTCTTTCTCATCATCACCGGCTTCCCCATCAACTTCCTAACACTGTAC
ACYMTFEFLTITITITGEFPTINTFTILTTLY
GTCACCATCGAGCACAAGAAGCTGAGGACCGCCCTAAACTACATCCTGCTGAACCTGGCT
VTI EHKKLRTALNYTITTLILNTLA
GTGGCTGACCTCTTCATGGTGATCGGTGGCTTCACCACCACATTGTACACATCCATGCAT
VADLFMVYVIGGFTTTLYTSMH
GGCTACTTCGTCTTCGGTAGGACTGGCTGCAACATCGAAGGATTTTGTGCTACCCTCGGT
GYFVFGRTGONTIEGFCATLG
GGTGAGATTGCCATGTGGTCCCTGGTTGTCCTGGCTATTGAGAGGTGGGTGGTTGTCTGC
G (:) I AMWSLVYVLAIERWYVV VC
AAGCCCATGACCAACTTCCGCTTTGGTGAGAACCATGCCATCATGGGTGTTGCGTTCACC
K PMTNFRTFGENUHAIMGVYATFT
TGGGTGATGGCCGCTGCCTGTGCTGTGCCCCCACTCTTCGGCTGGTCCCGCTACATCCCA
WVvVMAAACAVPPLFGWS SR RYTF?P
GAGGGCATGCAGTGCTCATGCGGAATCGACTACTACACCCGTGCCCCCGGCTTTAACAAC
EGMQC S (:) G I DY YTRAPGTEFNN
GAGTCCTTTGTGGTCTACATGTTCATTGTCCACTTCACGCTTCCTCTGACCGTCGTCACC
ESFVVYMFTIVHFTTLPLTVVT

TTCTGCTATGGCCGTCTGCTGTGCACCGTCAAGGAGGCAGCTGCTGCCCAGCAGGAGTCC

FCYGRLLCTVKEAAAAQAQES
GAGACCACCCAGAGGGCCGAGAGGGAAGTTACCCGCATGGTCGTCCTGATGGAGATCTCC

ETTQRAEREVTRMVVLMETS
TACCTGGTGTGCTGGTTGCCCTATGCCAGCGTGGCCTGGTACATCTTCTGCAATCAGGGA

YLV CWLPYASVAWYTITFCNR QG
AGTGAGTTTGGCCCCGTCTTCATGACAGCCCCGGCCTTCTTTGCCAAGAGCTCCGCTCTC

SEFGPVFMTAPAFTFAKSSAL
TACAACCCCCTCATCTACGTGTGCATGAACAAGCAGTTCCGCCACTGCATGATCACCACC

Y NP LIYVCECMNKOQQFRHCMITT
CTGTGCTGCGGAAAGAACCCCTTCGAGGAAGAGGAGGGAGCGTCCACGACAGCCTCCAAG

L ¢CGKNPTFEEEEGASTTASK
ACCGAGGCCTCCTCCGTGTCCTCCAGCTCCGTGGCCCCTGCAtaaatgggetetcataga

TEASSVSSS SV AP A X
ccecgegateccagegtgcacaaagaagacttetgcaccececcgggaaacgactgaaggcta
tcgtatacagaaataacttectttttgtatttttacaaaccagttggttcaacctaatga
cagttgcagaagagggcagcccaagaaaaagttgtttctgtatgtacagagagtccagtyg
taacgatgcataagatgttttcttttcctgaaatgaaagcaaaatatcttttatctttita
cagttggagtctatatgttactggcttatttgtgaatgtagaggcatgtaatcaaggcaa

cgtadaataaaapgcactttgcaaatg

-70 bp

60
20
120
40
180
60
240
80
300
100
360
120
420
140
480
160
540
180
600
200
660
220
120
240
780
260
840
280
900
300
960
320
1020
340
1080
354
1140
1200
1260
1320
1380
1478

Fig. 2. The nucleotide sequence of cDNA and deduced amino acid sequence of ayu rhodopsin. Key amino acids (N15, C110, E113, E122,
C187, K296) are enclosed in a circle (see text). The translation stop-codon is designated by the asterisk and the polyadenylation signal is
enclosed in a square. The sequence of the probe used for genomic Southern and Northern blot analyses is underlined.
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respond to the 5- and 3'-flanking region, respectively. A reaction
mixture (total volume of 20 ul) consisted of 1XPCR buffer, dNTPs
(200 uM), Taq DNA polymerase (0.5 U), fw2 (0.5 uM), rv2 (0.5 uM)
and cDNA template (1 pl). The PCR was performed as follows:
denaturation at 94°C for 3 min, followed by 30 cycles of 94°C for
30 sec and 68°C for 3 min. To determine the sequence of full length
ayu rhodopsin cDNA, subcloning and sequencing of these cDNA
fragments were carried out as described above.

