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Introduction
Sexual dimorphism – the expression of different 
phenotypes in the two sexes – has intrigued evolutionary 
biologists since Darwin (1871). The main driver for 
the evolution of sex-specific morphological structures 
is usually considered to be sexual selection (Rowe & 
Arnvist 2013). This kind of selection acts either through 
competition between males to gain access to females 
or through mate choice, whereby females evaluate the 
evolutionary fitness of their potential mates according 
to morphological traits specifically developed for this 
purpose (Andersson 1994).
However, aside from sexual selection, three 
further factors may lead to the evolution of sexual 
dimorphism: (i) fecundity selection, which favours 
larger bodies in females providing more space for 
eggs; (ii) competition between sexes, which should 
lead to sexual dimorphism in body size or food 
consumption structures (Selander 1972); and (iii) 
mating performance through intrasexual competition, 
which favours morphological structures maximizing 
the number of successful mating attempts (Gvoždík 
& Van Damme 2003).

Although sexual differences in body size have 
previously been investigated in many species of 
salamanders (De Lisle & Rowe 2013), dimorphism 
in body shape has received much less attention 
(Malmgren & Thollesson 1999, Kalezić et al. 2000, 
Romano et al. 2009, Hasumi 2010). Many species 
of salamanders – as well as frogs – seem to follow 
the predicted patterns of sexual size dimorphism in 
ectotherms whose females are larger than males 
(De Lisle & Rowe 2013). The opposite pattern is 
rare and may be associated with the existence of 
contests between males for females (Shine 1979); 
nevertheless, a large variety of types of behaviour 
related to inter- and intrasexual interaction exists in 
salamanders, including scramble competition, mate 
guarding, courtship, fighting for resources and biting 
(Levgenius & Parzefall 1992, Mathis et al. 1995, 
Kawamichi & Ueda 1998).
The plethodontid salamander Atylodes genei lives in 
caves and rocky-outcrops in Mediterranean forests 
and is geographically restricted to the area of Sulcis-
Iglesiente in south-west Sardinia (Lanza 1999). To 
date, the only study examining sexual dimorphism 
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in this species reported sexual differences in total 
and body lengths, and provided information about 
differences in body shapes between males and 
females based on ratios but lacked any statistical 
analysis (Lanza et al. 1995). In this study, we used 
both body size and shape to describe patterns of sexual 
dimorphism in Atylodes genei, which will facilitate 
comparisons with other available data for this species 
(Lanza et al. 1995, 2007) and other European lungless 
salamanders (Salvidio & Bruce 2006).

Material and Methods
Field sampling of Atylodes genei was carried out 
in south-west Sardinia on 23-26 April 2009. A 
total of 97 individuals were collected, of which, 
despite the large sampling effort, the sex ratio was 
severely biased towards males, probably due to 
differences in activity patterns between the sexes. 
Salamanders were caught by hand and anaesthetised 
using tricaine methanesulphonate (MS-222), one of 
the anaesthetics most commonly used in the field 
sampling of amphibians (e.g. Schumacher 1996). 
Sexual determination was based on the detection 
of the mental gland, a typical male structure; 
individuals larger than the smallest male and lacking 
this trait were considered as females. Twelve linear 
morphometric traits were measured with a digital 
calliper to a resolution of one millimetre: 1: snout-
vent length (SVL), from the tip of the snout to the 
rear margin of the cloaca; 2: head length, from the 
tip of the snout to the gular fold; 3: maximum head 
width; 4: head width between the eye orbits; 5: head 
width at the gular fold; 6: maximum head height; 
7: interorbital distance, equivalent to the minimum 
distance between the eyes; 8: forelimb length from 
the point of insertion to the tip of the longest finger; 9: 
hindlimb length from the point of insertion to the tip 
of the longest toe; 10: axilla-to-groin length; 11: tail 
length; and 12: trunk length, calculated as SVL minus 
head length. All measurements were taken by the 
same person (F. Amat). Sexual size dimorphism was 
estimated using an index (Lovich & Gibbons 1992) 
defined as the quotient between the sizes of the largest 
and smallest sex –1. By convention this index is given 
as a positive value when females are the largest sex 
and as a negative value when males are largest.
Statistical analyses were performed using the 
logarithmic value (log10) of the morphometric 
variables. Sexual size and shape dimorphism were 
investigated using a two-way ANOVA with sex and 
geographical area as factors. In order to maximise the 
sample size, populations were pooled into three groups 

based on geographical proximity (Rivera et al. 2015) 
as follows: Domusnovas (cave and surroundings), 
42 salamanders, of which 11 were females and 31 
males; Nuxis (two caves), 24 salamanders, of which 
8 were females and 16 males; and Fluminimaggiore 
(three caves), 31 salamanders, of which all were 
males. In total 78 males and 19 females from these 
three localities were analysed. Pearson correlations 
were performed to assess whether the SVL was 
positively associated with the other 11 morphometric 
variables (results not shown). In order to evaluate 
sexual differences in body shape whilst controlling 
for the effect of body size on the other variables, a 
two-way MANCOVA test was conducted with SVL 
as a covariate. An examination of the multivariate 

Table 1. Means, standard errors of the twelve linear morphometric traits  
by sexes of sampled individuals of Atylodes genei.

