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Abstract

In response to the recent expansion of piñon and juniper woodlands into sagebrush-steppe communities in the northern Great
Basin region, numerous conifer-removal projects have been implemented, primarily to release understory vegetation at sites
having a wide range of environmental conditions. Responses to these treatments have varied from successful restoration of
native plant communities to complete conversion to nonnative invasive species. To evaluate the general response of understory
vegetation to tree canopy removal in conifer-encroached shrublands, we set up a region-wide study that measured treatment-
induced changes in understory cover and density. Eleven study sites located across four states in the Great Basin were established
as statistical replicate blocks, each containing fire, mechanical, and control treatments. Different cover groups were measured
prior to and during the first 3 yr following treatment. There was a general pattern of response across the wide range of site
conditions. There was an immediate increase in bare ground and decrease in tall perennial grasses following the fire treatment,
but both recovered by the second or third growing season after treatment. Tall perennial grass cover increased in the mechanical
treatment in the second and third year, and in the fire treatment cover was higher than the control by year 3. Nonnative grass
and forb cover did not increase in the fire and mechanical treatments in the first year but increased in the second and third years.
Perennial forb cover increased in both the fire and mechanical treatments. The recovery of herbaceous cover groups was from
increased growth of residual vegetation, not density. Sagebrush declined in the fire treatment, but seedling density increased in
both treatments. Biological soil crust declined in the fire treatment, with no indications of recovery. Differences in plant response
that occurred between mechanical and fire treatments should be considered when selecting management options.

Key Words: sagebrush, cheatgrass, nonnative species, piñon–juniper, restoration, Utah juniper, western juniper, single-needle
piñon, resilience

INTRODUCTION

Since the 1860s, several species of piñon and juniper have
expanded into grassland, sagebrush-steppe, and aspen commu-
nities, increasing 125–625% in the central and northern
portions of the Great Basin and river basins to the north and
west (Cottam and Stewart 1940; Adams 1975; Burkhardt and
Tisdale 1976; Tausch et al. 1981; Tausch and West 1988; Miller
and Rose 1995; Tausch and West 1995; Gedney et al. 1999;
Miller and Rose, 1999; Wall et al. 2001; Johnson and Miller
2006; Weisberg et al. 2007; Miller et al. 2008). In response to
these recently formed conifer-encroached shrublands, private
landowners and public agencies have treated large areas across

the interior West by removing trees with prescribed fire and
mechanical methods. The rationale for tree removal has

included fuel reduction, restoration of sage-steppe communities
and watersheds, and enhanced forage and wildlife habitat.
Unfortunately, plant-community response to tree removal is not
always consistent or predictable, and succession may not move
in a desirable direction following treatment (Miller et al. 2013).
Successional trajectories following tree removal in conifer-
encroached shrublands can range from a progression toward
native shrub-steppe communities (Tausch and Tueller 1977;
Everett and Sharrow 1985a; Skousen et al. 1986; Stager and
Klebenow 1987; Rose and Eddleman 1994; Bates et al. 2000,
2006, 2007; Coultrap et al. 2008) to no change in native
understory vegetation (Everett and Sharrow 1985a; Yorks et al.
1994; Bates et al. 2006; Bristow 2010), to large increases in
invasive annuals, at least during the first few years after tree
removal (Barney and Frischknecht 1974; Koniak 1985;
Skousen et al. 1986; Bates et al. 2007).

The initial stages of succession following treatment may be
largely dependent on pre-existing conditions. Several studies
have proposed a successional model following piñon and
juniper removal that progresses from native and/or nonnative
annuals to perennial grass-forb to perennial grass-forb shrub to
young trees occupying a site, and eventually to mature
woodland (Erdman 1970; Barney and Frischknecht 1974;
Koniak 1985; Skousen et al. 1989). However, vegetation
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dominating the initial phase of succession has been reported to
depend upon pre-existing plant composition (Bunting 1985)
and can start with a strong response of native perennials
(Everett and Sharrow 1985b; Bates et al. 2000, 2007).
Conversely, where native herbaceous vegetation is depleted
the potential for recovery is limited (Yorks et al. 1994) and
invasive annuals may continue to dominate many years after
disturbance (Koniak 1985). This may result in a shift of conifer-
encroached shrublands to new steady states dominated by
introduced annuals and biennials following treatment or
wildfire (Pellant and Hall 1994; Tausch 1999; Holmes and
Miller 2010; Miller et al. 2011).

Piñon- and juniper-encroached shrublands occur over a wide
range of environmental conditions and are represented by
continually changing gradients in climate, elevation, aspect,
slope, geology, soils, and disturbance regimes (West et al. 1978,
1998; Gedney et al. 1999; Miller et al. 2000, 2005, 2011,
2013). This makes current region-wide recommendations
difficult and possibly unreliable. However, generalized state-
and-transition models that account for specific site attributes
(e.g., soil moisture/temperature regimes) may link sites with
similar attributes, enabling managers to apply results from one
location to another (Bestelmeyer et al. 2009; Chambers et al.
2013; Miller et al. 2013, 2014; Chambers et al. 2014). A key
question to address is—Are there predictable patterns in
understory response to conifer removal? Although numerous
studies have evaluated plant response to tree removal, most
studies have been conducted at one location and lack
comparability because they vary widely in predisturbance plant
composition, the kind and severity of disturbance (e.g., wildfire
versus prescribed fire treatment), posttreatment disturbance,
and site attributes. A single study conducted at one time and in
one or a few places cannot describe the general patterns of
plant succession following tree removal across the wide range
of environmental variables that characterize conifer encroached
shrublands. And there have been surprisingly few studies that
made replicated side-by-side comparisons between mechanical
and prescribed fire treatments (Miller et al. 2013). The study by
Everett and Sharrow (1985a), which evaluated mechanical tree
removal across central Nevada, is one of the few multiloca-
tional studies conducted in the Intermountain West. Their
results showed a distinct pattern in vegetation response across a
large area in central Nevada. The results from regional studies
that cover a meaningful portion of site variation greatly
enhance our ability to evaluate the response of different plant
and ground-cover groups under a wide range of conditions, and
thus allow us to develop general state-and-transition models.
Such studies can describe patterns of variation in plant
successional trajectories in conifer-encroached shrublands
across a large region, evaluate the consistency of response,
identify attributes that may be linked to the response, and allow
for the evaluation and extrapolation of results from one site to
another. In addition, studies that combine before and after
measurements with unmanipulated controls across multiple
sites allow for the evaluation of treatment effects in the context
of both temporal and spatial variation (Carpenter 1990).

The Sagebrush Treatment Evaluation Project (McIver et al.
2010) set up such a region-wide study to evaluate patterns of
understory plant succession after tree removal and to identify
important attributes for the development of predictive

models. Study sites were located in conifer-encroached
shrublands across a broad geographic area in the northern
Great Basin and basins to the north and west. Each study site
was a complete block of prescribed fire, mechanical, and
control treatments, applied over relatively large plots (. 8
ha). We asked three questions relative to understory plant
response to tree removal by fire and mechanical treatments:
1) how do different plant and ground-cover groups respond
across a relatively wide range of tree-encroached sites, 2)
how consistent was the response to tree removal across a
wide range of sites, and 3) do understory cover groups
respond differently to removal of juniper and/or piñon by fire
versus mechanical treatments during the first 3 posttreatment
years?

