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Abstract. Several series of available environmental (land use/land cover, agriculture, soil, climate) variables 
are used in exploratory models to test their use for successful prediction of red-legged partridge (Alectoris rufa 
L.) abundance in spring. A Geographic Information System and stepwise multiple regression analysis are used 
to show and predict distribution of this population parameter in an agricultural region of southern France. High 
spring abundance was observed to be distributed mainly in the central and north-western part of the study area. 
Two partial models, land use/land cover and agriculture, and a complete model with land use and temperature 
variables are the most significant and more accurate than any others. The complete model is the best model 
(lowest Akaike Information Criterion and highest Akaike weight). The potential abundance obtained from this 
best model shows communes with high Kilometric Abundance Indices (KAI), mainly located in the north-
western part of the region. Partridge abundance was unevenly or irregularly distributed across the study area, 
which is typical of wildlife species inhabiting complex and changing landscapes limited by various sources 
of human pressure, such as agriculture, urbanization and game management. A game tool is provided using 
potential spring abundance to plan the harvest quotas two months before opening the hunting season.
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Introduction
The red-legged partridge (Alectoris rufa L.) is endemic 
to Europe, where it is confined to south-western 
parts of the continent. Its  status in the southern part 
of Europe shows higher breeding population sizes in 
Spain and France than in Portugal and Italy (BirdLife 
International 2011). The red-legged partridge is 
classified as SPEC category two (Species of European 
Conservation Concern) based on its marked population 
decline and its limited distribution (Aebischer & Potts 
1994, BirdLife International 2004), especially during 
the second half of the 20th century (Aebischer & Lucio 
1997, Meriggi & Mazzoni della Stella 2004). Although 
populations were stable in Portugal and Italy during 
1990-2000, this species continued to decline across 

most of its European range. The highest densities within 
its current distribution range were found  in the southern 
half of the Iberian Peninsula (Vargas et al. 2006), but 
the Spanish population suffered about a 25 % reduction 
during 1990-2000 (BirdLife International 2004, Farfan 
et al. 2009). Partridge populations in Mediterranean 
Europe have declined for a variety of reasons, including 
loss of habitat, overhunting, abandonment of traditional 
game management techniques, genetic introgression as 
a result of restocking with different species or hybrids, 
and disease transmission due to limited sanitary 
controls when restocking (Ponce-Boutin 2000, Meriggi 
et al. 2007, Buenestado et al. 2008).
This partridge is the fifth most hunted of French game 
species and the third if only resident small game species 
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are considered (Ponce-Boutin 2000). Nevertheless, its 
distribution in France is limited to the southern two-
thirds of the country. According to Farthouat (1983), the 
species is declining and has become rare in two-thirds 
of the agricultural regions within its area of distribution 
in France. This partridge has low abundance in more 
than 75 % of hunting territories, and it is in regression 
in 45 % of these territories in the southern part of France 
(Ponce-Boutin et al. 2006). Novoa (1984) showed that 
the number of partridges bagged decreased in several 
sectors of the Languedoc-Roussillon region (south-
eastern French Mediterranean region). The area under 
study is confined to the “Département de l’Hérault”, 
the second most important department in red-legged 
partridges bagged. 
Habitat degradation and loss are shown as one main 
cause of red-legged partridge decline in Europe, mainly 
due to agricultural intensification or abandonment (Fuller 
et al. 1995, Pain & Pienkowski 1997, Aebischer & Lucio 
1997, Meriggi & Mazzoni della Stella 2004, Reino et 
al. 2010). European agricultural policies have promoted 
agricultural transformations and the influence of these 
changes has not been evaluated sufficiently. Viticulture 
is predominant in this French region, which has suffered 
intensive transformations, mainly planted and pulled up 
vineyards. Other European countries have also suffered 
(or are going to suffer) similar transformations, thus the 
present study could be an opportunity to evaluate the 
influence of these transformations on a wildlife species. 
Its delicate conservation status and high game value lead 
to a high demand for data on the spatial ecology of the 
red-legged partridge. Thus the study of environmental 
processes at regional scale is important to complement 
game state (local) studies and to envision a broader 
management approach (Peiro & Seva 1993, Peiro & 
Blanc 1998, Vargas et al. 2006, Farfan et al. 2009). 
Geographic Information Systems (GISs) have been 
playing an increasingly important role in wildlife 
biology and management at regional level, because they 
provide the means for storing, displaying and analysing 
multivariate spatial data, developing predictive models 
from the relationships among data and extrapolating the 
potential distribution of species population parameters 
from models (see Hodgson et al. 1988, Agee et al. 1989, 
Ferrier & Smith 1990, Walker 1990, Pereira & Itami 
1991, Mladenoff et al. 1995, Liu et al. 1995, Borralho 
et al. 2000, Jimenez-Garcia et al. 2006, Cousins 2007). 
Furthermore, Peiro & Blanc (1998) have used GIS 
environmental/game management databases and 
discriminant analysis to predict density intervals and 
population trends (1980 to 1987) of the red-legged 
partridge in the same study area as this paper. Borralho 