Construction of molecular phylogenetic tree

Amino acid sequences of opsins were obtained from DDBJ
(http://srs.ddbj.nig.ac.jp/index-j.html). The sequences were aligned
with ayu rhodopsin by Clustal W (Thompson et al., 1994). The posi-

Squid rhodopsin

98

E

T. Masuda et al.

tions containing any gaps were eliminated for construction of molec-
ular phylogenetic trees. A phylogenetic tree was constructed by
neighbor-joining methods with bootstrap confidence values based
on 1000 replicates by using PHYLIP 3.572 software package
(Felsenstein, 1989).

Genomic Southern blot analysis

Genomic DNA was extracted from the liver of an individual ayu
as described previously (Okubo et al., 2001). Genomic DNA (10 pg)
was digested with the restriction enzymes, Dra |, EcoT14 |, Nco |,
or Pst |, electrophoresed on a 0.9% agarose gel and transferred to
a Biodine nylon membrane (Pall Gelman Sciences, Ann Arbor, MI,
USA). The membrane was prehybridized in PerfectHyb™ Hybrid-
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Chicken melanopsin
Xenopus melanopsin

Atlantic salmon VA

99 36 360 Chickep pinc?psin
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Goldfish red
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Goldfish
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97 Pineal-specific
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I—— Zebrafish exo-rhodopsin
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Eel (Deep sea)

Eel (Fresh water)
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97 Fugu
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0.1
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Fig. 3. Phylogenetic analysis of the deduced amino acid sequences of ayu rhodopsin with opsins and rhodopsins of selected species. The
deepest root was determined by using the sequences of invertebrate opsins (squid rhodopsin, DDBJ/GenBank/EMBL accession number
Z49108; Drosophila rhodopsin, XM081147) as outgroups in opsins and vertebrate opsins (chicken violet opsin, M92039; goldfish ultraviolet
opsin, D85863) for rhodopsins. Bootstrap confidence values are based on 1000 replicates. The scale bar is calibrated in substitutions per site.
The accession numbers of opsins used for phylogenetic analysis are follows; chicken iodopsin, X57490; Atlantic salmon VA opsin, AF001499;
pinopsins (toad, AF200433; chicken; U15762); melanopsins (mouse, AF147789; chicken, AY036061; Xenopus; AF014797); red sensitive
opsins (Xenopus, U90895; goldfish, L11867); green sensitive opsins (chicken, M92038; goldfish, L11865); blue sensitive opsins (chicken,
M92037; zebrafish, AF109372); ultraviolet opsins (chicken, M920039; goldfish, AF109373); Atlantic salmon ERrod-like opsin, AF201469; fugu
ERrod-like opsin, AF201472; zebrafish exo-rhodopsin, AB025132; rhodopsins (bovine, M12689; human, U49742; rat, Z46957; chicken,
D00702; tiger salamander, U36574; bull frog, S79840; Xenopus, U2380; Anolis carolinensis, L31503; Atlantic salmon, AF201470; ayu,
AB086404; deep sea eel, L78008; fresh water eel, L78007; fugu, AF201471; goldfish, L11863; zebrafish, AF105152).
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ization Solution (Toyobo, Tokyo, Japan) at 68°C for 2 hr. Then the
solution was replaced and the membrane was hybridized with the
32p _labeled cDNA probes (see below) in PerfectHyb™ Hybridiza-
tion Solution at 68°C for 18 hr. After hybridization, the membrane
was washed in 2xSSC containing 0.1% SDS at 68°C for 5 min.
Then the membrane was exposed to X-ray film RX-U (Fuji Film,
Tokyo, Japan) at —80°C for 1 week.

