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Sex- and age-structured models for Alpine ibex Capra ibex ibex
population dynamics

Andrea Mignatti, Renato Casagrandi, Antonello Provenzale, Achaz von Hardenberg & Marino Gatto

Past analysis has shown that the population dynamics of Alpine ibex Capra ibex ibex are regulated by both population
density and winter snow accumulation. However, recent time series of the ibex counts in the Gran Paradiso National

Park, Italy, show interesting trends in comparison with historical snow data: while the winter snow depth has steadily
decreased since the beginning of the 1980s, the ibex population experienced rapid growth during the 1980s and the early
1990s, followed by a strong decrease. To explain these dynamics, we built novel age-structured population models in

which demographic parameters depended on density and snow depth. They included a non-monotonic effect of snow
depth and density on the vital rates, the age and sex structure of the population, and spatial segregation between females
and males. Using information criteria (AICc, BIC and SRM), we selected the best models and found that: 1) snow and

density interacted in determining the demography of all population sex and age classes, thus confirming that unfavourable
climatic conditions intensified the density dependence of the population, 2) the effect of snow was non-monotonic on
weaning success and rate of demographic variation of kids, which were maximal for intermediate snow depths, and 3)

accounting for spatial segregation between sexes improved the fitting of the models, which suggests that the different use
of space made by males and females influenced intraspecific competition. When the selected models were recalibrated
using past data and used to simulate recent trends, they underestimated both the rapid growth of the 1980s-1990s and the
recent decline of the population. Using the novel sex- and age-structuredmodels, we found that the underestimation of the

peak was mainly due to deficiencies of adult demography models, while the overestimation of the recent population
abundance was caused by shortcomings in the models of recruitment.
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The population dynamics of ungulates is strongly

determined by both density dependence and envi-

ronmental drivers (Lande 1993, Post et al. 1997,

Sæther 1997, Forchhammer et al. 2002), which may

operate in an interacting way (Gaillard & Yoccoz

2003). Jacobson et al. (2004) were first in showing

that the population dynamics of Alpine ibex Capra

ibex ibex is significantly affected by a specific en-

vironmental variable, i.e. the average snow depth

duringwinter. SinceAlpine ecosystems are extremely

sensitive to climate change (Fischlin et al. 2007), and

snow depth has been decreasing in the Alps in recent

years (e.g. Terzago et al. 2010), studying how pop-

ulation dynamics of high-altitude species is influ-

enced by abiotic disturbances and trends is of para-

mount importance.
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The exceptionally long time series of Alpine ibex
counts in the Gran Paradiso National Park
(GPNP), Italy, provides a unique opportunity to
study the complex interplay between population
density and climatic conditions operating in the
species dynamics. To reproduce the dynamics of the
population and to possibly make predictions into its
near future, different models have been proposed.
The simple but powerful approach put forth by
Jacobson et al. (2004) explored various possible
relationships of total ibex population increase with
both total animal density and snow depth. The
analysis performed by Jacobson et al. (2004)
revealed that the population rate of increase is
significantly different in years characterised by low
vs high snow depth. This observation led the
authors to include ’threshold-models’ in their model
suite, in which different functional relationships are
used for years of high and low snow depth,
respectively. The process of parameter calibration
and model selection actually picked up two thresh-
old models as the best candidates. Both models
acceptably reproduce the increase of the 1980s and
the population peak occurring at the beginning of
the 1990s, while the subsequent decline is only
partially captured (see Fig. 3 in Jacobson et al.
2004). Unfortunately, if used to simulate more
recent trends emerging from newly available data,
such models largely overestimate the total abun-
dance of ibex (see also the last three simulated years
in Jacobson et al. 2004).

The models proposed by Jacobson et al. (2004)
have been expanded in various ways. For example,
Corani&Gatto (2007) found that a slightlymodified
version of Jacobson et al.’s threshold models,
obtained by introducing two different values of the
intrinsic rate of increase at low and high snow depth,
had better performances in terms of model selection
criteria. Other authors tried to avoid the use of
thresholds and proposed smoother functional forms
for the rate of increase. Bianchi et al. (2006), for
example, used local linear models instead of a
piecewise linear system, while Lima & Berryman
(2006)proposednon-parametric, non-linear versions
of the dynamicmodel using the so-calledGeneralised
Additive Modeling (GAM) approach of Hastie &
Tibshirani (1990). Although these models provided
technical insights into the potential limitations of the
approach followed in Jacobson et al. (2004), none of
them altered the main biological assumptions of the
original study significantly or was able to reproduce
the population dynamics during the low-density
phase in the last 10 years.