METHODS AND MATERIALS

Study Area
Eleven sites were selected across a broad geographical area in
Utah, Nevada, California, and Oregon, encompassing a wide
range of environmental conditions (Fig. 1) (McIver et al. 2010).
Criteria used to select sites were 1) the dominant shrub was
Artemisia tridentata Nutt., 2) there was no evidence that these
stands had recently been dominated by old-growth juniper or
piñon pine (absence of large stumps and/or logs), 3) soils were
loams, 4) native grasses and forbs were present in the
understory, and 5) introduced species were present but not a
dominant component (observed cover of nonnatives was equal
to or less then native herbs). The sites represented four different
cover types, each reflecting a different dominant tree species
(Table 1). Four study sites were located in western juniper
(Juniperus occidentalis Hook.) in California and Oregon, three
sites in singleleaf piñon (Pinus monophylla Torr. & Frém.) and
Utah juniper (Juniperus osteosperma [Torr.] Little) in Nevada,
and in Utah, two sites in Utah juniper, and two sites in Utah
juniper and Colorado piñon (Pinus edulis Engelm). The sites
are located within five climate-based major land resource areas
(MLRAs), which include the Malheur High Plateau, Klamath
Basin, Upper Snake River, Central Nevada Basin and Range,
and Salt Lake Basin (US Department of Agriculture–Natural
Resources Conservation Service [USDA-NRCS] 2011) (Table 1;
Fig. 1). Sites vary considerably in elevation, topography, soils,
current vegetation, and climate (Table 1). Soil temperature and
moisture regimes ranged from warm–mesic to cool–frigid and
aridic–xeric to xeric, respectively. Tree canopy cover within and
across the 11 sites varied widely within and across study sites
(see figure 4 in Roundy et al. 2014a) from relatively open
(, 5%) to closed (. 20%). The predominant shrubs and
grasses present on the sites prior to treatment are listed in
Table 1.

Although all sites are classified as cold desert, weather
patterns differ markedly across this geographic range. Sites in
California and Oregon have a Pacific Maritime climate, with
nearly all precipitation originating in the Pacific Ocean and
falling between November and June. This area, which includes
the western juniper cover type, lies north of the polar front
gradient where temperatures are cooler, summer precipitation
lower, and winter precipitation higher (Mitchell 1976). In
contrast, sites in Nevada and Utah are located south of the

67(5) September 2014 469

Downloaded From: https://complete.bioone.org/journals/Rangeland-Ecology-and-Management on 21 Sep 2024
Terms of Use: https://complete.bioone.org/terms-of-use



polar front gradient, and have a more Continental climate, with

less precipitation falling from November to June, and relatively

more summer rains originating from the Gulf of Mexico,

usually in July or August. However, the summer monsoonal

influence for study sites in this portion of the study area is weak

compared to regions lying to the south (Colorado Plateau and

the southwest Hot Deserts).

Site Selection and Experimental Design
Treatment-plot layout was a randomized complete block, with

each of the 11 study sites representing a block or replicate.

Each replicate block was measured during the growing season

immediately prior to treatment application and for three

growing seasons immediately following. At each of the 11

study sites, three 8–20-ha treatment plots were established, and

Figure 1. Location of the 11 sites across four major land resource area (MLRA), which include 10¼Upper Snake River (USR), 21¼Klamath Basin (KB),
23¼Malheur High Plateau (MHP), 28B¼Central Nevada Basin and Range (CNBR), 28A¼Salt Lake Basin (SLB). The black dashed line separates the
sagebrush steppe (north) and Great Basin sagebrush shrub (south) (West 1983). Sites with different tree cover groups are .¼western juniper, X¼two-
needle piñon, m¼Utah juniper, and .¼ Utah juniperþColorado juniper (derived from US Department of Agriculture Natural Resources Conservation
Service, 2011 by Eugénie MontBlanc, University of Nevada, Reno, NV).
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at each site we placed three treatment plots on a similar

ecological site (e.g., similar topographic position, soils, and

vegetation). Information collected across treatment plots

included elevation, aspect, slope, topographic position, micro-

topography (concave, convex, flat), plant association (if

known), current vegetation (dominant species in each vegeta-

tion layer), and soils. Treatment plots were fenced to exclude

cattle grazing where necessary, because grazing could not be

consistently controlled across the 11 study sites.

Treatments
Three treatments were applied at each of the 11 study sites by

the government agency having jurisdiction for the site. One of

three treatments was randomly selected to be applied in each

treatment plot across the replicate block: control, mechanical,

and fire. Treatments were applied at each site in the same year

to form a statistical replicate block. Because of the size of the

broadcast fire treatment and the number of locations, we were

unable to apply treatments to all replicate blocks in the same

Table 1. List of 11 sites within four tree cover types, major land resource area (MLRA) soil temperature/moisture regimes, dominant species in shrub/herb
layer, soils, elevation, slope and aspect, and year treatments were applied. MLRAs: KB indicates Klamath Basin; MHP, Malheur High Plateau; CNBR,
Central Nevada Basin and Range; SLB, Salt Lake Basin; and USR, Upper Snake River. Idaho fescue (Festuca idahoensis Elmer), bluebunch wheatgrass
(Pseudoroegneria spicata (Pursh) Á. Löve), needle and thread (Hesperostipa comata [Trin. & Rupr.] Barkworth), Thurber’s needlegrass (Achnatherum

thurberianum [Piper] Barkworth), muttongrass (Poa fendleriana [Steud.] Vasey), squirreltail (Elymus elymoides [Raf.] Swezey), and curlleaf mountain
mahogany (Cercocarpus ledifolius Nutt.).

Cover type, study site (state),

MLRA, soil regimes

Current native vegetation

(PPT zone mm ) Soils Elevation range Slope/aspect Year treated

Western Juniper

Blue Mountain Site (CA), MHP,

frigid/xeric

Mountain big sage/Idaho fescue–

Sandberg bluegrass–bluebunch

wheatgrass (300–400)

Loamy, mixed, frigid, lithic to

Pachic Haploxerolls

1 500–1 700 m 5% N 2007

Bridge Creek (OR), USR, mesic/

aridic–xeric

Basin big sage/bluebunch

wheatgrass–Sandberg bluegrass

(250–300)

Sandy loam, mesic Typic

Haploxerolls to Frigid

Torriorthents

800–900 m 25% NW 2006

Devine Ridge (OR), MHP, frigid/

xeric

Mountain big sage/Sandberg

bluegrass–Thurber’s

needlegrass–Idaho fescue (300–

400)

Loamy–skeletal, mixed, superactive,

frigid Lithic Haploxerolls

1 600–1 700 m 0–8% W 2007

Walker Butte (OR), MHP, frigid/

xeric

Mountain big sage/Idaho fescue–

Thurber’s needlegrass–squirreltail

(250–300)

Ashy, glassy, frigid vitritorrandic

Durixerolls

1 400–1 500 m Flat 2006

Pinyon–Utah juniper

Marking Corral (NV), CNBR, cool

mesic/aridic–xeric

Wyoming big sage/Thurber’s

needlegrass (300–400)