Mean ± SE

Males Females

SVL 53.8 ± 4.2 53.4 ± 2.8

Head length 14.0 ± 1.4 12.7 ± 0.9 

Trunk length 39.7 ± 3.2 40.6 ± 2.6 

Maximum head width 10.6 ± 1.5 8.4 ± 0.4 

Head with at eye orbits 7.9 ± 1.1 7.3 ± 0.8 

Head with at gular fold 7.3 ± 0.9 6.3 ± 0.4 

Head depth 5.3 ± 0.7 3.7 ± 0.3 

Interorbital distance 5.4 ± 0.6 4.8 ± 0.3 

Forelimb length 14.4 ± 1.4 13.4 ± 1.1

Axila-groin length 26.6 ± 2.4 27.0 ± 1.5 

Hindlimb length 16.6 ± 1.5 14.8 ± 0.9 

Tail length 45.8 ± 4.9 34.9 ± 2.2 

Fig. 1. Plot of the examined individuals of Atylodes genei on the two first 
PC: open squares – females and black squares – males.
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patterns of correlation between the 11 morphometric 
variables was performed using a principal component 
analysis (PCA) to visualise sexual differences in shape 
between sexes (Romano et al. 2009). All analyses 
were performed using Statistica 4.5.

Results
Sexual size dimorphism was extremely small (males 
53.8 ± 4.2 and females 53.4 ± 2.8 mm). Females 
matured at larger sizes than males (minimum 
SVL, 49.9 and 44.9 mm in females and males, 
respectively), but males had larger maximum SVL 
than females (63.1 and 60.6 mm, respectively). Thus, 
sexual and geographical differences had statistically 
a non-significant influence on body size (ANOVA: 
geographical area, F1,62 = 1.290, P = 0.259; sex, F1,62 = 
2.843, P = 0.096; interaction, F1,62 = 0.405, P = 0.526). 
However, the analysed populations had significant 
sexual dimorphism in body shape – including mean 
head width, trunk length and tail length (Table 1, P 
< 0.001) – combined with geographical variation; 
however, there was no interaction between these 
two factors (MANCOVA: geographical area, F1,51 
= 0.689, P = 0.038; sex, F1,51 = 0.076, P < 0.001; 
interaction, F1,51 = 0.743, P = 0.127). The PCA had 
a high total variance accounted for by the first two 
factors (72.4 %). The first PC had the typical structure 
of a size vector (Table 2), in which all the variables 
are positively and strongly weighted. Thus, the first 
PC only described individual variation in the overall 
body size, irrespective of sex. The second PC was 

positively influenced by the weights of trunk length 
and axilla-groin length, while the other variables – 
above all, maximum head width, height and length, 
and tail length – were both strongly and negatively 
weighted. Plotting the data of these two PCs revealed 
a pattern of sexual-shape dimorphism (Fig. 1). Thus, 
males were characterised by relatively bigger heads 
in all three dimensions (length, width and height), 
longer tails and longer hindlimbs. Females, though, 
had opposing patterns in the relative proportions of 
their heads and tails.

Discussion
The commonest pattern of sexual size dimorphism in 
ectothermic organisms is a bias towards larger females 
(Fairbairn 1997). This is a general rule in amphibians 
such as salamanders (De Lisle & Rowe 2013, Han 
& Fu 2013, Amat & Meiri 2017). Nevertheless, our 
study recorded roughly equal body size between sexes 
in Atylodes genei in agreement with previous studies 
(mean SVL: males 52.5 mm and females 52.0 mm, 
Lanza et al. 1995). Male combat has been proposed as 
one of the main selective factors enhancing sexual size 
dimorphism biased towards males, especially in frogs 
(Shine 1979, Han & Fu 2013). Despite the inherent 
difficulties in observing the behaviour of European 
plethodontid salamanders, there is no evidence 
that male Atylodes or Speleomantes species fight 
(Zanetti & Salvidio 2006, Sguanci et al. 2010). On 
the other hand, females of these salamander species 
have been reported to show aggressive behaviour 
towards conspecifics or predators when guarding their 
clutches (Stefani & Serra 1966, Mutz 1998, Oneto et 
al. 2014). In the case of two continental Speleomantes 
(Salvidio & Bruce 2006), females are larger than 
males; however, the opposite pattern was observed 
in the Sardinian S. sarrabusensis (Tessa et al. 2008). 
Remarkably, the most comprehensive and descriptive 
analysis of morphological differentiation in European 
lungless salamanders (Lanza et al. 1995) reports 
widespread sexual size dimorphism biased towards 
females in all these species with the exception of 
Atylodes genei.
Sexual differences in body size in amphibians are due 
to faster maturity in one sex rather than to differences 
in growth rates (Zhang & Lu 2013), although one 
experimental study carried out with caecilians did 
show the importance of both factors (Kupfer et al. 
2004). There are no available data for the timing of 
sexual maturity in Atylodes genei that could validate 
this pattern; nevertheless, faster male maturation has 
been reported in one European lungless salamander 