et al. (1999, 2000) incorporated and manipulated red-
legged partridge locations and environmental variables 
in a vector-based GIS of farmlands in Portugal, and 
some multivariate linear or logistic regression models 
of partridge detections were fitted using forward 
stepwise selection. Jimenez-Garcia et al. (2006) related 
hunting bags of several game species with land uses 
and landscape indices, which were used as independent 
variables in linear regression models. Meriggi et al. 
(2007) used logistic models to plan red-legged partridge 
reintroduction in central Italy. However, the studies 
relating habitat factors to this partridge abundance 
(KAI or density) from line transect census are scarce at 
regional scale (Peiro & Seva 1993).
The aim of this study was to predict the distribution of 
red-legged partridge population within an agricultural 
region. The use of a Geographic Information System 
(GIS) to determine whether several series of available 
environmental habitat variables can be used to prepare 
predictive models of partridge abundance in spring 
was of particular interest. 
A new final objective that the authors have in mind is 
to provide a useful tool for red-legged partridge game 
management. In this way, game administrators could 
use the potential (predicted) spring abundance for each 
commune of an agricultural region to plan the harvest 
quotas some months before opening the hunting season 
(mid-September to the first week of October, depending 
on the region and year). These environmental databases 
and modelling approach would also be useful for 
other researchers and technicians who are working 
with resident small game and other wildlife species 
inhabiting agricultural landscapes. 

Study Area
This study was carried out in “Plaine Viticole du 
Bas-Languedoc” (code number 471), one of the six 
agricultural regions in Hérault Department in the 
south of France. Its 2000 km2 lie on the Mediterranean 
coast (latitude 43°12′-43°44′ N, longitude 3°00′-3°10′ 
E from Greenwich Meridian), and are divided into 
109 French political-administrative districts called 
communes (see Fig. 1).
The sub-humid Mediterranean climate had a mean 
monthly precipitation of 45 mm and temperature of 
15 °C during the study period. The topography is 
mainly flat or extensively undulating hills and valleys. 
Dominant soils in the study area are slimy (30 % of 
surface) and clayey (24 %).  
Viticulture is predominant in the region, with vineyards 
representing about 60 % of the overall surface and 
73 % of Useful Agricultural Surface (UAS). Other 
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Fig. 1. Map of the study area with communes (INSEE).

important types of agriculture are grasslands (7 %), 
cereals (6 %) and fruit orchards (3 %). Natural or semi-
natural vegetation is dominated by Mediterranean 
evergreen shrub lands (6 % of the region’s surface) 
and forests (5 %). Urban land occupies about 8 % and 
wetlands about 10 % of the region.

Material and Methods
Partridge census
Red-legged partridges were surveyed in 1994 using 
a method developed by Ricci et al. (1993) for the same 
area. The method was designed to obtain a Kilometric 
Abundance Index (KAI) of partridges/km. The study 
area was divided into north-south transects, excluding 
wetlands, coastal areas and large urban areas (see original 
paper for more details). The transects were surveyed in 
spring (second half of March). During this period, three 
replicates of each transect were made by two observers 
with binoculars who counted the partridges seen at both 
sides of their slow-moving car (15-20 km/hr), for three 
hours after dawn or before dusk.  
The number of partridges was noted on census cards, 
and their location within the commune was also noted 
on a topographical map (1 : 25000). The length of the 
transects in each commune was calculated to obtain 
spring KAIs. The routes of transects ranged from 3 to 
77 km, which mainly depended on (1) the commune 
size, (2) they crossed the most representative habitats 
and (3) accessibility of rough tracks across fields. 