In our paper, we follow the lines suggested by
Yoccoz &Gaillard (2006) and improve over existing
models by incorporating peculiarities of the ibex life
cycle that have never been included in previous
modelling attempts, despite their ecological impor-
tance (Jacobson et al. 2006).Themost evident among
these characteristics are sexual dimorphism and age
structure. Also, we contrast the threshold models by
Jacobson et al. (2004) and Corani & Gatto (2007)
with differentiable models (hereafter called continu-
ous models) in which we use second-order polyno-
mial approximations of non-linear unknown func-
tional forms. The effects of sex and age are quite
strong inAlpine ibex andmust be taken into account
to understand how density and environmental driv-
ers might affect the various fitness components of
ibex populations (Gaillard et al. 1998, 2000). Ac-
cording to sex and age, animals live in spatially
segregated groups, using different habitat types.
Males and females usually only join during the short
breeding season from mid-November to mid-Janu-
ary (Nievergelt 1974). Kids live with their mothers
throughout their first year of life whilemale yearlings
gradually depart from female groups and form
bachelor groups (2-3 years old) that join adult males
(Villaret & Bon 1995). Recruitment and juvenile
survival areusually consideredmore sensitive toboth
density and environmental variability than adult
survival. Among adults, female survival is larger and
more buffered against limiting factors than male
survival (Gaillard et al. 1998, Toı̈go&Gaillard 2003,
Toı̈go et al. 2007), although the difference is perhaps
smaller for ibex than for other largemammals (Toı̈go
et al. 1997). Since males and females (with kids) are
almost always spatially segregated, it is reasonable to
imagine that intraspecific competition can involve
members of the same sex only. In our present work,
this hypothesis is contrasted against the alternative
that intraspecific competition occurs among all
individuals in the population.
Data for kids, yearlings, adult males and adult

females are actually available, although they have
never been used to formulate structured population
models (Appendix E of Jacobson et al. 2004). Here,
we fill the gap and use this detailed information to
buildmodels for the rate of demographic variation in
kids and adults (both males and females) and for the
weaning success. These sex- and age-structured
models not only allow a demographic projection in
time of specific population compartments, but can
also reveal which demographic processes are most
influenced by biotic (e.g. population density) or abi-
otic (snow) factors.
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Material and methods

Population and data

The GPNP is located in the northwestern Italian
Alps (45825’N, 7834’E). The wardens of the GPNP
perform two ibex counts every year; one in late spring
andone in the autumn.They count thepopulationby
walking over established routes. Thenumbers of ibex
in the two counts are highly correlated (von Hard-
enberg et al. 2000); also, the autumn counts include
all summer newborns (discounted for neonatal
mortality). Therefore, we used the autumn counts
for our analysis.Details on the count techniques used
to obtain the data are provided in Appendix A of
Jacobson et al. (2004). In the same Appendix, on the
basis of the correlation between the two count series,
the authors suggest that counts are reliable.

The replication of counts within the same year,
together with identification of outliers, has been
suggested by Largo et al. (2008) as a methodology to
make the ibex countsmore reliable and to avoid huge
underestimates of the population size. Largo et al.
(2008) define the data of years with a growth rate
. 1.35 as ’obvious outliers’. In the GPNP case, this
value was never exceeded. Nevertheless, the mini-
mum and maximum growth rate occurred in two
consecutive years; in 1976 (N1977/N1976 ¼ 0.64, Nt

being the autumnpopulation density of year t) and in
1977 (N1978/N1977¼ 1.28). Counts of 1977 are then
candidate to be a notable underestimate of the actual
population size. We therefore compared these
growth rate values with those obtained using spring
counts of year t (N

spr
t ) which are N

spr
1977/N

spr
1976¼0.61 in

1976andN
spr
1978/N

spr
1977¼1.25 in 1977.Thus, the growth

rate values are comparable using the two different
counts, and we therefore decided to include 1977’s
data in the analysis. Moreover, 1976 was the year
characterised by the largest snow depth in the time
series, so that a very low growth rate was not
surprising.

