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ABSTRACT

Lim, H.S., 2018. Open channel flow friction factor: Logarithmic law. Journal of Coastal Research, 34(1), 229–237.
Coconut Creek (Florida), ISSN 0749-0208.

The friction factor in open channel flow is considered to increase proportionally with wall roughness compared to that of
pipe flow because of undulation at the free surface. The undulation is considered to be driven from the bottom and side
walls. The increment factor associated with free surface undulation, shape distortion, and meandering is related to the
Manning coefficient, and the incremented friction factor is substituted into the friction factor of circular pipe smooth
(stretching) turbulent flow so as to yield the friction factor for open channel flow. The new equation for friction factor or
mean velocity provides similar results to the Manning equation and the Ganguillet-Kutter (GK) equation for small
streams. However, it is found that the Manning equation results in larger values of mean velocity in wide rivers
compared with the GK equation and the new logarithmic equation based on the concept termed as ‘‘smooth turbulent,’’
which appears inappropriate in describing the turbulent flow mechanism. Smooth turbulent may have to be denoted as
‘‘stretching turbulent’’ because of stretching of the velocity profile as the Reynolds number increases. Based on the
comparison results with the other two empirical equations, the new logarithmic equation could be suitably adopted in
open channel flows.

ADDITIONAL INDEX WORDS: Logarithmic equation, increment factor, frictional head loss, stretching turbulent flow,
free surface undulation.

INTRODUCTION
Resistance in open channel flows is caused by various factors.

Rouse (1965) suggested four factors for incurring flow resis-

tance in open channel flow: (1) skin friction, (2) surface

distortion, (3) form drag, and (4) local acceleration. When a

channel is straight and uniform and its wall has a fixed and

immobile roughness, the last two factors do not act as sources of

flow resistance. In this case, skin friction may occur in both pipe

flows and open channel flows, but surface distortion occurs only

in open channel flows. Thus, surface distortion (undulation)

might be one of the most important features occurring in open

channel flows.

The flow in a pressure conduit is confined by solid walls on

every side, while the flow in an open channel has a free surface

on one side. When the flow in a pressure conduit is strongly

disturbed by high speed or a high ratio of relative roughness,

the disturbance is extended over the entire domain in the cross

section. In this case, the zero-velocity point at which the

logarithmic velocity vanishes determines the logarithmic

velocity profile (Yoo, 1993a). It becomes almost constant and

is mainly associated with the wall roughness. The flow then

reaches a stage of RT flow; that is, it is restricted from further

stretching. However, when the free surface flow is disturbed for

any reason and the disturbance is extended over a cross section,

the surface may rise and fall because it is free to move.

When pipes are not filled, the flows are considered open

channel flow. Sewers and drainage culverts may come under

this classification. The factors affecting losses of fluid movement

in conduits are almost independent of pressure, and hence, the

same laws may apply to the flow of water in both pipes and open

channels. However, there are some differences between them,

because an interaction among solid, air, and liquid (SAL contact)

is added to the open channel flow. The contact area between air

and liquid (AL) is considered independent of frictional losses,

and the surface is normally denoted a free surface. However,

both SAL contact and AL contact on the free surface may play

roles on the transport of water in open channels.

Although the existence of the free surface may cause the open

channel flow to be different from the pressure conduit flow in

many aspects, the distinction between these flows has not been

clearly made by sufficiently noting the differences in their flow

characteristics. For example, several empirical equations of

mean velocity are mutually employed for the description of

both pipe flow and open channel flow, even though the

computations sometimes result in different values.

Empirical equations of mean velocity or friction factor have

been suggested by various researchers, including Bazin (1865),

Ganguillet and Kutter (1869), Manning (1891), and Williams
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and Hazen (1933). The Hazen-Williams equation is most

commonly employed for flow in pressure conduits, particularly

for commercial (connected) pipes, while the others are primarily

used for flow in open channels. However, the Manning equation

has been suggested for pipe flow, and the Hazen-Williams

equation has been suggested for open channel flow. The major

factor for this multiuse is that both equations use the data for

pipe flow and open channel flow, and no particular difference

can be found between them in their analyses. In the present

study, the existing equations are reviewed to determine

whether any trend distinguishes the special features of open

channel flow in comparison with pipe flow. Furthermore,

several sets of laboratory data are reanalyzed to make the

difference between pipe flows and open channel flows clear.