Loamy–skeletal, mixed, superactive,

mesic Argidic Durixerolls

2 300–2 400 m 6–20% NW, NE, SE 2006

Seven Mile (NV), CNBR, cool

frigid/xeric

Mt. mahogany–mountain big sage/

bluebunch wheatgrass–

muttongrass (12–16)

Loamy–skeletal, mixed, frigid Lithic

& Typic Argixerolls

2 300–2 500 m 6–15% NW , E, SE 2007

South Ruby (NV), CNBR, warm

frigid/xeric

Wyoming big sage–bitterbrush/

bluebunch wheatgrass–Sandberg

bluegrass–Thurber needlegrass

(300–400)

Loamy, mixed, superactive, mesic,

shallow Haploduridic Durixerolls

2 100–2 200 m 8–30% all aspects 2008

Utah juniper

Greenville Bench (UT), SLB,

warm frigid/xeric

Wyoming big sage/needle and

thread–bluebunch wheatgrass

(300–350)

Decca, very gravelly to cobbly

sandy loam

1 750–1 850 m 2–28% N 2007

Stansbury Mountains (UT), SLB,

cool mesic/aridic–xeric

Mountain big sage–antelope

bitterbrush/bluebunch wheatgrass

(300–350)

Loamy–skeletal, mixed, mesic

Aridic Calcixerolls

1 700–1 850 m 8–30% W 2007

Utah juniper–Colorado pinyon

Scipio (UT) SLB, warm mesic/

aridic

Wyoming big sage/bluebunch

wheatgrass (250–300)

Loamy–skeletal, mixed, mesic,

shallow Calcic Petrocalcids

1 700–1 800 m 2–28% W 2007

Onaqui (UT) SLB, warm mesic/

aridic–xeric

Wyoming big sage/bluebunch

wheatgrass (250–300)

Loamy–skeletal, carbonatic, mesic,

shallow Aridic Petrocalcic

Palexerolls

1 700–2 100 m 2–30% E 2006
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year (Table 1). Limitations included a combination of weather,

clearances, and smoke. Treatments were applied in 2006, 2007,

and 2008, forming a staggered-start design (Loughin 2006). A

staggered-start design alleviates the effects of starting an

experiment under the same set of climate conditions, which

limits the extrapolation of results. Fire was applied between

August and October and mechanical treatments between

September and November. The mechanical treatment consisted

of cutting all trees . 2m tall and leaving them on the ground.

The fire treatment was a broadcast burn ranging from low to

moderate severity across all sites based on fuel consumption

characteristics (Parson et al. 2010; Miller et al. 2013, 2014).

The reduction of tree canopies in the fire treatment and

mechanical treatments averaged 86% (range 63–100%) and

99% (range 96–100%), respectively, across the 11 study sites

(see Roundy et al. 2014a), indicating that treatments were

effective in accomplishing targeted tree removal goals. The

burn treatment resulted in . 90% reduction in shrub cover

with 50–75% shrub skeletons remaining. Greater than 80% of

the plots were burned with fine surface fuels consumed or

charred with little to no white ash on the surface except directly

beneath the tree canopies. Most 100-h and greater fuels were

charred but not consumed. The tree canopy was reduced to

, 5% across all burned plots.

Vegetation Measurements
To compare vegetation response, nine cover groups were

measured within each treatment plot of each replicate block

in 15 randomly selected permanent 0.1-ha (33 3 30 m)

subplots. All subplot corners were marked with steel stakes and

UTM coordinates recorded. Measurements were collected the

year prior (year 0) to and in the first 3 yr (year 1 to year 3)

following treatment. With the exception of tree canopy,

measurements of all cover groups were collected along five

permanent 30-m transects placed at 2, 7, 15, 23, and 28 m

along the 30-m baseline of each subplot. Plant and ground

cover groups were sampled with the use of the point-intercept

method along each transect (Herrick et al. 2009). Points were

sampled at 0.5-m intervals along each of the five 30-m transects

for a total of 300 points per subplot and 4 500 points per

treatment plot.

Native vascular plant cover groups included total shrubs,

sagebrush (Artemisia L.), tall perennial grasses, short perennial

grasses (Poa secunda J. Presl.), perennial forbs, and forbs that

sage-grouse (Centrocercus urophasianus) consume (e.g., Crepis
sp., Phlox longifolia, Microsteris gracilis, etc.). The nonnative

plant cover group included both non-native grasses (primarily

Bromus tectorum) and nonnative forbs. Ground surface cover

groups included bare ground, litter, and biological soil crusts.

With the exception of bare ground, foliar cover of each cover

group was recorded as a single hit at each point if the point

came into contact with that group. However, shrub canopy

cover rather than foliar cover was measured by recording a hit

as a direct contact or the point falling within the live canopy

perimeter. More than one cover group could be recorded at a

single point, but each group could only have a maximum of one

hit per point. Bare ground was recorded only if it was the first

and only hit.

Density was measured in year 0 through year 3 for tall
perennial grasses, nonrhizomatous perennial forbs, and shrub
species , 50 mm in height in ¼-m2 quadrats along the 7-, 15-,
and 23-m transects, placed at every odd meter (n¼45/subplot).
Along these same three transects, all shrub species . 50 mm in
height within 1 m of the transect (2 m 3 30 m) were counted.

To measure the reduction in tree canopies to treatment,
pretreatment live canopy cover of all trees . 0.5 m in height
was recorded within each subplot by measuring the longest and
perpendicular crown diameters. Crown area (A) for each tree
was calculated with the use of the equation: A¼p (D1*D2)/4,
where D1 is the longest and D2 the perpendicular to D1 canopy
diameter. Total tree canopy cover was estimated by summing
the crown area of each tree in the subplot. The same technique
was used in the third posttreatment year to measure the
reduction in tree canopy following treatment.

Statistical Analysis
Year was handled as time-since-treatment (0, 1, 2, and 3 yr). To
evaluate potential treatment differences, we compared cover
and density of the different cover groups across treatments
within each year. Year 0 (baseline) data were analyzed to see if
the randomization resulted in apparent preapplication differ-
ences. Subsequent years were analyzed as described below. We
analyzed all 11 study sites for both year 0 and year 1. For year
2, data for 10 sites were analyzed because one site had only one
posttreatment year (South Ruby). For year 3 data, nine sites
were analyzed because at the Stansbury study site we lost all
three treatments to a wildfire before year 3.