Data of the ibex population in the GPNP are
available from 1956 until today and constitute one of
the longest continuous existing time series of moun-
tainungulate countsworldwide. Inaddition, thedata
are structured in age and sex classes, which, for
clarity, hereafter, we will call population compart-
ments. Figure 1A shows the total number of ibex
(autumn counts) while Figure 1B reports the counts
of each of four population compartments: kids (0-1
years), yearlings (1-2 years), adult (. 2 years) females
and males.

Figure 1A reports themeanwinter snowdepth (St)

measured at the IREN ENERGIA meteorological
station at Lake Serrù (45816’N, 788’E, 2,240m a.s.l.),
averaged fromNovember of year t toMayof year tþ
1. In the threshold models by Jacobson et al. (2004),
the critical value of �S ¼ 154 cm is chosen as the
average plus half a standard deviation of the snow
time series in the period of 1961-2000.
From 1961 to 1982, the total number of ibex in

GPNP fluctuated around a mean value of about
3,300 individuals. Then, an interesting temporal
pattern clearly emerged: the total abundance
displayed a rapid increase (from ca 3,250 individ-
uals in 1982 to almost 5,000 in 1993) and then a
sharp decrease, with only ca 2,700 ibex surviving
in 2008. This unimodal variation of the popula-
tion size occurred under a monotonically decreas-
ing trend of snow depth, somehow suggesting that
the interaction between climatic conditions and
population numbers is not at all as simple as one
might expect.

Unstructured and sex- and age-structured models

The use of thresholds (see Jacobson et al. 2004,

Figure1.Availabledata forAlpine ibex in theGPNP.A)Fall counts

of the total population abundance (solid line, left axis) and mean

winter snow depth St (dashed line, right axis) estimated at Serrù

stationas the average fromNovemberof year t toMayof year tþ 1.

B) Number of ibex in the four population compartments: adult

males (solid line), adult females (dashed line), yearlings (dotted line)

and kids (dash-dotted line).
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Corani & Gatto 2007) represents a form of non-
linearity in the demographic growth rate model. We
wished to extend this approach to better capture the
non-linearities of the system. To this end, we
considered continuous models that incorporate all
the quadratic terms in the explanatory variables. In
its complete form, a model of this type has the
polynomial expression

log
Ntþ1

Nt

� �
¼ b0 þ b1Nt þ b2St þ b3StNt

þ b4S
2

t þ b5N
2

t þ qt ð1Þ;

where Nt is the total population density, St is the
mean winter snow depth and qt is a stochastic factor
representing environmental noise and unmodelled
processes. In previousmodels, the parameters b4 and
b5 were set to zero. Continuous models of this kind
can be viewed as a second-order Taylor expansion of
amore generalmodel log(Ntþ1/Nt)¼f(Nt,St) around
the average ibex density and snow depth.

The second extension formulated here is the
introduction of sex- and a simplified age-structure.
Since adult counts were not partitioned into yearly
age classes, the models we propose are not fully age-
structured; however, they provide a first attempt
toward the bottom-up approach to ibex demogra-
phy invoked by Jacobson et al. (2006) and Yoccoz &
Gaillard (2006). According to the counts data
reported in Figure 1, in each year t, the population
was partitioned into four compartments: kids Kt,
yearlings Yt, adult males Mt and adult females Ft.
Juvenile classes Kt and Yt included animals of both
sexes that were not yet reproductive. At year t, the
rate of demographic variation of kids (rK,t), males
(yearlings and adults,rM,t) and females (yearlings
and adults, rF,t), as well as the weaning success wt

were defined as

rK;t ¼
Ytþ1

Kt

rM;t ¼
Mtþ1

Mt þ 1
2

Yt

rF;t ¼
Ftþ1

Ft þ 1
2

Yt

wt ¼
Ktþ1

Ftþ1

ð2Þ:

Definitions of the rates of demographic variation
rM,t and rF,t implicitly entail the assumptions of

balanced sex ratio at birth and no ratio distortion in
the juveniles (kids and yearlings). For the realism of
these assumptions, see Stüwe & Grodinsky (1987)
and Toı̈go et al. (1997).