GIS database development
A Geographic Information System (GIS) was used as 
an aid to data management and analysis of partridge 
population abundance and environmental data. A base-
map was assembled with several environmental 
databases. The base-map was an ARC/INFO commune 
(INSEE Communes) map digitalized from 1 : 50000 
topographical maps (IGN 1959). Environmental 
variables were taken for land use/land cover (LU/LC), 

soil, agriculture and climate. LU/LC was taken from 
ARC/INFO Corine Land Cover map (1990) provided 
by the Soil Laboratory of the National Institute for 
Agronomical Research (INRA) in Montpellier. The 
original Corine Land Cover classification was regrouped 
and recoded up to the second level, except for shrub 
areas, which were grouped together into one variable. 
A soil database was generated from an ARC/INFO 
Languedoc-Roussillon Regional Soil map (Source: 
INRA Soil Laboratory). Only texture and stoniness were 
retained as an indirect measure of soil filtration capacity, 
an important environmental factor for red-legged 
partridge during the breeding season (ONC 1986).
Both LU/LC and soil cover were overlaid on the base-
map using the ARC/INFO UNION function, which 
enabled generation of the areas of LU/LC or soil type 
in each commune first and then their percentage of 
the total commune area. An LU/LC diversity index 
was also calculated on the base of the Shannon 
information theory index (Shannon & Weaver 1949): 
H’ = – Σ pi.log2pi with pi = SLC/SC, where SLC is the 
area (ha) of land cover type in a commune and SC is 
the total area (ha) of the commune.
A DBASE file on agriculture was provided by the 
Departmental Agricultural Service of Montpellier (RGA 
1988), where the rows were the INSEE commune code 
numbers and the columns the areas (ha) of different 
types of cultivated land, and the annual amounts (ha) 
planted or pulled up in vineyards from 1988 to 1992. 
Land use by type of agriculture was calculated as a 
percentage of the area of the commune. The annual 
mean (1988-1992) percentage of the area of the 
commune was taken of planted or pulled up vineyards. 
The mean annual percentage of vineyard loss (LOV) 
showed the net balance between planted and pulled up 
vineyard percentages of surface in each commune. The 
density of tractors per commune (tractors/100 ha) was 
also calculated as an important indicator of agricultural 
perturbation of the red-legged partridge breeding season.  
A climate database was generated using monthly 
precipitation and temperature data from twenty-seven 
weather stations distributed over the study area (source: 
Departmental Climatic Service of Montpellier). Data for 
the variables assigned to each commune were either taken 
from the nearest weather station or were interpolated 
from the two nearest stations. The mean of each variable 
was then calculated for three critical periods in the red-
legged partridge annual cycle when climatic factors are 
the most important: mating (February-March), nesting 
(April-May) and rearing of young (June-August). 
All databases were a matrix with INSEE numbers 
as rows and variables as columns. A summary of the 
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variables included in each environmental database is 
presented in Appendix 1. The base-map has been kept 
for display purposes.

Model design 
Databases were organized in two blocks in the GIS: 
partridge population (spring abundance) and habitat 
(LU/LC, agriculture, soil and climate). Given the great 
diversity of red-legged partridge habitat requirements 
(ONC 1986, Ponce-Boutin 2000), all variables were 
considered important on an “a priori” basis for modelling.
SOLO software (BMDP Statistical Software, California, 
USA) was used for all Multiple Linear Regression 
modelling analyses, and statistical significance was 
accepted whenever P < 0.05. A preliminary selection 
of the variables in each database was carried out to 
confirm normality and linear patterns, using logarithms 
or square-root transformations when necessary. 
Polynomial associations to assess possible curvature or 
non-linear patterns were not used, as the relationship 
between independent and dependent variables became 
sufficiently linear after transformations, and the 
weighted analysis reduced the influence of outliers (see 
SOLO Manual, BMDP Statistical Software, California, 
USA). In addition, the linear regressions can be easily 
interpreted in statistical and ecological terms by 
wildlife technical staff and this is the most frequent 
modelling technique used by the French Game and 
Wildlife Service (see ONCFS Small Game Reports and 
Technical Species Notes).  
First of all, Pearson’s correlation (R) was computed 
between each pair of explanatory variables, in order 
to reduce collinearity problems. Next, mainly the 
correlation matrix (R-squared with other Xs), but also 
the Variance Inflation Factor, were calculated from all 
independent variables to examine multi-collinearity 
in each database. The rules to select the non-collinear 
variables were: R-squared with other Xs < 0.7 and 
Variance Inflation Factor < 10.  
Two kinds of multiple regression models were 
developed. The first, called partial models, considered 
each environmental database separately to predict 
spring abundance. Then a complete environmental 
model was developed using all the variables selected 
in the partial models. This procedure also assured 
model stability, which requires a high ratio of number 
of observations per number of variables (n/p). A ratio 
greater than ten is recommended by most of authors 
(see Carrasco & Hernan 1993).  
Initial multiple regression analyses were carried out, 
however, the model building procedure recommended 
running a robust analysis when outliers were detected in 