For open channel flow, the effect of secondary loss is often

considered to be included in the effect of the friction factor, and

hL¼ hfL. Therefore:

hL ¼ hfL ¼ Dz ¼ f
L

d

V2

2g
¼ f

8

L

R

V2

g
¼ Cf

L

R

V2

g
ð1Þ

and

V ¼

ffiffiffiffiffiffi
8g

f

s ffiffiffiffiffiffi
Rs
p

¼
ffiffiffiffiffiffi
g

Cf

r ffiffiffiffiffiffi
Rs
p

¼ Ch

ffiffiffiffiffiffi
Rs
p

ð2Þ

where, hL is the head loss, hfL is the frictional head loss, f is the

Darcy-Weisbach friction factor, Cf(¼f/8) is the resistance

friction factor, L is the channel length, d is the diameter of

circular pipe, g is the acceleration because of gravity, V is the

cross-sectional mean velocity, s is the energy slope defined by s

¼ Dz/L for steady and uniform flow, Dz is the elevation

difference between two points, and Ch ¼
ffiffiffiffi
g

Cf

q� �
is the Chezy

friction factor. For a uniform steady flow, the friction factor Cf

has no dimension, while Ch has the dimension [L0.5T�1] and R is

the hydraulic radius defined as:

R ¼ A

P
ð3Þ

where, P is the wetted perimeter and A is the cross-sectional

area. For circular pipe flow, R¼r/2¼d/4 where, r and d are the

radius and diameter of the circular pipe, respectively. The

friction factor Cp(¼Cf) of pipe flow is defined by:

s ¼ qCf V
2 or Cp ¼

s
qV2

ð4Þ

where, s is the shear stress at the wall.

Equation (2) is called the Chezy equation. One of the major

factors affecting open channel flows is the relative roughness or

the ratio of pipe diameter to the roughness as used in the

description of pipe flow, but other factors are not yet clearly

defined.

METHODS
In this section, the fundamentals of the friction factor in

circular pipe flow and empirical equations of mean velocity of

uniform channel flow are presented. The new open channel

friction factors of unsteady, nonuniform and steady, uniform

flow are developed using the logarithmic law based on pipe

flow.

Friction Factor in Circular Pipe Flow
The flow characteristics of an open channel are considered

different from those of a circular pipe; however, it is considered

that they share some common aspects of flow mechanism, and

basically, open channel flow is similar to pipe flow. For circular

pipe flow, the logarithmic friction factor (Yoo and Lee, 1999) is

described by integrating the velocity over the cross section and

is given by:

1ffiffiffiffiffiffi
Cp

p ¼ 1

k
ln

r

zo
� 1:5

� �
ð5Þ

or

1ffiffiffiffiffiffi
Cp

p ¼ 1

k
ln

R

zo
� 0:8

� �
ð6Þ

where, zo is the zero-velocity point at which the logarithmic

velocity vanishes,
ffiffiffiffiffiffi
Cp

p
¼ u*/V (u* is the shear velocity defined

by
ffiffiffiffiffiffiffiffi
s=q

p
where, q is the water density).

Nikuradse (1933) conducted experiments with the roughness

made by attaching uniform sands inside a pipe. He devised six

sets of the roughness ratio dk(¼d/kw): 30, 61.2, 120, 252, 504,

and 1014, as shown in Figure 1. The roughness height kw is

defined as the mean diameter of sands attached inside the pipe,

which is called the Nikuradse equivalent roughness height.

Even when the roughness heights are different, but the

roughness ratio is the same, the distribution of the friction

factor is located on the same line. It is therefore concluded that

the roughness ratio is one of the most important factors

affecting the frictional characteristics of pipe flow. However,

Figure 1. Distribution of the Darcy-Weisbach friction factor f(¼8Cf) against

the pipe diameter Reynolds number Red with laboratory data from

Nikuradse (1933). The friction factor in ST flow is stretched with Reynolds

number. However, in the RT flow region, the friction factor is restricted and

is proportional to the roughness height kw. The relative roughness, or the

ratio of pipe diameter to the roughness, dk is one of the most important

friction factors in the RT flow region for both pipe flow and open channel flow

(Yoo, 1993b).
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the roughness height kw might be important, as well as the

roughness ratio dk, for open channel flow.