The cDNA probe for ayu rhodopsin (396 bp: from nucleotide
701 in the open reading frame to 1095 in the 3’-untranslated region)
was generated and labeled with [0-*2P]JdCTP (Amersham Pharma-
cia Biotech) by PCR amplification. The cDNA probe did not overlap
any of the four restriction sites used to digest the genomic DNA.

Genomic PCR

Genomic DNA was applied for PCR amplification with a pair of
ayu rhodopsin specific primers, fw2 and rv2. A reaction mixture
(total volume of 20 pl) consisted of 1xPCR buffer, dNTPs (200 uM),
Tag DNA polymerase (0.5 U), fw2 (0.5 uM), rv2 (0.5 uM) and
genomic DNA (100 ng). cDNA (3 pg) and total RNA (150 pg)
obtained from the ayu brain were also used as templates as the
control. The PCR was performed as follows: denaturation at 94°C
for 3 min, followed by 30 cycles of 94°C for 30 sec and 68°C for 3
min. Each reaction mixture was electorophoresed on 2% agarose
gels and stained with ethidium bromide.

Northern blot analysis

Total RNA was isolated from the brain and retina as above.
From the brain total RNA, poly(A)*RNA was purified with Olgotex-
dT30 according to manufacturer’s instructions. Poly(A)*RNA (10
ug) from the brain and total RNA (10 ug) from the retina were ele-
crotophoresed on 0.9% formamide-agarose gel and transferred to
a Biodine nylon membrane. The membrane was UV cross-linked
(120,000 pJ/icm?) using Spectrolinker XL-1500 (Westburg, NY,
USA) and air-dried in a dry oven at 80°C for 20 min. Following pro-
cedures for hybridization and the labeled probe were the same for
the Southern blot analysis.

Reverse-transcription (RT)-PCR

The brain was dissected out from the ayu and quickly divided
into five parts; part A, olfactory bulb and telencephalon; part B,
diencephalon; part C, optic tectum; part D, cerebellum; part E,
medulla oblongata and spinal cord (Fig. 1). Total RNA was isolated
from the retina, pineal organ and each brain area as described
above. Total RNA from each tissue (3 ug) was treated with DNase
(Promega Biosciences, Inc., CA, USA) and then used for cDNA
synthesis using Ready-To-Go ™ T-primed first-strand cDNA synthe-
sis kit according to manufacturer’s instructions. These cDNAs were
subjected to PCR amplification with a pair of ayu rhodopsin specific
primers, fw3 (5-CCATGAACGGCACAGAGGGAC-3') and rv2 in a
reaction mixture (total volume of 20 pul) consisted of 1XxPCR buffer,
dNTPs (200 uM), Taq DNA polymerase (0.5 U ), fw4 (0.5 uM), rv3
(0.5 uM) and cDNA template (1 pl) or total RNA (negative control;
1 ul). The PCR was performed as follows: denaturation at 94°C for
3 min, followed by 40 cycles of 94°C for 30 sec and 68°C for 3 min.
Then the reaction mixture was electorophoresed on 2% agarose
gels and stained with ethidium bromide.

RESULTS AND DISCUSSION

Characterization of opsin expressed in the ayu brain
Fig. 2 shows the nucleotide sequence of cDNA and
deduced amino acid sequence of ayu rhodopsin. We identi-
fied 1478 bp of full-length ayu rhodopsin cDNA except
poly(A)* tail. The rhodopsin cDNA sequence obtained from
the brain was identical with that from the retina. This cDNA
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encodes a protein with 354 amino acid residues.

The deduced amino acid sequence shows typical fea-
tures of vertebrate rhodopsin: a Schiff base linkage with the
chromophore (K296), a counter-ion of the protonated Schiff
base (E113), glycosylated site (N15), a disulfide bond
(C110, C187), and glutamate (E122) found commonly in
vertebrate rhodopsins (Karnik et al., 1988; Ohguro et al.,
1994; Sakmar et al., 1989; Shichida et al., 1994; Wang et
al., 1980; Zhukovsky et al., 1989) are conserved.