scatter plots and if this weighted analysis improved the 
unweighted one of each partial and complete model. Next, 
a stepwise regression analysis (weighted) generated more 
simplified models. This stepwise procedure stopped when 
no further addition or deletion of variables would improve 
the Root Mean Square Error (% RMSE) by more than 
one percent (default value). Finally, a new multiple linear 
regression analysis was run considering weights.
The selection of the suitable fitted partial or complete 
model was initially performed using F-ratio, adjusted 
R2 and the observations/variables ratio (n/p). However, 
due to the frequent use of Akaike Information Criterion 
(AIC) in wildlife research, the corrected AIC (AICc), the 
scaling criterion values (∆AICc) and the Akaike weights 
(wi) were also added to select the final partial/complete 
models (Akaike 1974, Burnham & Anderson 2002, 
Brauwere et al. 2005). The criteria to select the best 
model, or more parsimonious model, were: the model 
that had a high adjusted R2, the one with observations/
variables ratio (n/p) > 10, and finally the lowest AICc 
and highest wi. The wi are interpreted as the probability 
that model i was, in fact, the best model for the data 
(Burnham & Anderson 2002). Next, the most important 
predictor variables were individuated by the number of 
significant models in which they entered, by the sum of 
wi, and by the significance of their regression coefficients 
averaged on the selected models.
In order to check the validity of the resulting models, 
each one was used itself to calculate response variable 
classification error rates from the original data (see 
Walker 1990, Pereira & Itami 1991, Mladenoff et al. 
1995, Peiro & Blanc 1998). To do this, the observed 
and expected abundance variables were interval-
scaled and compared to test goodness-of-fit with the 
percentage of correct predictions. If each regression 
model has a general validity the observed and expected 
values of KAI should be significantly correlated.

Results
The partridge census crossed 71 communes (65 % of the 
communes in the region). The spring partridge populations 
(presence) were distributed over 54  communes (76 % 
of total census area). The highest spring Kilometric 
Abundance Indices (KAI) were located in several 
central, north-western and eastern communes rather than 
elsewhere in the study region (Fig. 2).  
The stepwise regression analysis using spring 
KAI (LOG10 (KAI + 1) converged on three robust 
(weighted) environmental models: land use/land 
cover and agriculture partial models and a complete 
model (Table 1). Soil (F = 22.37, Df = 2, 68, P < 
0.001) and climate (F = 5.52, Df = 4, 57, P < 0.001) 
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Fig. 2. Distribution of spring abundance of the red-
legged partridge observed in the study area. 

Fig. 3. Potential distribution of spring abundance 
predicted for the red-legged partridge by complete 
model in the study area.

partial models were significant, but they were not 
suitable because their goodness-of-fit was low (38 
% and 23  % of explained variance, respectively). 
Thus, they are not described in Table 1. This table 
shows the significances and the explained variances 
(added value for overall R2) for the selected 
variables, and the main criteria to choose the best 
fitted model rather than the model with the significant 
and selected variables for these three previously 
selected models. Testing all possible models is 
not the best strategy in model selection, although 

discussion concerning this topic is still problematic 
in ecological modelling (see e.g. Reino et al. 2009). 
No partial/complete model had no correlation at all 
between residuals and predicted abundance, which 
also means a good fit of these models to the raw 
data. The more influential (higher added value for 
overall R2) selected variables in the total explained 
variance for each of the three selected models were: 
discontinuous urban lands (R2 = 26 %) in land 
use/land cover model; mean monthly temperature 
during rearing of young (R2 = 19 %) in complete 

Table 1. Selected partial and complete models, and their statistical descriptors, obtained by using stepwise 
linear regression to predict the spring abundance (KAI) distribution of the red-legged partridge in an agricultural 
region of southern France.

Explanations: Variable statistics: B Coef.: Regression coefficients; Pvar: Probability for each explanatory variable added to 
the model. R2var: R-Squared added as each explanatory variable is entered in the regressión equation. (a) mean (MEMTY) 
and maximum (MAMTY) monthly temperature during rearing of young. 
Model Statistics: F-ratio, F-statistic for testing all β’s = 0; Df, degrees of freedom; P, probability level; R2adj, adjusted 
R-Squared; n/p, ratio of number of observations (n) per number of variables (p) included in the model; AICc, corrected 
Akaike index; ∆AIC, scaling criterion values, and wi, Akaike weights.

Table 1. Selected partial and complete models, and their statistical descriptors, obtained by using 
stepwise linear regression to predict the spring abundance (KAI) distribution of the red-legged 
partridge in an agricultural region of southern France. 
 