Turbulent flow occurs when the pipe diameter Reynolds

number Red exceeds 4000. Then, the friction factor in smooth

turbulent (ST) region decreases with the Reynolds number

up to a certain point at which the decrease rate reduces, and

it then increases in the transitional turbulent (TT) region

with the Reynolds number. However, the increase rate

gradually reduces in the rough turbulent (RT) region as

the Reynolds number increases, and finally, the friction

factor becomes constant, irrespective of the Reynolds

number. The first part of turbulent flow is called the ST

flow region, the second part is the TT flow region, and the

final part is the RT flow region. It is generally considered

that the flow in the ST region is smoother than that in the RT

region. However, there is no measure of the flow roughness

height kw, and it is expected that the zero-velocity point zo in

RT would also be constant and steady, similar to that of the

zero-velocity point in ST flow (Yoo and Lee, 1999). The zero-

velocity point in RT flow is approximately 10 lm, which is

smaller than the height of undulation found at the free

surface, and hence, the condition of RT flow is as smooth as

that of ST flow. The height of free surface undulation is

approximately 1 cm, as shown in Figure 2. Therefore, the

roughness of free surface undulation is almost 1000 times

greater than that of the zero-velocity point in RT flow. The

significant difference between ST and RT is only that the

zero-velocity point is stretching in the ST region, while the

zero-velocity point becomes restricted and proportional to the

roughness height in the RT region. Therefore, it is better to

define ST as ‘‘stretching turbulent’’ and RT as ‘‘restricted

turbulent.’’ In the ST region, the velocity profile continuously

stretches, and hence the zero-velocity point continues to

decrease with the Reynolds number or velocity. However, in

the RT region, the stretching of the velocity profile is

restricted by the limited space, and hence the zero-velocity

point becomes constant and proportional to the roughness

height. To stretch the zero-velocity point, plenty of space

should be allowed so that the velocity profile could be

elongated freely. To restrict the zero-velocity point, space

for the development of flow should be limited so that dk is

small.

The point between the laminar (L) flow region and

transitional laminar (TL) flow region is called the LT point;

the TS point is between TL and ST, the ST point is between ST

and TT, and the TR point is between TT and RT. The boundary

points can be determined by the pipe diameter Reynolds

number Red, and as expected, Red�LT¼2000 and Red�TS¼4000.

It is widely suggested that Red�ST and Red�TR may be

determined by introducing the shear velocity Reynolds number

Re*(¼u*kw/t) where, u* is the shear velocity, kw is the roughness

height, and t is the kinematic viscosity of water. However,

many researchers suggested different values for Re*�ST, from 3

to 7, and for Re*�TR, from 35 to 110. The values are found to vary

with different roughness ratio dk(¼d/kw) or Rk(¼R/kw). Instead

of Re*, the pipe diameter Reynolds number Re at the boundary

point is found to be proportional to the relative roughness ratio

(Yoo, 1993a, 1993b). Each region of the flow condition for

circular pipes is suggested as follows:

L: Red , 2000 (ReR , 500)

TL: 2000 , Red , 4000 (500 , ReR , 1000)

ST: 4000 , Red , 81.5dk (1000 , ReR , 81.5Rk)

TT flow: 81.5dk , Red , 1140dk (81.5Rk , ReR , 1140Rk)

RT: 1140dk , Red (1140Rk , ReR)

where, the pipe diameter Reynolds number is Red¼ Vd/t, the

hydraulic radius Reynolds number is Red¼VR/t, and ReR¼Red/

4. The critical values of Red�ST and Red�TR are found to be

proportional to the relative roughness dk(¼d/kw). The propor-

tional factors, 81.5 and 1140, are valid only for flow in circular

pipes. They could vary for different shapes of pipe. Several facts

should be noted from the Nikuradse laboratory experiments. If

the roughness ratio � ¼ kw

d ¼ d�1
k

� �
is large or dk is small, the

flow can be RT with a small Reynolds number. However, even if

Figure 2. Undulation effect on open channel flow: (a) undulation of the free

surface from the side walls and (b) undulation of the free surface from the

bottom.
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the ratio � is very large, the flow will still be L when the

Reynolds number is less than 2000.

By employing the laboratory data obtained by Nikuradse

(1933) for the ST flow, Nikuradse suggested that:

1ffiffiffi
f

p ¼ 2 log Red

ffiffiffi
f

p
� 0:8 ¼ 2 log R0:89

ed � 1:42 ð7Þ

where, f ¼ 8Cp. The last expression of Equation (7) approxi-

mates the first expression. Using the friction factor Cp of pipe

flow (Yoo and Lee, 1999):

1ffiffiffiffiffiffi
Cp

p ¼ 1

k
ðln ReR

ffiffiffiffiffiffi
Cp

q
þ 1:5Þ ð8Þ

Substituting Equation (5) into Equation (7) yields the zero-

velocity point for the ST flow as follows:

zo ¼ 0:1m=u*

The approximate explicit equation of the friction factor Cp is

given from the last expression of Equation (7) as follows:

1ffiffiffiffiffiffi
Cp

p ¼ 1

k
ðln R0:89

eR � 0:39Þ ð9Þ

Empirical Equations of Mean Velocity for Uniform
Channel Flow

Based on the Chezy equation in Equation (2), several

researchers developed empirical equations, by primarily

adjusting the values of exponents to R and s or representing

the Chezy friction factor Ch with various forms. As an initial

approach, several researchers proposed determining the

exponent by regression analysis, and the Manning-Strickler

(MS) equation is represented by (Strickler, 1923):