By using the same approach introduced above for
the unstructured counterparts, structured models
were defined through non-linear relationships be-
tween the logarithms of rates (2) and two covariates:
the average snow depth St and the density DC,t of
animals that was relevant for intraspecific competi-
tion within each compartment C (see below). As in
the unstructured case, such non-linear relationships
can be continuous, i.e.

logðrC;tÞ ¼ b0;C þ b1;CDC;t þ b2;CSt þ b3;CStDC;t

þ b4;CS
2

t þ b5;CD
2

C;t þ qC;t ð3Þ

with C equal to K, F or M, and

logðwtÞ ¼ b0;w þ b1;wDw;t þ b2;wSt þ b3;wStDw;t

þ b4;wS
2

t þ b5;wD
2

w;t þ qw;t ð4Þ

or, alternatively, they may be discontinuous. In this
latter case, they contain fewer terms (b4¼b5¼0), but
the parameters b0, b1, b2 and b3 can take different
values in years characterised by snow depths above
or below the critical threshold �S
Apart from the short breeding season, Alpine ibex

live in groups spatially segregated by age and/or sex
(Villaret et al. 1997). Therefore, in addition to
accounting for dependence on total density DC,t ¼
DW,t¼Nt, we also considered the case of sexually-
segregated density dependence. Although not all
male yearlings depart from their mothers, we con-
sidered the simple hypothesis of two separate groups,
onewith ’males’ (adultmales andmaleyearlings) and
the other with ’females’ (mothers with all kids and
female yearlings). For equations 3 and 4 above, this
translates into considering DW,t¼DF,t¼DK,t¼Ft þ
Kt þYt/2 andDM,t¼Mt þYt/2. Note that equation
4 is dynamic, in the sense that weaning success in the
spring of year t þ 1 is dependent on the state of the
population in the autumn of year t and average snow
depth in the winter between year t and year t þ 1. In
fact, meteorological conditions and population den-
sity of the year preceding births can describe the
physiological state of mothers during the reproduc-
tion periodwell (see the ’tap-hypothesis’ inGrøtan et
al. 2008).

Model selection criteria

The number of candidate models that emerged from
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the scheme outlined in the previous section was
huge. In fact, we defined two families of models:
unstructured and sex- and age-structured. Every
unstructured model was fully characterised by the
function relating the total population growth rate
(log(Ntþ1/Nt,)) to the different covariates. Every
structured model instead required the mathematical
description of four demographic quantities
(log(rK,t), log(rM,t), log(rF,t) and log(wt)) that can
be either related to the density of the entire popu-
lation (no spatial segregation) or to the compart-
ment-specific density of ’males’ or ’females’, as
defined in the previous section (spatial segregation).
Each of the above rates could be related to the
covariates by either a continuous formulation (like
in equations 1, 3 and 4) or a threshold formulation.
Independent of the chosen formulation, candidate
models included all possible combinations obtained
from the most complex formulation in which one or
more terms were dropped, with the only exception of
the constant term b0. Simple combinatorics revealed
that there were 32 continuous formulations and
eight threshold formulations for the suite of un-
structured models. For the structured case, because
of the two different hypotheses on density depen-
dence (with or without spatial segregation) and
considering that some of themodels depend on snow
only, we had a total of 74 potentialmodel candidates
for each of the four demographic parameters.

To orient ourselves inside such a large dimen-
sional space of candidates, we used standard model
selection techniques: the second-order Akaike’s
Information Criterion (AICc; see Sugiura 1978),
the Bayesian Information Criterion (BIC; see
Schwarz 1978) and a criterion based on Structural
Risk Minimisation (SRM; see Cherkassky et al.
1999). Explaining in detail the logic and the meth-
odology that underlie each of the above criteria goes
beyond the purpose of our study; the interested
reader might refer to Burnham & Anderson (2002)
for AICc and BIC, and to Corani &Gatto (2007) for
SRM. Here, it suffices to mention that all used
criteria are apt at analysing short temporal data
series, as is the case for most demographic time
series like that of ibex counts in GPNP. For each
selection method, the ’best’ model is the one that
minimises the value of the criterion. We used
multiple criteria rather than a unique selection
method, because their different ways of accounting
for model parsimony can produce a difference in the
results which is worth investigation.