 
 
Explanations: Variable statistics: B Coef.: Regression coefficients; Pvar: Probability for each explanatory variable 
added to the model. R2var: R-Squared added as each explanatory variable is entered in the regressión equation. 
(a) mean (MEMTY) and maximum (MAMTY) monthly temperature during rearing of young.  
Model Statistics: F-ratio, F-statistic for testing all β’s = 0; Df, degrees of freedom; P, probability level; R2adj,
adjusted R-Squared; n/p, ratio of number of observations (n) per number of variables (p) included in the model; 
AICc, corrected Akaike index; ∆AIC, scaling criterion values, and wi, Akaike weights.   
 
 
 

Model Selected variables  
in each fitted model 

B Coefficients Pvar R2var  F-ratio 
(Df) 
P 

R2adj n/p AICc ΔAICc wi 

Land use/ 
land cover 

 Interception value 
 Continuous Urban 
 Discontinuous Urban 
 Vineyard 
 Broad-leaf Forest 
 Shrub Land 

0.0709 
–0.1212 
–0.1457 
0.0461 
0.0354 
–0.0574 

0.144 
0.002 
0.001 
0.002 
0.008 
0.001 

 
  0.06 
  0.26 
  0.10 
  0.04 
  0.15 

19.96  
(5, 65) 
P < 0.001

0.57 14.20 5.80 2.05 0.24 

Agriculture Interception value  
Permanent Crop-Fruit 
Uncultivated Field 
Irrigated Land 
Useful Agric. Surface 
Plantation Vineyard 
Tractor Density 

0.2341 
0.0079 
–0.0026 
–0.0423 
–0.0011 
0.0323 
–0.0552 

  0.001 
0.001 
0.003 
0.003 
0.001 
0.001 
0.002 

 
 0.04 
 0.03 
 0.16 
 0.15 
 0.17 
 0.07 

17.10  
(6, 64) 
P < 0.001

0.58 11.83 8.17 4.42 0.08 

Complete Interception value 
Discontinuous Urban  
Vineyard 
MEMTY(a) 
MAMTY(a) 

–2.0156 
–0.1243 
0.1463 
0.1045 
–0.0153 

0.001 
0.001 
0.002 
0.001 
0.001 

 
 0.18 
 0.12 
 0.19 
 0.10 

20.51 
(4, 57) 
P < 0.001

0.56 15.50 3.75 0 0.68 
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model; and mean annual vineyard plantation (R2 = 
17 %) in agriculture model.  
On the selection of the best model from the three suitable 
fitted models (partial or complete), the simplest one 
should be preferred by the application of the “principle 
of parsimony” (see e.g., Brauwere et al. 2005). Thus 
the complete model was selected, due to all three final 
models having similar goodness-of-fit (nearly 60 % of 
the explained variance R2adj), good n/p ratios and well-
adjusted to the number of variables, but the complete 
model showed (see Table 1) the lowest AIC (AICc = 
3.75) and the highest probability (wi = 0.68) to be the best 
model. The land use/land cover model had low Akaike 
weight, but it still had substantial support/evidence 
(ΔAICci ≤ 2). The agriculture model had considerably 
less support (4 ≤ ΔAICci ≤ 7, see Burnham & Anderson 
2002). The most important predictor variables (see 
Methods) were discontinuous urban land and vineyard 
(both in land use/land cover and complete models, ∑wi 
= 0.92, average significance: discontinuous urban = 
0.001 and vineyard = 0.002).
The classification in intervals of abundance predicted from 
the abundance observed was about 50 % in all selected 
models. All the models had a high rate of misclassification 
for KAI = 0, which was the least predicted class. KAI > 0 to 
0.3 was predicted the most and the best by all the models. 
The greatest abundance predicted (0.78 partridges/km) 
was still lower than that observed (1.11 partridges/km). 
Abundance predicted by all partial or complete models 
was intercorrelated (P < 0.001) and correlated with 
observed abundance, which means environmental models 
made good predictions. The potential abundance from the 
best environmental model (complete, see Fig. 3) showed 
more communes with high KAI mainly located in the 
north-western part of the study area.  

Discussion 
The population abundance distribution pattern was 
uneven or irregular and no large area clusters (sub-
zones) or parameter gradients across the study area 
could be differentiated. This is typical of wildlife 
species inhabiting complex changing landscapes, 
which are limited by several sources of human pressure 
(agricultural, urban). Furthermore, different red-legged 
partridge game management techniques may be a factor 
in explaining the uneven distribution pattern observed in 
the population parameter analysed, but the use of this 
source of information is restricted in the present paper 
(see Peiro & Blanc 1998). However, the game factors 
formed part of the residuals not explained by each 
environmental model, but did not affect the model itself. 
Several environmental characteristics were found to 