V ¼ 1

n
R0:67s0:5 ð10Þ

Bazin (1865) suggested that the friction factor of an open

channel is primarily related to the relative roughness ratio and

argued that the channel slope has a minor effect on the flow. He

developed his empirical equation using his own data, of which

the Reynolds number ranges from 40,000 to 600,000. Later, the

empirical coefficient in Equation (10) was determined using

Bazin’s data. Therefore, the MS equation is considered valid

primarily for the second group of stretching (smooth) turbulent

flow (ST II). However, Ganguillet and Kutter (1869) have

determined the parameters using the discharge data from the

Mississippi River and from various natural and artificial

channels in Europe. The Ganguillet and Kutter (GK) equation

is represented by:

Ch ¼ aGK
1

n
ð11Þ

where,

aGK ¼
1þ nnX

1þ nX=
ffiffiffiffi
R
p with X ¼ 23þ 0:0015

s

where, n is Kutter’s roughness factor and n is an adjusting

factor for the size of channel. It is recommended that n¼1.0 for

small streams and n ¼ 0.55 for large rivers. However, the

variation of n with the size of channel is not clearly defined. The

GK equation shows that the Chezy factor is a function of the

channel slope X, roughness ratio n=
ffiffiffiffi
R
p

, and roughness n, while

the MS equation shows that the Chezy friction factor Ch is only

a function of the relative roughness or roughness ratio �. The

Chezy factor is simply replaced by 1/n, assuming the variation

of aGK could be compensated for by the power of the hydraulic

radius or other uncertainties.

The friction factor in Equation (1) is associated with the MS

equation in Equation (10), and the friction factor is found to be

related only to the roughness ratio � as follows:

Cf ¼
gn2

R0:33
¼ n��0:33 ð12Þ

where, � ¼ kw/R, assuming 9.8n2 ¼ nk0:33
w in International

System (SI) units. The proportionate factor in Equation (12)

was normally estimated between 0.016 and 0.022, depending

on the physical condition of open channel flow, but its optimum

value is considered to vary with the channel size and flow

condition.

Friction Factor of Restricted Open Channel Flows
Bazin (1865) took measurements of open channel flow in a

wide and long artificial channel with a width of 2 m and length

of 600 m. The water depth ranged up to approximately 0.25 m.

In most of his experiments, the shape factor sh(¼h/b) ranged

from 0.02 to 0.1. The roughness of the wall was made artificially

using natural materials, such as mortar, concrete, wood plates,

and bricks. The Nikuradse equivalent roughness heights were

not yet defined. Bazin tested the experiments on channels of

five different slopes, but so far, the effects of channel slope have

not been considered. The channel slope was fixed, and only the

discharge was varied. Because his channel was long enough, at

more than 600 m, uniform flow was developed in sufficient

length. In contrast, Varwick (1945) conducted elaborate

laboratory experiments on two small-scale channels of different

shapes: one was trapezoidal, and the other was triangular.

Both slope and discharge were elaborately adjusted so that

constant values of the roughness ratio were obtained, as done

by Nikuradse (1993) in his experiments on pipe flow. Both

experimental results were plotted on a logarithmic scale by

Kirschmer (1949), as shown in Figure 3. The laboratory data on

L flow conducted by Straub, Silberman, and Nelson (1958) are

included in the same graph. The graph shows the distribution

of the friction factor against the hydraulic radius Reynolds

number.

The laboratory results of Varwick (1945) show a clear trend of

the ST flow condition in most cases, and those of Bazin (1865)

show the definite characteristics of the ST flow condition. They

are clearly shown on the graph of the friction factor against the

Reynolds number presented by Kirschmer (1949). Before

Kirschmer summarized the laboratory results of Varwick and

Bazin, Keulegan (1938) estimated the roughness height of each

channel, based on the assumption that the flow in Bazin’s

channel is RT. However, the assumption of RT flow in Bazin’s

channel violates Varwick’s definition of channel flow. Similar to

the friction factor of pipe flow, the friction factor of open

channel flow consists of L, ST, TT, and RT regions. The

boundary ST or TR points of the Reynolds number move
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slightly, with the roughness height, from the values of the pipe

friction factor.