A molecular phylogenetic relationship of vertebrate
opsins is shown in Fig. 3. In this tree, ayu rhodopsin cDNA
was classified into the rhodopsin group but not to the other
opsin groups. Fig. 2 also shows a molecular phylogenetic
tree of vertebrate rhodopsins. Ayu rhodopsin was classified
into the retina-type rhodopsin subgroup. The ayu rhodopsin
expressed in the brain was clearly different from the pineal-
specific rhodopsin (exo-rhodopsin or ERrod-like opsin) in
teleosts. Thus, the retina-type and pineal-specific rhodop-
sins had diverged at the very early stage in the course of
molecular evolution of teleost rhodopsins.

These results indicate that the cDNA cloned from the
brain of ayu encodes functional rhodopsin, although func-
tional expression and reconstitution experiments should be
required to confirm its photosensitivity.

Genomic Southern blot and genomic PCR

The probe specific to the ayu rhodopsin cDNA
sequences was used for genomic Southern blot analysis in
order to examine the copy number of the ayu rhodopsin
gene. Hybridization with the ayu rhodopsin cDNA specific
probe gave a single band of approximately 1.8, 1.1, 16.4,
and 3.1 kb for Dra |, EcoT14 |, Nco |, and Pst | digestions,
respectively (Fig. 4). These results indicate that the ayu
rhodopsin is coded by a single copy gene.

Genomic PCR was performed to test whether the ayu
rhodopsin gene has intron or intron-less. The size of the
genomic DNA fragments amplified was 1097 bp that was
identical with those amplified from the ayu brain cDNA (Fig.
5). Thus, we concluded that the ayu rhodopsin gene is
intron-less. Such a copy is commonly thought to be a non-
functional processed pseudogene. However, it is reported in
teleosts that rhodopsin genes lack introns (Fitzgibbon et al.,
1995), suggesting that the ayu rhodopsin is intron-less but
functional.

Expression sites of the ayu rhodopsin gene

Northern blot analysis was first carried out to detect the
ayu rhodopsin mRNA in the brain and retina. A single band
of approximately 1.5 kb, corresponding to the full-length ayu
rhodopsin cDNA sequence, was observed in the brain as
well as the retina (Fig. 6). This size was the same size
expected from the full-length ayu rhodopsin cDNA sequ-
ence.

The RT-PCR analysis was also carried out in order to
analyze the tissue distribution of the ayu rhodopsin mRNA
in the retina, pineal organ and brain areas. A representative
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Fig. 4. Genomic Southern blot analysis of the ayu rhodopsin gene.
The ayu genomic DNA digested with Dral (lane1), EcoT14l (lane2),
Ncol (lane3) and Pstl (lane4) was electrophoresed and hybridized
with the [*2P]-labelled ayu rhodopsin cDNA specific probe. The DNA
size makers are shown on the left.

result is shown in Fig. 7. The PCR amplification yielded a
band of predicted size (684 bp) in the retina and brain part
A and B but not in the pineal organ and brain part C, D and
E. No product was detected from the negative control.

These results indicate the brain and retina are the
expression sites of the rhodopsin gene in ayu. In the
genomic Southern blot analysis, we suggested that the ayu
rhodopsin is coded by a single copy gene. Taken together,
we concluded that the same rhodopsin gene is expressed in
both the brain and retina.

During the revision of this manuscript, Minamoto and
Shimizu (2003) reported the cDNA sequence encoding the
ayu rhodopsin and examined its expression site in the ret-
ina. The sequence of cDNA is almost identical with our
sequence and the deduced amino acid sequences are iden-
tical. By in situ hybridization histochemistry, the rhodopsin
mRNA was detected in the rod photoreceptor cells in the ret-
ina. However, they did not examine the expression of the
rhodopsin gene in the brain.