be apparently good predictors of spring abundance 
distribution. The ecological significance of the 
variables selected for the models is discussed in an 
analysis of their biological suitability. The most 
important predictor variables were discontinuous 
urban land and vineyard (see Results), both in the most 
plausible models (complete and land use/land cover). 
The significant importance of discontinuous urban 
land is ecologically consistent (Peiro 1992). Thus an 
urbanization (tourist and secondary housing) scattered 
into the agricultural landscape had a negative influence 
on partridge abundance in the study area, due to the 
quantitative (area) and qualitative (perturbation) loss 
of available habitat. The positive effect of vineyards 
is also consistent with general knowledge of red-
legged partridge ecology (see ONC 1986, Peiro 2003, 
Ponce-Boutin et al. 2006, Meriggi et al. 2007) and it 
was a favourable discriminator in the Department of 
Hérault (Garcia 1990) as well as in the area of this 
study (Peiro & Blanc 1998). The highest abundance 
of partridges within the Mediterranean part of France 
was found in agricultural areas with high dominance 
of vineyards and/or cereal crops (Ponce-Boutin et al. 
2006). The habitat importance of vineyards is more 
related to its field structure as shelter habitat, ensuring 
good protection rather than food resource availability 
for partridges.
Two temperature descriptors were significant during 
rearing of young in the best (most plausible) complete 
regression model. Higher mean monthly temperature 
during this period was a favourable factor in survival 
of the young (ONC 1986) and it could produce 
greater abundance the following spring if autumn-
winter mortality was low. However, if maximum 
temperatures were too high during this period, the 
amount of vegetation available as food later in the 
summer could decrease. Shrub land was the second 
most influential (see Table 1) selected variable in land 
use/land cover model. Shrub lands are important as 
a shelter habitat if vegetation cover is not high (Peiro 
2003, Tapia & Dominguez 2007). Thus this land use 
type is negatively associated with partridge abundance, 
because shrub cover has become quite high during 
the last decades in this French Mediterranean region 
(Ponce-Boutin et al. 2006). This fact is a relevant issue 
for this partridge and for the overall Mediterranean 
farmland birds and it is often linked with agricultural 
abandonment (Ponce-Boutin 2000, Morgado et al. 
2010, Reino et al. 2010). In this context, the most 
notable long-term trends for rural depopulation 
and agricultural abandonment in poorly productive 
areas are generally followed by scrub encroachment 
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and afforestation (Santos et al. 2006). Moreover, 
Jimenez-Garcia et al. (2006) found that red-legged 
partridges were positively influenced by the surface 
of old abandonment areas in other Mediterranean 
agrosystems (southeastern Spain). Nevertheless, this 
response showed a relative preference for dry and low 
colonizing shrubs in the Alicante Province and this 
type of shrubland could provide some cover and food 
for partridges. 
The positive influence of broad-leaved forests could 
be related to the fact that these forests in the study 
region are mainly remnants, found either as small 
woods or riparian corridors within the agricultural 
matrix, which play a role as shelter and nesting 
habitats for red-legged partridges. Reinforcing this 
topic, Meriggi et al. (2007) found that zones with more 
than 50 % of  woods, scrubland, and urbanized land 
were considered unsuitable for red-legged partridges 
in Italy. Furthermore, hedgerow length had a positive 
effect on the presence of red-legged partridge spring 
pairs. They also found high-density areas for red-
legged partridge that were characterized by higher 
percentages, among other land uses, of vineyards, 
woods and by higher values of  habitat diversity 
and ecotone index. Moreover, this partridge needed 
complex landscape areas composed of irregular edges 
with a low level of human influence (Jimenez-Garcia 
et al. 2006). Our results were also supported by the 
observation that several ground-nesting farmland 
birds showed positive or neutral responses to wooded 
edges (Reino et al. 2009).  
Although the agriculture model was less plausible 
than others, some discussion on its selected variables 
should be considered important in terms of agricultural 
management and partridge habitat relationships. 
Then, unirrigated fruit orchards (positively related) 
may be considered a favourable habitat for red-legged 
partridge of the selected agricultural model variables, 
and irrigated land (negatively related) as an unsuitable 
habitat (Ponce-Boutin 2000, Borralho et al. 2000, 
Peiro 2003). Thus partridges showed some habitat 
selection for dry fruit groves, mainly used as a feeding 
habitat in Mediterranean regions. Uncultivated fields 
and predominant agricultural areas in use were also 
negatively related to partridge abundance, due to the 
fact that uncultivated land included large areas of  
temporarily abandoned agricultural lands where the 
herbaceous layer became high and dense and therefore 
unsuitable as feeding and cover habitat. The agricultural 
area in use represented more surface of intensive 
agriculture and may be considered as an unfavourable 
factor in Mediterranean agrosystems of France (Ponce-