For the proportional cover response generalized linear mixed
models (PROC GLIMMIX in SAS 9.2) were used with logit
link. Binomial-type variation and over dispersion were
accounted for with R-side residual variation (quasilikelihood).
For each of the 3 yr after application of the treatments, both the
year x and year 0 proportional cover were included as two
responses for each experimental unit, so that treatment effects
could be assessed for each treatment over time on the change in
(logit of) cover since year zero (treatment-by-time interaction).
Whenever such treatment effects were detected, regional effects
(both additive and interactions) were added to the model, to see
if there was evidence that the treatment effect (treatment-by-
time) differed between regions (region by treatment by time). If
not, then the study-area–averaged change since year 0 for each
treatment was estimated and compared between treatments in
pairwise comparisons. There were occasional convergence
problems with this model, which were handled in two ways:
1) by removing sites with very little information about
treatment effects (because of a preponderance of zero cover
responses), and/or 2) increasing the convergence criterion
(PCONV¼option) to as high as 1E-5. When the logit link is
used, the inferences regarding treatment differences are made
on the logit scale, which can then be interpreted as
multiplicative changes in the odds (¼P/[1�P]). In Table 2,
within-treatment comparisons across years with values . 1.0
indicate an increase in posttreatment cover and , 1.0 a
decrease in posttreatment cover relative to year 0. For
among-treatment comparisons within years (e.g., FI/ME), odds
ratios . 1.0 indicate that the magnitude of increase was either
larger or the decrease smaller for the treatment in the
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numerator compared to the treatment in the denominator. For
example: nonnatives in year 3 significantly increased in both
the FI (4.630) and ME (2.762) treatments compared to year 0.
However, the difference in magnitude of increase was
significantly greater in the FI than ME treatment (FI/ME,
4.630/2.762¼1.6756). Although values are based on a logit
scale, ratios approximate the magnitude of change of mean
values.

To evaluate the consistency of treatment response of a
specific cover group across study sites, we compared the
relative change in the control treatment with the relative
change in the fire treatment or mechanical treatment between
year 0 and year 3 based on the logit scale. We report the
proportion of study sites that expressed a positive increase, no
change, or decrease compared to the control.

Differences in density were analyzed each year with the use
of repeated-measures ANOVA for a randomized complete
block design. Main effects were years within treatments and
treatments within years. Data were tested for normality with
the use of SAS univariate procedure. When treatment interac-
tions were found to be significant (P ,hairsp;0.05), the Tukey
test was used to determine significant differences between
treatments.

RESULTS

Cover
Cover groups in treatment plots within replicate blocks were
relatively similar (year 0, Table 3), resulting in no significant
differences between treatment plots prior to treatment (Table
2). In addition, the consistency of covariate significance and
lack of significant treatment 3 covariate interactions for
pretreatment data across replicate blocks (Roundy et al.
2014a) allows us to assume differences among cover groups
for year 1 to year 3 were a result of treatment effects.

Bare Ground. In year 0 bare ground ranged from 10% to 49%
across study sites and averaged 29% (Table 3). In year 1 bare
ground was significantly higher in the fire-treatment plots
compared to year 0 and was greater than in the mechanical and
control treatments (Table 2). By year 2, bare ground declined in
the fire treatment to levels similar to the control, but remained
higher than both the mechanical treatment in year 2 and the
pretreatment year (year 0). By year 3 bare ground in the fire-
treatment plots did not differ from the mechanical and control
treatments or year 0. The mechanical treatment had the least
amount of bare ground in year 2 but was similar to the other
two treatments by year 3. Changes in bare ground reported
above occurred in 90% of the sites.

Total Shrub and Sagebrush Cover. Prior to treatment, total
shrub cover averaged 11.5% (ranging from 3% to 24%) across
study sites. Following treatment, shrub cover was significantly
lower in the fire-treatment plots than in the mechanical or
control treatments and year 0 in all three posttreatment years
(Table 2). Shrub cover increased twofold in the fire treatment
between year 1 (1.3%) and year 3 (3%), but still remained well
below the other two treatments and year 0. An increase in
shrub cover in the fire-treatment plots between year 1 and year
3 occurred in all sites. Shrub cover in the control and

mechanical treatments did not differ over the 3 yr; however,
shrub cover in the mechanical treatment was significantly
greater in year 3 than year 0, which occurred in 78% of the
plots.

Sagebrush cover, which accounted for 68% of total shrub
cover, followed a similar pattern as total shrubs, and was
reduced to levels in the treatment below the other treatments
(Table 2). Fire treatment initially reduced sagebrush cover from
7.6% to 0.5%, but cover increased to 1% by year 3. There was
no significant difference in sagebrush cover between mechan-
ical and control treatments or between year 3 and year 0
because of high variability among sites. However, measured
cover was 20% greater in the mechanical treatment in year 3
compared to year 0.

Tall and Short Perennial Grass Cover. Tall perennial grass cover
averaged 11% (range 1–37%) across the sites in year 0 (Table
3). Cover in the fire treatment decreased 36% in year 1
compared to year 0 and was significantly less than cover in the
mechanical or control treatments (Table 2). The decline in tall
perennial grass cover in year 1 across the fire treatment
occurred in 82% of the sites. In year 2, tall perennial grass
cover recovered in fire-treatment plots to similar percentages as
the control and year 0 (70% of the sites). By year 3 cover was
higher on the fire treatment than in the control. This occurred
in 90% of the sites. In the mechanical treatment tall perennial
grass cover was significantly greater in year 2 and year 3
compared to year 0 (increasing 150%) and the control (Table
2). The greater increase in perennial grasses in the mechanical
relative to changes in the control treatment in year 3 occurred
in 89% of the sites.

Short perennial grass cover, which averaged 5.5% across
sites prior to treatment, did not differ among treatments or
years (Table 2).

Perennial Forbs and Forbs Used by Sage-Grouse. Perennial forb
cover increased in the fire-treatment and mechanical plots
relative to the control in year 2 and year 3 (Table 2). Cover in
the fire and mechanical treatments was also greater in year 3
than year 0, and this occurred in 90% and 78% of the sites,
respectively. Cover of forbs used by sage-grouse was higher in
the fire treatment than year 0 and the control treatment in all
years (Table 2). In the mechanical treatment cover was higher
in year 2 and year 3 compared to both year 0 and the control
treatment. The relative increase in sage-grouse forbs in both the
fire and mechanical treatments compared to the control was
consistent across all sites.

Nonnative Forbs and Annual Grasses. Cover of nonnative herbs
did not increase in the fire treatment or mechanical treatments in
year 1 compared to year 0 or the control treatment (Table 2), on
90% of the sites. However, nonnative herb cover was
significantly higher in the fire treatment in year 2 and year 3
and in the mechanical treatment during year 3 than in year 0.
Cover of nonnatives was also greater in the mechanical
treatment in year 2 and year 3 compared to the control.
However, nonnative herb cover in the fire treatment in the last 2
yr was greater than in either the mechanical or control
treatments. The greater abundance of nonnative herb cover in
the fire treatment compared to mechanical and control
treatments occurred on 66% and 100%, respectively of the sites.
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Table 2. Mean percent pre- and posttreatment cover for groups in each treatment followed by the standard error in parentheses. Odds ratios (year x/year
0), based on a logit scale of the relative change in cover of each plant group between pretreatment (year 0) and posttreatment (year x) within treatments;
and the comparison of magnitude of relative change between two treatments (year 0 trt1/year x trt1)/(year 0 trt2/year x trt2) within years. P values follow
each value in parentheses. Values followed by an asterisk denote a significant difference of varying strength of evidence (*some evidence,
0.01 ,¼P , 0.05; **strong evidence, 0.001 ,¼P , 0.01; ***very strong evidence, P , 0.001) across years within a single treatment and treatment
comparisons (e.g., FI/ME) within years. CO indicates control; FI, fire; and ME, mechanical.