In the present study, we confirmed that the rhodopsin
gene is expressed in the ayu brain by Northen blot and RT-
PCR analyses. However, the exact sites of expression
remain to be determined. In some fish species, the exist-
ence of putative photoreceptors in the brain has been
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Fig. 5. Genomic PCR analysis of the ayu rhodopsin gene. Ayu
genomic DNA (lane1) and cDNA synthesized from ayu brain (lane2)
were applied to PCR amplification with primers designed from 5’-
(fw2) and 3’-untranslated regions (rv2). The reverse transcriptase
treatment for total RNA purified from ayu brain was omitted in lane 3
(N.T.). The DNA size makers are shown on the left.
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Fig. 6. Northern blot analysis for the ayu rhodopsin mRNA in the
retina and brain of ayu. Total RNA (10 pg) from the retina and
poly(A)* RNA (10 ug) from the brain were used. The RNA size mak-
ers are shown on the left. An arrow indicates the signal detected
with the [32P]-labelled ayu rhodopsin cDNA specific probe.
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Fig. 7. RT-PCR analysis of the rhodopsin gene expression in the
retina, pineal organ and brain areas of ayu. Total RNA obtained
from the retina, pineal organ and brain areas (see Fig. 1) was
treated (+) or not treated (—) with reverse transcriptase and then
amplified by PCR to produce 684 bp band. The reaction mixture
was fractionated on an agarose gel, and stained with ethidium bro-
mide. The DNA size makers are shown on the left.

suggested in by immunohistochemical studies: opsin-immu-
noreactive cells in the diencephalon and o-transducin-immu-
noreactive cells in the telencephalon were observed in lam-
prey and Atlantic salmon (Garcia-Fernandez et al., 1997;
Philip et al., 2000b). Philp et al. (2000b) also reported the
presence of cone-opsin-immunopositive cells in the preoptic
area (POA). This area is located in the boundary of brain
part A and B of this study. Therefore, the telencephalon,
diencephalons and POA may be possible sites of rhodopsin
gene expression in the ayu brain. Further in situ hybridiza-
tion and immunohistochemical studies will be required to
localize rhodopsin in the brain.

Functional considerations

The brain photoreceptors are known to regulate physi-
ology and behavior of fish such as the change in body color,
locomotor activity and gonadal development. von Frisch
(1911) examined the effect of direct illumination into the
brain on the body color and proposed that cells of the
ependymal layer were photosensitive. Concerning locomo-
tor activity, the presence of photoneuroendocrine cells
within the hypothalamic nucleus magnocellularis preopticus
(NMPO) that regulates swimming and feeding reflexes was
proposed (Scharrer, 1928, 1964). Since then, lines of evi-
dence indicate the presence of brain photoreceptors in
fishes (see Tabata, 1992). However, the photoreceptive
molecules in the brain have not been identified until a few
years ago.

Recently, a novel opsin named VA opsin was cloned
from Atlantic salmon (Soni and Foster, 1997) and then its
variant VA-long (VAL) opsin in zebrafish was identified
(Kojima et al., 2000). The expression sites of VA and VAL
opsins were subependymal cells in epithalamus (Kojima et
al., 2000; Philp et al., 2000b), suggesting that these opsins
regulate body color change. Immnohistochemical studies
also demonstrated the presence of opsin-like immunoreac-
tivity in the NMPO in Atlantic salmon (Philp et al., 2000b).
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This site nicely fits the localization of photoneuroendocrine
cells by Scharrer (1928). Further studies will be required to
elucidate whether the NMPO contains photoreceptors that
regulate locomotor activity.

There is little information on the roles of brain photore-
ceptor that regulates gonadal development in fish. However,
removal of both lateral eyes and pineal organ did not affect
photoperiodism in gonadal development in ayu (Suzuki,
1975). Furthermore, opsin-immunopositive fibers passing
through basal hypothalamus to hypophysis were observed
in Atlantic salmon (Philp et al., 2000b). Thus, gonadal devel-
opment may be directly regulated by the photoreceptors in
the brain.

CONCLUSIONS

Now we have cloned a cDNA encoding rhodopsin from
the ayu brain. Expression of the rhodopsin gene in the brain
was demonstrated by Northern blot and RT-PCR analyses.
The results of RT-PCR indicated that the rhodopsin gene is
expressed in the telencephalon and/or diencephalon of ayu.
In addition, during preparation of this manuscript, VAL opsin
and another VA opsin variant named VAM opsin were also
cloned from ayu and expression of these genes in the brain
was demonstrated in by RT-PCR (Minamoto and Shimizu,
2002). Therefore, further studies on these brain opsins in
ayu may reveal the roles of brain photoreceptors in the reg-
ulation of physiology and behavior in fishes. Localization of
the expression sites of opsin genes in the brain by in situ
hybridization and immunohistochemistry will be an important
step toward elucidation of the functions of brain photorecep-
tors in this species.
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