Boutin 2000, Ponce-Boutin et al. 2006).
Recent planting in vineyards had the opposite effect 
to uncultivated fields in this study area, which is 
ecologically consistent because they represent more 
open agricultural land. The present study shows a 
positive influence of this agricultural transformation 
on the red-legged partridge habitat, which can be 
considered as additional support for the positive 
influence of vineyards on partridge population 
shown in the complete model (see above). Therefore, 
agriculture and game administrators might consider 
this factor in European agricultural regions that are 
going to develop plantation in vineyards. However we 
would be cautious in this respect because the opposite 
effect (negative influence) may also be true for some 
specialist habitat birds or for the overall species 
richness of farmland bird communities (see Reino et 
al. 2009, 2010). Conversely, no significant influence 
was found for pulled up vineyards, thus the positive 
influence of European Policy to promote set-a-side 
fields from the less productive or low quality vineyards 
might not be shown. Only tractor density was selected 
by the discriminant model (Peiro & Blanc 1998) 
and the present modelling technique. This variable 
should therefore be considered to be an important 
factor in partridge perturbation, as a consequence 
of the intensification of agriculture in France 
(Ponce-Boutin 2000). Agricultural intensification 
and land abandonment represent an important threat 
for farmland wildlife in southern Europe (Bignal 
& McCracken 1996, Pain & Pienkowski 1997, 
Aebischer & Lucio 1997, Meriggi & Mazzoni della 
Stella 2004, Reino et al. 2010). According to Reino 
et al. (2010) the same agricultural policies may be 
favourable for some species of conservation concern 
but detrimental to other farmland birds. Consequently, 
they cannot be assumed to bring uniform conservation 
and management benefits (Suárez-Seoane et al. 
2002, Báldi et al. 2005). Efforts are thus needed for 
preventing undesired consequences of agricultural 
policies designed at the European scale, but carried 
out through the implementation of regional or local 
agri-environmental schemes (Stoate et al. 2009). 
From a methodological point of view, the spatial 
unit is a critical decision in GIS analysis. Either 
environmental or wildlife population units are usually 
chosen for this type of study (see e.g., Pereira & Itami 
1991). Although the commune is a political unit, it is 
the most representative hunting administration unit in 
this study area and game management variables mainly 
refer to them (Peiro & Blanc 1998). In this context, 
when the communes border one another, spatial 
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autocorrelation may have some influence (loss) on the 
power of models. However, the models constructed 
with this type of spatially structured variables may 
have the same validity (Farfan et al. 2009) as those 
where spatial autocorrelation is explicitly considered 
(e.g., Dormann 2007). The spatial variables could 
reveal some geographical trends in distribution, which 
are related to historical events or migrations (Legendre 
1993, Real et al. 2003) and are outside management 
scope. Furthermore, Kissling & Carl (2008) have 
shown that the selection of spatial autoregressive 
models can strongly influence parameter estimates, 
which might be even worse than parameter estimates 
from Ordinary Least Square regressions. 
Another methodological subject was related to 
whether KAI might be dependent on sampling effort. 
Therefore, in order to ensure that different survey 
efforts (3 to 77 km) are not acting as a statistical 
artefact, the possible associations of abundance 
(KAI) with distance (km) survey in each commune 
were assessed. No significant correlation was found 
for Spring KAI-Transect length (r = 0.038, Df = 69, 
P > 0.05). Thus sampling effort does not have any 
spurious effect on our Spring KAI and it would not 
be necessary to include it as an offset variable in the 
selected models.

Management implications
As previously mentioned, the final objective of our 
study is to provide a useful tool to enable game 
administrators to use potential spring abundance to 
plan harvest quotas some months before the hunting 
season opens. Consequently, use of the regression 
plots proposed by Birkan (1979, see also in Peiro 
2003) to obtain hunting quotas in French populations 
of red-legged partridge is recommended. Game 
technicians could use the following procedure to 
develop this target: 
1. Game technicians should obtain their own data 
about the four environmental variables selected in our 
complete model (see Table 1). The model equation 
(LOGKAI = –2.0156 – 0.1243 LOG-Discontinuous 
urban lands (%) + 0.1463 LOG-Vineyards (%) + 
0.1045 mean monthly temperature during rearing 
of young – 0.0153 maximum monthly temperature 
during rearing of young) could be used to obtain the 
potential spring KAI in their hunting territories. The 
confidence interval for the prediction of spring KAI 
(after transformation = (Antilogarithm10) – 1) at the 
a = 0.05 level of significance ranges from 0.15 to 
0.22 partridges/km, although the highest abundance 
predicted by this model is 0.78 partridges/km).