Treatment

% cover Odds ratios (P value)

Year 0 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Bare ground

CO 27 (3.68) 28.5 (3.79) 31.6 (4.07) 30.1 (4.04) 1.092 (0.5611) 1.267 (0.0122) 1.181 (0.1903)

FI 28 (3.76) 43.9 (4.48) 33.4 (4.18) 29.9 (4.03) 2.024 (, 0.0001)*** 1.330 (0.0024)** 1.093 (0.4728)

ME 28.3 (3.78) 25.3 (3.54) 24.7 (3.57) 25.3 (3.68) 0.876 (0.3913) 0.853 (0.0972) 0.897 (0.3967)

FI/ME — — — — 2.310 (, 0.0001)*** 1.560 (0.0015)** 1.219 (0.2131)

ME/CO — — — — 0.803 (0.1799) 0.673 (0.0046)** 0.760 (0.0930)

FI/CO — — — — 1.854 (0.0004)*** 1.049 (0.6999) 0.926 (0.6098)

Shrubs

CO 9.4 (1.79) 9.3 (1.79) 8.8 (1.71) 9.9 (1.90) 0.985 (0.9096) 0.901 (0.4504) 1.021(0.8022)

FI 11.6 (2.11) 1.3 (0.42) 1.8 (0.53) 3.0 (0.76) 0.101 (, 0.0001)*** 0.130 (, 0.0001)*** 0.251 (, 0.0001)***

ME 10.1 (1.90) 9.5 (1.81) 10.4 (1.96) 12.3 (2.25) 0.923 (0.5274) 1.000 (0.9986) 1.199 (0.0277)*

FI/ME — — — — 0.109 (, 0.0001)*** 0.130 (, 0.0001)*** 0.209 (, 0.0001)***

ME/CO — — — — 0.937 (0.6887) 1.110 (0.5661) 1.174 (0.1097)

FI/CO — — — — 0.102 (, 0.0001)*** 0.145 (, 0.0001)*** 0.246 (, 0.0001)***

Sagebrush

CO 6.1 (1.21) 5.9 (1.19) 5.6 (1.14) 5.7 (1.19) 0.979 (0.8099) 0.925 (0.4149) 1.033 (0.7203)

FI 7.6 (1.47) 0.5 (0.20) 0.7 (0.25) 1.0 (0.33) 0.066 (, 0.0001)*** 0.087 (, 0.0001)*** 0.128 (, 0.0001)***

ME 6.6 (1.31) 5.9 (1.19) 6.6 (1.31) 8.3 (1.61) 0.891 (0.1717) 0.967 (0.7012) 1.135 (0.1419)

FI/ME — — — — 0.074 (, 0.0001)*** 0.090 (, 0.0001)*** 0.113 (, 0.0001)***

ME/CO — — — — 0.910 (0.3842) 1.045 (0.7220) 1.099 (0.3987)

FI/CO — — — — 0.067 (, 0.0001)*** 0.094 (, 0.0001)*** 0.124 (, 0.0001)***

Tall perennial grass

CO 11.3 (2.51) 11.0 (2.45) 10.1 (2.32) 10.0 (2.32) 0.967 (0.7934) 0.873 (0.4613) 0.852 (0.3325)

FI 10.2 (2.30) 6.5 (1.57) 10.4 (2.36) 13.1 (2.89) 0.608 (0.0015)** 0.967 (0.8564) 1.245 (0.1918)

ME 11.5 (2.55) 11.6 (2.57) 17.3 (3.57) 17.2 (3.59) 1.002 (0.9904) 1.563 (0.0241)* 1.499 (0.0265)*

FI/ME — — — — 0.606 (0.0004)*** 0.619 (0.0013)** 0.831 (0.0684)

ME/CO — — — — 1.036 (0.7496) 1.789 (0.0002)*** 1.760 (, 0.0001)***

FI/CO — — — — 0.628 (0.0008)*** 1.107 (0.4553) 1.462 (0.0014)**

Short perennial grass

CO 4.3 (1.37) 4.2 (1.35) 4.5 (1.45) 4.7 (1.56) 0.976 (0.7546) 1.046 (0.8981) 1.093 (0.7436)

FI 4.1 (1.33) 3.4 (1.12) 3.5 (1.17) 3.9 ( 1.34) 0.829 (0.5548) 0.853 (0.0679) 0.951 (0.8142)

ME 4.0 (1.29) 3.5 (1.15) 4.9 (1.54) 4.7 (1.56) 0.875 (0.208) 1.225 (0.0455) 1.175 (0.1423)

FI/ME 0.947 (0.8874) 0.623 (0.0274)* 0.809 (0.2047)

ME/CO 0.897 (0.7455) 1.171 (0.8212) 1.075 (0.8891)

FI/CO 0.849 (0.6152) 0.815 (0.4865) 0.870 (0.7441)

Perennial forb

CO 3.1 (0.64) 3.5 (0.70) 2.8 (0.61) 3.8 (0.79) 1.088 (0.5576) 1.263 (0.4570) 1.110 (0.5475)

FI 3.2 (0.66) 3.6 (0.71) 4.5 (0.90) 6.5 (1.25) 1.063 (0.6747) 1.898 (0.0912) 1.908 (0.0013)**

ME 2.6 (0.55) 3.3 (0.66) 3.9 (0.79) 4.5 (0.92) 1.230 (0.1835) 2.381 (0.0099)* 1.898 (0.0017)*

FI/ME — — — — 0.864 (0.2953) 0.797 (0.2000) 1.006 (0.9710)

ME/CO — — — — 1.130 (0.3975) 1.886 (0.0013)** 1.710 (0.0052)**

FI/CO — — — — 0.977 (0.8456) 1.503 (0.0135)* 1.719 (0.0027)**

Sage-grouse forbs

CO 1.5 (0.41) 1.7 (0.45) 1.6 (0.43) 2.0 (0.55) 1.130 (0.5301) 1.011 (0.9630) 1.284 (0.3546)

FI 2.0 (0.52) 3.0 (0.74) 6.0 (1.38) 6.3 (1.48) 1.558 (0.0264)* 3.165 (, 0.0001)*** 3.300 (0.0002)***

ME 1.5 (0.42) 2.0 (0.53) 2.8 (0.71) 3.4 (0.87) 1.325 (0.1552) 1.949 (0.0076)** 2.299 (0.0034)**

FI/ME — — — — 1.176 (0.2837) 1.623 (0.0166)* 1.436 (0.1000)

ME/CO — — — — 1.172 (0.3334) 1.928 (0.0069)** 1.791 (0.0392)*

FI/CO — — — — 1.379 (0.03421)* 3.130 (, 0.0001)*** 2.571 (0.0008)***
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Litter and Biological Crusts. In the fire treatment litter cover
was 26% lower in year 1 than year 0 and remained significantly
lower in year 2 than year 0 and the control plots (Table 2).
However, in year 3 litter cover in the fire treatment did not
differ from the control or year 0. In year 3 litter had recovered
to prefire treatment levels in 45% of the sites. Still, litter cover
in the fire-treatment plots remained lower than the mechanical
treatment throughout the entire measurement period.

There was a gradual temporal decline in biological soil crust
in the control treatment between year 0 and year 3. However,
cover was consistently lower in the fire treatment compared to
mechanical and control treatments in all three posttreatment
years (Table 2). There was no difference in biological soil crust
between control and mechanical treatments in all 3 yr.