The results of the three laboratory experiments conducted by

Bazin (1865), Varwick (1945), and Straub, Silberman, and

Nelson (1958) demonstrate that the open channel flow can be L

when the Reynolds number is less than 1000, and in most

cases, the flow conditions are found to be ST. The friction factor

of open channel flow decreases as the Reynolds number

increases, but with a different magnitude of the proportionat-

ing factor. RT flow may occur, but only when the flow is

strongly restricted by the channel boundary. As clearly

observed from the laboratory data of Varwick (1945), the

friction factor of open channel flow also decreases as the

Reynolds number increases at the condition of ST flow;

however, it increases with the roughness kw, not with the

roughness ratio. This is a dominant aspect of open channel

flow, which is strikingly different from that of pipe flow. The

friction factor of pipe flow is determined by the relative

roughness. Even if the pipe internal wall has a different

roughness but the same roughness ratio, the distribution of the

pipe flow friction factor is found on the same line. However, if

the open channel roughness conditions are different with the

same roughness ratio, the distribution of the open channel flow

friction factor is found on different lines. The friction factor of

higher roughness is located above that of lower roughness, even

if both have the same roughness ratio. This may be largely

because of the surface undulation caused by roughness, as

shown in Figure 3. Furthermore, the existing equations, such

as the MS equation, the GK equation, and Bazin’s equation,

cannot properly describe the laboratory data shown in Figure 3.

As shown in Figure 3, the flow condition of an open channel is

different from that of pipe flow, and each region of flow

condition for an open channel is suggested as follows:

L: ReR , 1000

ST: 1000 , ReR , ReR�ST

TT flow: ReR�ST , ReR , ReR�TR

RT: ReR�TR , ReR

Triangular channel: ReR�ST ¼ (�15 þ 37kw)R0:75
k , ReR�TR ¼

130R0:75
k

Trapezoidal channel: ReR�ST ¼ (10 þ 8.5kw)R0:75
k , ReR�TR ¼

130R0:75
k

The effect of parallel increase has been represented by

changing the slope and the intercept (Yoo and Lee, 1999). For

ST flow, the friction factor Cc of open channel flow is given by:

1ffiffiffiffiffiffi
Cc

p ¼ a
k
ðln ReR

ffiffiffiffiffiffi
Cc

p
þ bÞ ð13Þ

Figure 3. Friction factor Cc against hydraulic radius Reynolds number ReR, with laboratory experiment data from Bazin (1865), Varwick (1945), and Straub,

Silberman, and Nelson (1958).
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For circular pipe flow, a¼1 and b¼1.5, as given by Equation

(8). However, for open channel flow, it is found that both a and b
change with the channel shape and roughness. Yoo and Lee

(1999) proposed relating a to the channel shape and b to the

roughness height, using the data shown in Figure 3. Partial

success has been achieved by employing Equation (13).

However, general relations have not been made for the

expression of slope a and intercept b. Furthermore, it was not

possible for the logarithmic equation to be associated with the

traditional roughness factor n. This is because Equation (13) is

based on ST flow, while the MS equation is based on RT flow.

Thus, it was not possible for the roughness height to be related

to the factor n. The present study proposes to relate the

roughness to the Manning coefficient.

The frictional motion of open channel turbulent flow is

complicated, and because of this complication, the resulting

friction factor gradually varies with any condition. As the

Reynolds number increases, the friction factor of open channel

flow also decreases, similar to that of pipe flow. This condition

may be called ST flow. The friction factor of open channel flow

at a certain condition can also be categorized as TT flow or RT

flow, as found from Varwick’s laboratory data. However, the

strikingly different feature of the open channel flow friction

factor is that it moves upward from the distribution of the pipe

flow friction factor. This may be largely because of the shape

distortion of the velocity profile and the undulation of the free

surface. That is, the friction factor increases, but the general

trend of its distribution is logarithmic, as given by Prandtl’s

(1925) mixing length theory. It is now suggested as:

Cc ¼ fCp ð14Þ

where, the subscript c indicates open channel flow and f is the

increment factor.

From Equations (14) and (12), the relation between n and ac

or f is given by:

f ¼ g

R0:33Cp
n2 ð15Þ

The magnitude of the Kutter or Manning coefficient has

been determined using Bazin’s data, which are mostly in

ST II, considering the values of Cp and R for the ST II

region. From Equations (10) and (14) and considering Cp ¼
0.012R�0:17

eR for the ST II region, the relation between n and

ac or f is given by:

f ¼ gR0:17
eR

0:012R0:33
n2 ð16Þ

The Reynolds number ReR ranges from 40,000 to 2 3 106 for

the ST II region. Assuming R ¼ 0.1 m at ReR ¼ 40,000, f ¼
10,590n2. For R¼0.3 m at ReR¼400,000, f¼10,900n2, and for R

¼ 0.5 m at ReR ¼ 1,000,000, f ¼ 10,750n2. Thus, f is can be

reasonably estimated as:

f @ 10; 000n2 ð17Þ

The values of the increment factor f for various channels are

presented in Table 1.