2. Using the model of linear regression standardized 
for constant  equal to zero (Density = 6.696 KAI, 
R2 = 0.68, P < 0.01), proposed by Ricci (1989) in the 
same French Mediterranean region, would allow the 
game technicians to transform this potential spring 
KAI into an absolute density (partridge pairs per 100 
ha). This model can convert a relative abundance (KAI) 
from the car line-transect census into a density from the 
battue (driven) total census (Ricci 1982, Bibby et al. 
1992). This model had already been validated by Ricci 
(1989) in several areas inside the region of study. Then, 
he had found that the estimated density differed from 
0.2 to 1 pair per 100 ha from pair density in the field. 
The partridge density interval in Birkan’s plot ranges 
from zero to 30 pairs per 100 ha. 
3. The spring density (couples/100 ha) obtained 
is inserted into the Birkan’s plot and related to the 
age-ratio obtained from a summer sampling. This 
results in a harvesting quota showing the number of 
partridges allowed to be hunted per 100 ha during 
the next hunting season. It is computed to ensure 
a constant pair density in the following spring, which 
is consistent to sustainable harvesting (see more 
details in Birkan 1979). The upper limit for hunting 
quotas in Birkan’s plot is 100 partridges per 100 ha.
With the above approach, game technicians would not 
need to spend time and money on conducting spring 
counts. They only need to carry out a simple sampling 
effort to estimate the age-ratio in the field. Using this 
approach to calculate the hunting quota simplifies 
and makes it easier for administrators to manage 
their partridge populations two months (second half 
of July to the beginning of August) before opening 
the hunting season. Furthermore, it would not be 
necessary to develop environmental models to predict 
the summer parameters and their application on game 
management to calculate hunting quotas.  
The main purpose of this study was not to provide 
definitive statements on habitat-abundance relationships, 
but rather to describe the role which the several 
approaches to modelling, together with a Geographic 
Information System, can play in assisting ecologists 
and administrators in the display and analysis of 
red-legged partridge distribution data. Finally, the 
GIS information could be used to identify partridge 
management priorities, even for other resident small 
game species, in an integrated natural resource 
management plan for similar agricultural regions in 
the southern part of Europe. In this context, the mean 
and range of environmental variables might be useful 
to specify the external validity of the models in other 
regions. Thus the selected variables in our best suitable 
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model (complete) showed 4.2 % of mean percentage 
of commune area for Urban Discontinuous land use (min-
max = 0-22.5 %), 70.0 % for mean Vineyard land use 
(min-max = 28.5- 5.1 %), and the monthly temperatures 
during rearing of young ranged from 20.5 to 31.4 °C 
(MEMTYmean = 22.3 °C and MAMTYmean = 28.4 °C).
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Appendix 1. Variables included in environmental databases (transformations are shown for variables selected 
for any model).

Land use/land cover: logarithm of continuous urban land (LOGCUR), logarithm of discontinuous urban and artificial 
surfaces (LOGDUR), arable lands (ARL), logarithm of vineyards (LOGVIN), fruit orchards (FRO), heterogeneous 
agricultural lands (HAL), logarithm of broad-leaved forests (LOGBLF), coniferous forests (COF), logarithm of 
shrub lands (LOGSHL), open areas (OPA), wetlands (WET), land use/land cover diversity index (LDI).
Agriculture: cereals (CER), industrial crops (IND), leguminous crops (LEG), forage as main crop (FOC), 
grasslands (GRA), flowers and ornamental plants (FOP), vineyards (VIS), permanent crops and fruit orchards 
(PCF), uncultivated fields (UCF), fruit orchards (six species, FR6), ploughed fields (PLF), logarithm of irrigated 
land (LOGIRL), usable agricultural surface (UAS), mean annual vineyard plantation (PLV), mean annual pulled 
up vineyard (PUV), mean annual percentage of vineyard loss (LOV), square-root of tractor density (SRTRD).
Soil: square-root of Clay (SRCLA), slimy (SLI), sandy (SAN), clay-slimy (CLSL), clay-rocky (CLRO), slime-
sandy (SLSA), slime-rocky (SLRO), 0 % stony (STO0), > 0-10 % stony (STO1), > 10-20 % stony (STO2), > 
20-30 % stony (STO3), > 30-50 % stony (STO4).
Climate: the following variables were calculated for three periods (mating, nesting and rearing of young) 
in the annual cycle of the red-legged partridge: mean monthly precipitation, mean monthly maximum daily 
precipitation, mean monthly days with precipitation, minimum monthly temperature, mean monthly temperature, 
maximum monthly temperature.
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