Density

Shrubs. Prior to treatment application, density of shrub
seedlings (, 50 mm) and established plants (. 50 mm)
averaged 0.12 m�2 and 0.58 m�2, respectively, and did not
differ among pretreated plots (year 0) (Table 4). Nearly 50% of
established shrub density was sagebrush. Bitterbrush (Purshia
tridentata [Pursh] DC.) and rabbitbrush (Chrysothamnus sp.
Nutt.) accounted for a large portion of the remaining shrubs.
Density of total established shrubs was reduced in the fire
treatment by nearly 75%. Densities were similar between
control and mechanical treatments in all posttreatment years
and were not different than year 0. However, density of total
established shrubs in the fire treatment was significantly lower
than in the control or mechanical plots for all three
posttreatment years (P , 0.0001). There was no difference

among total shrub seedlings between treatments or years. For
sagebrush seedlings there was a significant increase in densities
in the mechanical treatment in year 2 compared to year 0 and
the control treatment. By year 3 densities in both the
mechanical and fire treatment were higher than year 0 and
the control.

Perennial Tall Grasses and Forbs. There was no evidence of a
treatment effect on tall perennial grass densities nor was there a
significant change over time (Table 4). For perennial forbs there
was no clear evidence of a treatment effect on density. There
appeared to be an increase in the fire treatment in year 1 and
year 2 compared to the control and mechanical treatment.
However, the large degree of variation may have masked this
treatment effect.

DISCUSSION

Our sites ranged from cool–mesic Wyoming big sagebrush to
cool–frigid Mountain big sagebrush communities occupying
sandy loam to loam soils. Precipitation zones primarily ranged
from 250–300 to 300–350 mm, which fall into the wetter end
of aridic and drier end of xeric moisture regimes. All sites had
greater than 5% cover of perennial grasses, with the exception
of Seven Mile in Nevada. Nonnative herbs ranged from , 1%
cover to codominant with native perennial herbs. Managers
typically deal with this range of variation both within and
across treatment areas. Although the 11 study sites included a
wide range of variation, there was a fairly consistent pattern in
response for some cover groups across all sites following fire
and mechanical treatments. In the first year, neither fire nor

Table 2. Continued.

Treatment

% cover Odds ratios (P value)

Year 0 Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Non-native forbs and annual grasses

CO 2.4 (1.46) 1.5 (0.97) 1.2 (0.74) 1.7 (1.09) 0.648 (0.2608) 0.511 (0.0073)** 0.766 (0.4169)

FI 3.4 (2.04) 1.9 (1.18) 5.5 (3.26) 12.6 (6.88) 0.541 (0.1215) 1.730 (0.0188)* 4.630 (0.0009)***

ME 2.1 (1.28) 1.6 (1.02) 2.7 (1.65) 5.2 (3.10) 0.754 (0.4560) 1.333 (0.1801) 2.762 (0.0092)**

FI/ME — — — — 0.7174 (0.0252)* 1.2987 (0.0391)* 1.6756 (0.0030)**

ME/CO — — — — 1.1639 (0.2936) 2.6076 (, 0.0001)*** 3.6101 (, 0.0001)***

FI/CO — — — — 0.5058 (0.1997) 3.3875 (, 0.0001)*** 6.0496 (, 0.0001)***

Litter

CO 52.6 (3.60) 54.3 (3.58) 55.4 (3.68) 54.4 (3.80) 1.068 (0.6005) 1.109 (0.4345) 1.074 (0.6343)

FI 50.7 (3.61) 37.4 (3.40) 43.3 (3.66) 47.6 (3.82) 0.695 (0.0107)* 0.727 (0.0241)* 0.865 (0.7158)

ME 50.0 (3.61) 58.1 (3.52) 61.6 (3.54) 62.3 (3.62) 1.385 (0.0194)* 1.548 (0.0038)** 1.610 (0.0063)**

FI/ME — — — — 0.502 (, 0.0001)*** 0.469 (, 0.0001)*** 0.537 (0.0006)***

ME/CO — — — — 1.296 (0.0166)* 1.396 (0.0084)** 1.499 (0.0055)**

FI/CO — — — — 0.651 (0.0004)*** 0.656 (0.0014)** 0.805 (0.3279)

Biological soil crust

CO 5.6 (2.96) 4.2 (2.30) 2.9 (1.60) 3.0 (1.69) 0.748 (0.0778) 0.487 (0.0429)* 0.547 (0.0351)*

FI 4.8 (2.59) 1.5 (0.87) 0.8 (0.44) 0.8 (0.49) 0.305 (, 0.0001)*** 0.146 (, 0.0001)*** 0.162 (, 0.0001)***

ME 4.4 (2.39) 2.8 (1.56) 2.1 (1.2) 2.0 (1.14) 0.629 (0.0098)** 0.451 (0.0287)* 0.452 (0.0128)*

FI/ME — — — — 0.485 (, 0.0001)*** 0.325 (, 0.0001)*** 0.359 (, 0.0001)***

ME/CO — — — — 0.841 (0.0887) 0.926 (0.6332) 0.827 (0.4050)

FI/CO — — — — 0.408 (, 0.0001)*** 0.301 (, 0.0001)*** 0.297 (, 0.0001)***
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mechanical treatments resulted in an immediate increase in
native or nonnative herbaceous cover. In fact, in year 1 for the
fire treatment there was a consistent and significant decline in

tall perennial grasses, biological soil crusts, and litter in
addition to woody vegetation, resulting in a significant increase
in bare ground. The decline in tall perennial grasses in the first

year is consistent with other studies conducted in the region
(Blaisdell 1953; Countryman and Cornelius 1957; Harniss and
Murray 1973; Young and Evans 1978; Everett and Ward 1984;
West and Hassan 1985; Cook et al. 1994; Hosten and West

1994; Pyle and Crawford 1996; Bates et al. 2000; West and
Yorks 2002; Seefeldt et al. 2007; Davies and Bates 2008;
Ellsworth and Kauffman 2010; Rhodes et al. 2010). In a

comprehensive literature review of fire effects on plants and
soils in the Great Basin region the decline in tall perennial grass
cover in the first year following fire was observed in 86% of the

studies (Miller et al. 2013). In our study, tall perennial grass
cover quickly recovered in the fire treatment in year 2
compared to year 0 and in year 3 was greater than the control.
The majority of studies (90%) conducted in the region reported

that recovery of tall perennial grasses occurred within the
second or third year following fire (Miller et al. 2013). In the
mechanical treatment tall perennial grass cover did not differ in

year 1 but increased to percentages higher than year 0 and the
control in year 2 and year 3. Even where tree cover was in the
middle or upper phases of infilling, perennial grasses increased

following cutting on these sites (Roundy et al. 2014a). Increases
in perennial grasses following cutting of Utah juniper and

singleleaf piñon have been reported in Nevada, where levels of
this cover group were not depleted prior to treatment (Everett
and Sharrow 1985a, 1985b). On the other hand, increases were
not reported on treated sites where cover of this group was low
(, 1%) (Bristow 2010; Koniak 1985). Sandberg bluegrass
(short perennial grass) did not decline following fire treatment
in year 1, nor did it increase in cover in year 1 to year 3 across
either treatment. Others have reported little to no change in
this species following treatment (Blaisdell 1953; Wright and
Klemmedson 1965; Young and Evans 1978; Akinsoji 1988).
However, an increase in Sandberg bluegrass cover was reported
in the third postfire year in eastern Oregon (Davies et al. 2012).