Table 2. Coefficients of linear morphometric variables of the sampled 
specimens of Atylodes genei in the two first factors, corresponding 
eigenvalues and percentage of explained variance.

Variable 1st PC 2nd PC

Trunk length 0.680   0.650

Head length 0.840 –0.156

Maximum head width 0.854 –0.198

Head with at orbits 0.672   0.041

Head with at gular fold 0.818 –0.078

Head height 0.857 –0.351

Interorbital distance 0.792 –0.029

Forelimb length 0.718   0.073

Axila-groin length 0.677   0.657

Hindlimb length 0.866 –0.064

Tail length 0.855 –0.260

Eigenvalues 7.170   0.925

% explained variance 0.608   0.084
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(Speleomantes ambrosii: 3.5 and 5 years for males and 
females, respectively; Salvidio 1993). By contrast, 
populations of the Sardinian S. sarrabusensis showed 
faster sexual maturation occurring at an identical 
minimum age in both sexes (two years, Tessa et al. 
2008), with males being larger than females. It has 
been suggested that insularity could affect life history 
and body size in ectotherms (Novosolov et al. 2013) 
through selective pressure given that predation 
and competition for resources acts in differently 
on islands than in the mainland. Therefore, insular 
conditions could have modified the patterns of 
sexual maturity and, in turn, sexual size dimorphism 
in Sardinian lungless salamanders in relation to 
continental species. Alternatively, the basal position 
of Atylodes genei in the phylogeny of the European 
lungless salamanders (Van der Meijden et al. 2009) 
could be evidence of an ancestral condition of little or 
no sexual size dimorphism.
Based on our results, Atylodes genei exhibits a clear 
pattern of sexual shape dimorphism characterised 
by larger heads, limbs and tail in males, albeit with 
some geographical variation. Previous research 
(Lanza et al. 1995) found the same pattern of sexual 
dimorphism in limb proportions but opposite patterns 
in relative head lengths, as well as sexual differences 
in head width and tail length that varied between the 
studied populations. Sexual differences in body shape 
could have implications for this species’ ecology. For 
example, cave salamanders use their tails as a fifth 
limb to move up and down vertical surfaces (Lanza 
1991) and so if they have proportionally longer tails 
than females, males may be obliged to avoid steeper 
slopes. Nevertheless, none of the few available 
studies of the spatial ecology of cave salamanders 
have ever found sexual segregation in their use of 
vertical habitats (Ficetola et al. 2013). Although larger 
hind limbs in males may increase their climbing 
ability and compensate for the negative effect of 
longer tails, it is likely that the magnitude of the 

difference we found is not large enough to have any 
real effect. Another significant sexually dimorphic 
trait found in our study was head width, which was 
proportionally larger in males, a pattern shared with 
most plethodontid salamanders including the closely 
related Speleomantes species (Salvidio & Bruce 
2006). Two different hypotheses have been proposed 
to explain this pattern. Firstly, contests between 
males to control mating territories may promote 
the development of proportionally bigger heads 
with powerful jaw muscles as, for example, in the 
plethodontid salamanders of the genus Aneides (Davis 
2002); nonetheless, this behaviour has never been 
observed in the European cave salamanders (Zanetti & 
Salvidio 2006). Secondly, sexual differences in head 
size could be explained by a segregation of trophic 
niches reducing intraspecific competition since prey 
size might be constrained by mouth size. However, 
previous studies on Sardinian cave salamanders have 
found no support for this hypothesis and only report 
an ontogenetic effect on diet structure (Lunghi et al. 
2017, Salvidio et al. 2017). 
Our results suggest that a change in the patterns of 
sexual size dimorphism in Atylodes genei compared 
to other European plethodontid salamanders has 
taken place; by contrast, shape dimorphism has 
remained mostly unchanged. Future research on 
sexual dimorphism, age at maturation and fecundity 
in other lungless salamanders could help clarify 
whether these differences are adaptations to insularity 
or, alternatively, the result of the conservation of an 
ancestral condition.
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