Assuming Cc ¼ fCp and f ¼ 104n2, the new equation for the

logarithmic friction factor, the Yoo and Lim (YL) equation, in

unsteady, nonuniform, open channel RT flow is obtained as:

1ffiffiffiffiffiffi
Cc

p ¼ 0:01

n
ð2:2 ln ReR � 1Þ ð18Þ

A comparison between laboratory data and computational

results from Equation (18) is shown in Figure 4. To clarify the

comparison, the laboratory data of L flow and TL flow are

excluded. The equation of unsteady flow in Equation (18) is

employed for the computation, because the major parameter is

RT and no slope is denoted.

Friction Factor of Stretching Open Channel Flows
For uniform and steady flow, Equation (8) is further extended

to compute the mean velocity. The base friction factor is the

circular pipe friction factor Cp, and the logarithmic law is given

by Equation (8). ST flow is represented by Equation (8). For

uniform steady flow, the friction factor is derived from

Equation (2) as:

ReR

ffiffiffiffiffiffi
Cp

q
¼ VR

m

ffiffiffiffiffiffi
Cp

q
¼

ffiffiffiffiffiffiffiffiffi
gRs

Cp

s
R

m

ffiffiffiffiffiffi
Cp

q
¼ R

ffiffiffiffiffiffiffiffiffi
gRs

p
m

ð19Þ

where, V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRs=Cp

p
for uniform and steady flow. Substitut-

Table 1. Manning coefficient n and increment factor f for various channels

with different surface materials and states.

Channel Type Surface Materials State n f

Models Mortar Straight 0.011 1.2

Perspex Straight 0.009 1.0

Lined canals Concrete Straight 0.012 1.5

Unlined canals Earth Straight 0.018 3

Rock Straight 0.025 6

Rivers Earth Straight 0.020 4

Meandering 0.030 9

Gravel Straight 0.030 9

Winding 0.040 16–64

Grass Straight 0.060 36–144

Figure 4. Friction factor Cc in Equation (18) against hydraulic radius

Reynolds number ReR for unsteady, nonuniform, open channel RT flows.
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ing Equation (19) into the right-hand side of Equation (8)

yields:

1ffiffiffiffiffiffi
Cp

p ¼ 1

k
ln

R
ffiffiffiffiffiffiffiffiffi
gRs

p
m

þ 1:5

 !

The friction factor Cp is given by Equation (14), that is, Cp¼
Cc/f. Then, the new equation for the logarithmic friction factor

in steady, uniform open channel flow is obtained as:

1ffiffiffiffiffiffi
Cc

p ¼ 1

k
ffiffiffi
f
p ln

R
ffiffiffiffiffiffiffiffiffi
gRs

p
m

þ 1:5

 !
ð20Þ

Assuming f¼10,000n2, as suggested in Equation (16); g¼9.8

m/s2; and m¼ 10�6 m2/s, the new logarithmic equation (YL) of

mean velocity for open channel ST flow is finally obtained as:

V ¼ 0:078
ffiffiffiffiffiffi
Rs
p

n
ln R

ffiffiffiffiffiffi
Rs
p

þ 16:4
h i

ð21Þ

Equation (21) should be used only for steady, uniform open

channel flow, while Equation (18) can be used for unsteady,

nonuniform, open channel flow.

RESULTS
The new logarithmic equation in Equation (21) of the mean

velocity in open channel flow is valid for a range of Reynolds

numbers from 1000 to possibly 1 trillion, which may occur in

wide rivers, as long as the flows somehow have logarithmic

profiles. Open channel flows are considered to be primarily ST

and have the logarithmic function of the Reynolds number.

However, because of the existence of the free surface, a large

increment is considered to be imposed on the energy dissipation

or frictional head loss for the case of open channel flow. The

mean velocity of the new logarithmic equation in Equation (21)

in open channel flow is compared to the MS equation in

Equation (10) and GK equation in Equation (11) for three cases

of rectangular open channel flow in the following example.

Example
Estimate the cross-sectional mean velocity of rectangular

open channel flow as follows:

(1) h ¼ 0.1 m, b ¼ 2 m, s ¼ 0.0009, n ¼ 0.02

(2) h ¼ 2 m, b ¼ 4 m, s¼ 0.0009, n¼ 0.02

(3) h ¼ 20 m, b ¼ 300 m, s ¼ 0.0004, n ¼ 0.04

Case 1

R ¼ bh

bþ 2h
¼ 0:1 3 2

2þ 0:2
¼ 0:091 m

By logarithmic equation (YL):ffiffiffiffiffiffi
Rs
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:091 3 0:0009
p

¼ 0:00909

V ¼ 0:078 3 0:009

0:02
lnð0:091 3 0:009Þ þ 16:4½ � ¼ 0:33 m=s

By the MS equation:

V ¼
ffiffiffi
s
p

n
R0:67 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0009
p

0:02
3 0:0910:67 ¼ 0:30 m=s

By the GK equation:

X ¼ 23þ 0:0015

s
¼ 23þ 0:0015

0:0009
¼ 24:67

aGK ¼
1þ nnX

1þ nX=
ffiffiffiffi
R
p ¼ 1þ 1 3 0:02 3 24:7

1þ 0:02 3 24:7=
ffiffiffiffiffiffiffiffiffiffiffiffi
0:091
p ¼ 1:49

2:638
¼ 0:565

V ¼ aGK

n

ffiffiffiffiffiffi
Rs
p

¼ 0:565

0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:091 3 0:0009
p

¼ 0:26 m=s

For laboratory channel flows, the MS equation provides a

value of 0.3 m/s for the mean velocity, which is approximately

7.5% lower than that of logarithmic law; however, the GK

equation provides a large underestimation of approximately

21.9% in comparison with that of the logarithmic law.

Case 2

R ¼ bh

bþ 2h
¼ 2 3 4

4þ 4
¼ 1:0 m

By the YL equation:ffiffiffiffiffiffi
Rs
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 3 0:0009
p

¼ 0:03

V ¼ 0:078 3 0:03

0:02
lnð1 3 0:03Þ þ 16:4½ � ¼ 1:51 m=s

By the MS equation:

V ¼
ffiffiffi
s
p

n
R0:67 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0009
p

0:02
3 1:00:67 ¼ 1:50 m=s

By the GK equation:

X ¼ 23þ 0:0015

s
¼ 23þ 0:0015

0:0009
¼ 24:67

aGK ¼
1þ nnX

1þ nX=
ffiffiffiffi
R
p ¼ 1þ 1 3 0:02 3 24:67

1þ 0:02 3 24:67=
ffiffiffiffiffiffiffi
1:0
p ¼ 1:49

1:49
¼ 1:0

V ¼ aGK

n

ffiffiffiffiffiffi
Rs
p

¼ 1:0

0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 3 0:0009
p

¼ 1:50 m=s

Both the MS equation and the GK equation provide similar

values of mean velocity, which have an underestimation of

about 0.6% in comparison with that of the logarithmic law for

small channels.

Case 3

R ¼ bh

bþ 2h
¼ 20 3 300

300þ 40
¼ 17:65 m

By YL equation:ffiffiffiffiffiffi
Rs
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:6 3 0:0004
p

¼ 0:084

V ¼ 0:078 3 0:084

0:04
lnð17:6 3 0:084Þ þ 16:4½ � ¼ 2:75 m=s

By MS equation:

V ¼
ffiffiffi
s
p

n
R0:67 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0004
p

0:04
3 17:60:67 ¼ 3:39 m=s
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By GK equation:

X ¼ 23þ 0:0015

s
¼ 23þ 0:0015

0:0004
¼ 26:75

aGK ¼
1þ nnX

1þ nX=
ffiffiffiffi
R
p ¼ 1þ 0:55 3 0:04 3 26:75

1þ 0:04 3 26:75=
ffiffiffiffiffiffiffiffiffiffi
17:6
p ¼ 1:59

1:255
¼ 1:267

V ¼ aGK

n

ffiffiffiffiffiffi
Rs
p

¼ 1:267

0:04

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:6 3 0:0004
p

¼ 2:66 m=s

For wide rivers, the GK equation provides similar values to

those of the new logarithmic law if the factor n is reduced to 0.55

from 1.0. In comparison with the new YL equation, the GK

equation has approximately 3.3% underestimation, while the

MS equation produces a large overestimation of approximately

23.2%. This is a significant underestimation of water depth for

a given discharge, which may cause serious floods over dikes.

Test of Example
The three cases exemplified in the preceding example are

tested using the two existing empirical equations in compar-

ison with the new logarithmic law. The results are presented in

Table 2. As shown in the table, the GK equation provides

similar values of mean velocity in comparison with those of the

YL equation for relatively small rivers with a value of n¼ 1.0

and for wide rivers with a value of n¼ 0.55. The reason for the

reduction in the factor n is considered mainly because of further

stretching of the ST logarithmic profile in large rivers, as

Ganguillet and Kutter (1869) experienced in some tests in the

Mississippi River. The factor n could be further reduced for

extremely long and wide rivers, such as the Nile River or the

Mekong River. The MS equation provides similar values of

mean velocity to those of the YL equation for relatively small

rivers; however, it provides larger values than those of the YL

equation or GK equation for big rivers, because the equation or

the Manning factor is primarily determined using data from

small channels. The MS equation provides a large overestima-

tion of the mean velocity in comparison with the YL equation

for large rivers or for hydraulic conditions with Reynolds

numbers larger than 107.