Although we reported a significant increase in perennial forb
cover following both treatments, the response reported in other
studies in the region have been markedly inconsistent. A
number of studies reported no change in perennial forb
biomass during the first 1–5 yr following fire compared to
levels in prefire treatment or nearby untreated plots (Cook et al.
1994; Hosten and West 1994; Fischer et al. 1996; West and
Yorks 2002; Beck et al. 2008; Rhodes et al. 2010; Bates et al.
2011), whereas other studies have reported increases (Stager
and Klebenow 1987; Martin 1990; Pyle and Crawford 1996;
Wrobleski and Kauffman 2003; Bates et al. 2011). Site
characteristics are likely a key attribute that influence the
postfire response of this cover group. Perennial forbs did not
increase on soils with mesic temperature and aridic (, 300-mm
precipitation) moisture regimes on previous studies (Miller et
al. 2013). However, perennial forbs did increase following
treatment on frigid/xeric soils in 70% of previous studies. Our
sites were on the cool end of mesic and moist end of aridic
(250–300 mm), which may explain the positive response in
perennial forbs. Mixed results in perennial forb response may
also be attributed to variation in predisturbance composition
and annual precipitation in the years following fire.

In our study, forbs used by sage-grouse increased with both
prescribed fire (years 1–3) and mechanical treatment (years 2–
3). However, this increase was largely a result of an increase in
annual forbs known to be eaten by sage-grouse. This may be a
short-term response, because these forbs are typically early
successional. Rhodes et al. (2010) reported increases in sage-
grouse annual food forbs the first year following fire, but levels
declined to unburned levels in years 2–5.

We attributed the increase in tall perennial grass and
perennial forb cover in year 2 and year 3 in both treatments
to increased growth of residual plants that were present on the
site prior to treatment, because increased cover was not
accompanied by an increase in plant density. Others have
reported that the initial response of cover and biomass for
perennial grasses and forbs in the first and often second year
following fire is primarily the result of growth from plants that
survived the disturbance (Everett and Sharrow 1985b; West
and Hassan 1985; Hassan and West 1986; Bates et al. 2000;
Wehking 2002; Bates et al. 2009; Davies et al. 2009). The
occurrence and relative abundance of resident perennial grasses
and forbs on a site prior to treatment is therefore a more
important driver of early and midsuccessional trajectories
following disturbance than the seed bank (Koniak and Everett
1982; Everett and Sharrow 1985a; Allen et al. 2008; Pekas
2010).

Table 4. Mean density across sites for each treatment over time followed
by the standard error in parentheses. Shrubs . 50 mm were considered
established, and those , 50 mm seedlings. CO indicates control; FI, fire;
and ME, mechanical. Upper-case letters indicate a significant difference
between treatments within years and lower-case letters significant
differences within treatments across years at P , 0.05.

Treatment

Density (no. m�2)

Year 0 Year 1 Year 2 Year 3

Established shrubs

CO 0.58 (0.37)A 0.49 (0.21)A 0.48 (0.20)A 0.56 (0.27)A

FI 0.61 (0.39)Ba 0.16 (0.16)Bb 0.17 (0.17)Bb 0.23 (0.19)Bb

ME 0.56 (0.29)A 0.51 (0.24)A 0.56 (0.24)A 0.67 (0.25)A

Shrub seedlings

CO 0.13 (0.16) 0.06 (0.09) 0.07 (0.08) 0.34 (0.61)

FI 0.10 (0.11) 0.04 (0.04) 0.11 (0.17) 0.51 (0.72)

ME 0.14 (0.29) 0.02 (0.03) 0.66 (1.82) 0.46 (0.64)

Sagebrush seedlings

CO 0.07 (0.13) 0.02 (0.04) 0.02 (0.02)A 0.09 (0.11)A

FI 0.06 (0.10)a 0.01 (0.02)a 0.08 (0.16)Aa 0.44 (0.63)Bb

ME 0.07 (0.15)a 0.01 (0.02)a 0.60 (1.70)Bb 0.41 (0.64)Bb

Tall perennial grasses

CO 6.4 (3.62) 7.4 (4.15) 6.3 (2.87) 6.2 (4.44)

FI 5.9 (2.48) 5.9 (2.97) 5.2 (2.82) 5.4 (2.13)

ME 7.8 (5.37) 7.9 (3.24) 8.1 (3.47) 7.6 (2.85)

Perennial forbs

CO 4.2 (3.48) 7.6 (6.38) 4.8 (2.89) 8.6 (6.60)

FI 5.9 (4.44) 11.0 (8.72) 8.6 (9.02) 9.7 (7.90)

ME 6.2 (7.09) 7.1 (7.08) 5.9 (6.07) 8.5 (7.08)
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Bare ground nearly doubled in the fire treatment in the first
postfire year. However, it declined in year 2 and had nearly
returned to prefire treatment levels by year 3. This was likely a
result of increased cover in tall perennial grasses, forbs,
nonnatives, and litter in the fire treatment in year 2 and year
3, compared to year 1. Litter cover in the fire-treatment plots
also recovered to near prefire treatment levels by year 3
following treatment. The increase in litter can be important in
the recovery of a site, by reducing negative soil water potentials
and soil surface temperatures, which in turn can enhance
seedling emergence (Evans and Young 1970; Chambers 2000).
Biological soil crusts, however, did not show signs of recovery
by year 3 in the fire-treatment plots. West and Hassan (1985)
reported an 80% reduction in biological soil crusts following
fire. Recovery of biological soil crusts can occur within a
decade or can take centuries (Callison et al. 1985; Johansen
2001). Following a fire in Wyoming big sagebrush, Hilty et al.
(2004) reported an increase in short mosses but a decline in tall
mosses and lichens. The increase in bare ground and decline in
biological soil crusts did not occur in the mechanical treatment,
which did not differ from the control treatment. However, litter
significantly increased in the mechanical treatment, compared
to year 0 and the controls in all three posttreatment years.
Although not measured, litter depth increased beneath the
fallen tree canopies.

One of the primary concerns in treating conifer-encroached
shrublands is the potential increase of nonnative annual grasses
and forbs. In this study, nonnative plant cover did not increase
in year 1 in either treatment but increased significantly in year 2
and year 3. Several authors have reported increases in
nonnative species during the early years following treatment
of conifer encroached shrublands (Barney and Frischknecht
1974; Tausch and Tueller 1977; Quinsey 1984; Koniak 1985).
However, the delayed response in year 1 has been reported by
the majority of studies conducted in the region (Young and
Evans 1978; West and Hassan 1985; Young and Miller 1985;
Hassan and West 1986; Akinsoji 1988; Cook et al. 1994; Pyle
and Crawford 1996; Bates et al. 2000; Davies et al. 2007;
Mata-Gonzalez et al. 2007; Rowe and Leger 2011). The limited
response of nonnative forbs and grasses in the first year after
fire may be a result of reduced microsites available for
germination and establishment (Hilty et al. 2003; Davies et
al. 2009), reduced litter cover, and/or consumption of seed by
fire (Young and Evans 1975; Hassan and West 1986;
Humphrey and Schupp 2001; Allen et al. 2008). The
magnitude of increase in nonnative cover in year 2 and year
3 was greatest in the fire-treatment plots, but was variable
across our study sites and treatments. The three warmest sites
in our study area had the highest cover of nonnative species.
Others have reported greater increases in nonnative species on
warmer compared to cooler sites (Chambers et al. 2014;
Roundy et al. 2014a, 2014b). In the fire-treatment plots, cover
of nonnatives was generally less (, 10%) on sites occupied by
mountain big sagebrush (Artemisia tridentata Nutt. subsp.
vaseyana [Rybd.] Beetle) on frigid soils compared to Wyoming
big (Artemisia t. subsp. wyomingensis Beetle & Young) or
basin big sagebrush (Artemisia t. subsp. tridentata) sites, which
occupied mesic soils (. 30%). Prior studies indicate that
growth and reproduction of the nonnative annual grasses that
dominated in this study, especially cheatgrass (Bromus tecto-

rum L.), are limited by cold temperatures in sagebrush
ecosystems (Chambers et al. 2007). Although nonnative plant
cover increased following both the fire and mechanical
treatments, native plant cover in year 3 was 2.5–3.5 times
greater in the fire treatment and mechanical treatments,
respectively, compared to nonnative plant cover. Longer-term
studies indicate that although nonnative annual grasses are
likely to persist on warmer sites, their relative abundance over
time depends on the cover and density of native perennial
species, especially perennial herbs, and repeated occurrence of
fire (Koniak and Everett 1982; Rew and Johnson 2010).

Recovery of sagebrush cover is a primary concern, as it
provides valuable habitat for many wildlife species, particu-
larly for sagebrush obligates (Connelly et al. 2004). As
expected, fire significantly reduced cover and densities of
sagebrush and other established shrubs, whereas the mechan-
ical treatment had no initial effect on shrub cover. The number
of years required for sagebrush canopies to recover to
predisturbance levels can range from 15 to . 50 yr (Ziegen-
hagen 2004) and has been reported to average 30–35 yr in
cooler, moister sagebrush cover types (Harniss and Murray
1973; Barney and Frischknecht 1974; Watts and Wamboldt
1996; Nelle et al. 2000; Ziegenhagen 2004; Nelson et al.
2014). However, compared to mountain big sagebrush,
postfire recolonization of Wyoming big sagebrush has been
reported to be very slow to nearly nonexistent (Ralphs and
Busby 1979; Hosten and West 1994; West and Yorks 2002;
Beck et al. 2008; Rhodes et al. 2010). Consistent with this
finding, on our study higher sagebrush seedling densities
occurred on the mountain big sagebrush sites on frigid soils
compared to Wyoming and basin big sagebrush on mesic soils
(Miller et al. 2013). In the mechanical treatment sagebrush
seedling density was greater by year 2 than either the control
or fire treatments, and in year 3 was higher in both the
mechanical and fire treatments compared to densities in the
control or year 0. However, this trend was not consistent
across sites, ranging from 0 to 2 plants �m�2. Establishment of
new sagebrush plants during the first few years following
disturbance is a primary factor in determining the rate of
recolonization. This is particularly true in fire-treated areas,
where initial density and cover of established shrubs are
severely reduced (Ziegenhagen and Miller 2009). Sagebrush
seedling establishment has been reported to be strongly
related to soil moisture availability (Boltz 1994) and seed
source (Ziegenhagen and Miller 2009). Ziegenhagen (2004)
estimated that densities of mature mountain big sagebrush
and bitterbrush, when growing in combination, typically
ranged between 0.87 and 1.3 plants �m�2 on sites considered
to be fully occupied. Davies and Bates (2010) reported
densities of 1.1 plants �m�2 for mature mountain big
sagebrush and 0.5 plants �m�2 for Wyoming big sagebrush
across over 100 sites in southeast Oregon and northwest
Nevada. Based on a sagebrush recovery model, densities of
0.26 sagebrush �m�2 in the third postfire year in northwestern
Nevada were considered adequate for the stand to recolonize
within 30 yr (Ziegenhagen and Miller 2009). In our study,
sagebrush seedling densities in the third year following both
the mechanical and fire treatments were over 0.40 plants �m�2.
However, density ranged from 0 to 2 plants �m�2 across our
sites, indicating a wide range in the rate of recolonization.
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Unlike herbaceous vegetation, sagebrush is solely dependent
on seed banks or seed rain for recolonization.

MANAGEMENT IMPLICATIONS

This study indicates a relatively consistent pattern of
vegetation response can be expected to occur the majority of
the time within the range of study site conditions evaluated.
These patterns and the differences between the burn and
mechanical treatments have important implications for
predicting management outcomes and selecting appropriate
sites and treatments. When burning or mechanically removing
piñon and or juniper an increase in both tall perennial grasses
and perennial forbs can be expected across the majority of
sites within the range of conditions evaluated in this study.
However, an increase in nonnatives can also be expected, but
will vary with sited conditions and type of treatment. The
increase in nonnatives was greatest in burn treatment and on
the warmer, drier sites (Chambers et al. 2014). Both
treatments resulted in an increase in available soil water,
emphasizing the importance of desirable residual vegetation
that will reduce resource availability for invasive species
(Roundy et al. 2014b). Elevated levels of nitrogen and the
reduction of shrubs, tall perennial grasses, and biological soil
crusts provides a greater opportunity for nonnatives to
increase on a site following fire (Blank et al. 2007; Chambers
et al. 2007) than after a mechanical treatment. Our results
suggest that fire treatment is more likely to lower a treatment
areas’ resistance to invasives temporally, more than the
mechanical removal of trees by cutting (Chambers et al.
2014). Thus, the overall composition and structure of the
vegetation prior to treatment and soil moisture/temperature
regimes are key site attributes that will influence recovery.
This study suggests mechanical treatment will usually be a
better option on warm dry sites, typically occupied by
Wyoming big sagebrush. Advantages are less impact on the
abundance of sagebrush and biological soil crusts, which
recover very slowly on these sites. And the mechanical
treatment usually resulted in a smaller increase in nonnative
invasives. The greater abundance of biological soil crusts on
warm dry compared to cool moist sites may result in their
greater importance in the resilience and resistance to invasives
on these more arid sites.

The primary limitation of this study is the limited number
of years in which succession was evaluated following
treatment. Three years was inadequate to evaluate the
recolonization of sagebrush or determine long-term trends in
perennial herbaceous species, the persistence of nonnatives,
and the encroachment of conifers in both the fire and
mechanical treatments. Indeed, long-term monitoring studies
of succession following wild or prescribed fire and mechanical
treatments of conifer-encroached shrublands, where time has
not been substituted for space, are very limited in the
Intermountain West (Miller et al. 2013). Only continued
measurements of these sites will allow confident determina-
tion of potential changes in the abundance of introduced and
native species in the future. In addition to the lack of long-
term studies, few have reported the effects of repeated fires on
plant succession.
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