As presented in Table 2, the present YL equation in Equation

(21) for ST flow provides similar results to the MS equation in

Equation (10) and the GK equation in Equation (11) for steady

and uniform flows. For small streams, where the hydraulic

radius Reynolds number is expected to be small, the YL

equation provides values of mean velocity similar to those of

the MS equation, while the GK equation provides smaller

values of mean velocity compared with those of the YL

equation. However, for large rivers, where the Reynolds

number is expected to be very large, the YL equation provides

values of mean velocity similar to those of the GK equation,

while the MS equation provides larger values of mean velocity

compared with those of the YL equation and GK equation. The

MS equation was initially developed using Bazin’s data (1865),

which is categorized as ST II. The GK equation was initially

developed using the data from small streams, and the factor n of

the equation has been adjusted from 1 for small streams and to

0.55 for large rivers. Therefore, the present logarithmic

equation based on ST flow is generally coincident with existing

experiences.

Figure 5 shows a comparison of computational results using

the MS, GK, and YL equations for various conditions of n¼0.02

and n ¼ 0.04 and of s ¼ 0.0004 and s ¼ 0.0009. The hydraulic

radius R is allowed to vary from 0.5 to 30 m, which is considered

to cover the range of the first to fourth groups of stretching

turbulent flow (ST I to ST IV). As shown in the graph, the MS

equation yields small computational results of mean velocity

similar to those of the YL equation when the flow condition is

restricted to ST I. However, the MS equation yields very large

computational results of mean velocity in comparison with

those of the YL equation when the flow condition reaches ST

IV. The empirical factor n of the GK equation in Figure 5 uses

1.0 from ST I to ST IV. For wide rivers such as the Mississippi

river, where n is large, the GK equation also overestimates the

mean velocity.

DISCUSSION
It is proposed that the ST flow should be short for ‘‘stretching

turbulent’’ flow instead of ‘‘smooth turbulent’’ flow and RT flow

should be short for ‘‘restricted turbulent’’ flow instead of

‘‘rough turbulent’’ flow. Both are smooth for the case of

pressurized pipe flow compared with the undulating motion

of the free surface in open channel flow, which may be called

rough- or undulating-surface ST flow. Although the undulation

of the free surface is one of the factors for energy dissipation or

head loss, the main body in open channel flow acts as

pressurized pipe flow. Therefore, the friction factor decreases

logarithmically (as in pipe flow), which could be represented by

Prandtl’s law. This is valid for external flow, as well as for

confined pressurized pipe flow.

Table 2. Comparison of the two empirical equations, the MS equation in Equation (10) and the GK equation in Equation (11), with the new logarithmic

equation in Equation (21) for several cases of steady, uniform channel ST flow condition.

Case h (m) b (m) s n R ReR

V (m/s)

YL MS GK n

1 0.05 1.0 0.0009 0.02 0.045 9.4e3 0.21 0.19 0.17 1.5

2 0.10 2.0 0.0009 0.02 0.091 3.0e4 0.33 0.30 0.30 1.5

3 1.0 3.0 0.0009 0.02 0.60 6.6e5 1.10 1.07 1.06 1

4 2.0 4.0 0.0009 0.02 1.00 1.5e6 1.51 1.50 1.50 1

5 3.0 6.0 0.0009 0.02 1.50 2.9e6 1.93 1.97 1.96 1

6 5.0 100.0 0.0004 0.04 4.55 5.6e6 1.23 1.37 1.13 0.55

7 10.0 200.0 0.0004 0.04 9.10 1.7e7 1.86 2.18 1.77 0.55

8 20.0 300.0 0.0004 0.04 17.65 4.9e7 2.75 3.39 2.66 0.55

9 30.0 500.0 0.0004 0.04 26.79 9.4e7 3.52 4.48 3.41 0.55
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CONCLUSION
The logarithmic laws could be adopted in a range of open

channel turbulent flows. The new friction factor for undulating-

surface (rough surface) ST flow is found to be similar to the

results of the MS equation for small streams and to those of the

GK equation for wide rivers. The inclusion of the slope effect is

considered possible only when the friction factor is strongly

associated with the hydraulic radius Reynolds number. This

means that in most cases, open channel flows are ST. RT may

hardly occur in open channel flows, because the logarithmic

profile would not be restricted sufficiently when the flow has a

free surface.

The GK equation and the new YL equation may have to be

adopted for open channel flow for big rivers. However, the

validity of the GK equation is doubtful for extremely wide

rivers that may experience very large Reynolds numbers.
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Figure 5. Comparison of computed mean velocity V against hydraulic radius R with different n and s values using the MS equation in Equation (10), GK equation

in Equation (11), and YL equation in Equation (21) for steady, uniform ST open channel flows.
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