In general, model selection does not provide one

winner model, but a hierarchical set of optimal
models. The number of these optimal models vary
between criteria and is not known a priori. For AICc,
Richards (2005) suggests for example to include in
the set of optimal models those candidates whose
AICc’s differ from the minimum value by , 4. The
most parsimonious among these models (i.e. the one
with the smallest number of parameters) might be
chosen as the very best option, but other choices
within that set are also possible. For BIC, a similar
selection rule is available (DBIC , 2; Raftery 1995),
while to date no rule has been proposed for the SRM
criterion. Here we used a rather arbitrary cut-off
thresholdand selectedasoptimal thosemodelswhere
SRMs differed by , 6% from the minimum
(SRMbest). In our study, we thus qualified as best
models those with the lowest number of estimated
parameters among the models that met all these
conditions: DAICc , 4, DBIC , 2 and SRM ,

1.06SRMbest. In principle, it might be possible that
nomodel satisfies the three conditions simultaneous-
ly, but this was not the case in our study. For the best
models, we also calculated the adjusted R2.

Performances of models

To evaluate errors of parameter estimates, we used
bootstrap (Efron 1979). The bootstrap method
provides an unbiased estimation of each parameter
(but see caveats in Efron et al. 1993) and an
estimation of their variances. The statistics reported
in Appendix I were obtained by calibrating the
parameter values over 1,000 bootstrap samples, each
consisting of n data values drawn with replacement
from the original n-sized data set.
In order to assess the predictive ability of the best

models over longer time scales, we repeated the same
parameter tuning and simulation experiments per-
formed in Jacobson et al. (2004). To compare our
results with theirs, we recalibrated all parameters of
the selected models using only the first 20 years of
data (1961-1980). Then, based on the recalibration,
we simulated the ibex population trends until 2005
with both unstructured and structured models.
Simulating population trends after 1980 with the

unstructuredmodels was quite simple, because it was
sufficient to initialise the systems with N1981 and use
the snow depth series S1981, S1982, ..., S2004 as inputs.
Predicting the total population abundance with
structured models was more cumbersome, because
the different rates of demographic variations and the
weaning success of the structured models must be
aggregated into one global model.
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Themain advantage of the structured models is to

provide information on the role played by covariates

in each specific demographic process (i.e. adult rates

of demographic variation, kid rate of demographic

variation, weaning success). Also, structured models

can be used to understand whether simulations of

any particular population compartment deviated

from data significantly more than others, thus

pointing out the weakest links of the chain in the

global model. To specifically investigate this point,

we performed additional simulations with global

models in which part of the state variables were

computed via themodel equations, while others were

directly equated to data. More precisely, we predict-

ed the number of adult males and females from

yearling counts using the following equations

M̂tþ1 ¼ M̂t þ
Yt

2

� �
r̂M;t

F̂tþ1 ¼ F̂t þ
Yt

2

� �
r̂F;t ð5Þ;

where Yt is themeasured number of yearlings in year

t, while M̂ and F̂ are the model-predicted numbers of

adult males and females, respectively, and r̂M;t and

r̂F;t are the best-estimated rates of demographic

variations. Similarly, we predicted the number of

kids from the mother counts and the number of

yearlings from the kid counts using

K̂t ¼ Ftŵt

Ŷtþ1 ¼ Ktr̂K;t; ð6Þ;

where Ŵt and r̂K;t are the best estimates of weaning

success and rate of demographic variation of kids,

respectively.

The estimated total population abundance N̂t can

be derived by simply summing the abundances of all

compartments.Adirect comparison of the long-term

prediction obtained from structured vs unstructured

models was then possible. As an index of predictive

ability, we used the root mean square error between

N̂t and Nt:

RMSEN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2005

t¼1982

ðNt - N̂tÞ
2

2005 - 1981

vuuuut
ð7Þ:

To better evaluate the performance of the different

models throughout the simulation period, it was also

convenient to define the root square error averaged
from the beginning of simulation (year 1981) to year
k, i.e.

RMSENðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2005

t¼1982

ðNt - N̂tÞ
2

k - 1981

vuuuut
ð8Þ:

Results

Predictions

By using the selection criteria described in the
previous section, we obtained the best models
reported in Table 1. Within the family of unstruc-
tured models, the two selected systems are both
discontinuous, which is in agreement with the
original findings of Jacobson et al. (2004). NT1
includes pure density dependence and the interaction
term StNt, while NT2 includes pure snow-depen-
dence and the interaction term. This lattermodel has
the same structure as themodel selected by Corani &
Gatto (2007). Interestingly enough, the inclusion of
higher-order terms in the continuous systems (equa-
tion1) for the total growth ratedidnot result inbetter
performance of the unstructured models.
The picture emerging from the analysis of struc-

tured models was more complex. First, we noticed
that the set of best models among the myriad of
potential candidateswas indeed very small (seeTable
1).Most interestingwas the fact that the best density-
dependent models selected by our procedure tended
to be thosewith spatial segregation, i.e. the dynamics
of ’males’was influencedmore by ’males’ thanby the
entirepopulationand the samewas true for ’females’.
The only exception was the rate of demographic
variation of kids, for which both a model incorpo-
rating the segregation hypothesis (KC1, in which
Dt¼ ’females’) and one excluding segregation (KC2,
in which Dt ¼ total population density) passed the
model selection. As for the rate of demographic
variation of males, three models that did not incor-
porate the spatial segregation hypothesis would also
satisfy the D’s criterion described above, but were
excluded because they were not as parsimonious as
the others.While for females andkids twoalternative
models were selected, the rate of demographic
variation of males and the weaning success had a
unique best functional formulation.
For structured models, there was no systematic

prevalence of threshold over continuous formula-
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tions. More precisely, while threshold models are

best for adult compartments (male and female rates

of demographic variation), continuous models were

selected for kid demography and weaning success.

These included the linear and quadratic terms in the

snow depth St and the interaction term DtSt. A

closer look at the signs of the best estimates of

parameter values (see Appendix I: Tables 6, 7 and 8)

revealed that the coefficients b2 multiplying St were

positive while the coefficients b4 multiplying S2
t were

negative, an indication that kid demography and

weaning success had a non-monotonic dependence

on snow depth (Fig. 2). This suggests that years

characterised by particularly low snow depth can be

detrimental to the juvenile compartments of the

Alpine ibex, a result that is in keeping with the

recently observed drop of the relevant rates (see von

Hardenberg et al. 2009).

In terms of adjusted R2, the best performances

wereprovidedbymodels for the total populationand

for the rate of demographic variation of females,

while the models for male and kid demography and

weaning success displayed a poorer fit to the data.

Most coefficients of variation of the estimated

parameters, as shown in Appendix I (Tables 1-7)

were of the order of 10-1 (see also the Discussion),

thus showing that best fits were rather robust. Using

the bootstrapped parameter distributions, we as-

sessed the predictive ability of the best models under

parameter uncertainty. First, we performed one-

step-ahead predictions, whose distribution (5th-95th

percentiles) was obtained from the 1,000 parameters

of the bootstrap analysis. The result is shown in

Figure 3. Despite all models being calibrated on data

over the entire period 1961-2004, the predictive

ability deteriorated at the end of the 1970s. In fact,

while data fell within the prediction range during the

first part of the time series, deviations of predictions

from data were more frequent after the beginning of

the 1980s. Particularly evident was the mismatch in

the case of the rate of demographic variation of kids.

Long-term simulations

Having selected two best models for the rates of

demographic variation of females and kids and one

best model for the other rates, we obtained four

structured global models, namely STR1 (consisting

of models MT, FT1, KC1 and WC), STR2 (MT,

FT2, KC1 and WC), STR3 (MT, FT1, KC2 and

WC) and STR4 (MT, FT2, KC2 andWC). Similarly

to the case of unstructured models, the initial

condition was considered as known X̂1981 ¼ X1981

for all X’s) as well as the snow depth time series St
over the entire simulation horizon (from 1981 to

2004). Figure 4 shows the distributions of values (in

terms 5th-95th interpercentiles and 25th-75th inter-

quartiles) simulated with the best models under

parameter uncertainty (evaluated via bootstrap).

The plots revealed that the unstructured models

NT1andNT2 reproduced the recent trends in quite a

similarway.Themaindifferencewas thatmodelNT2

exhibited more oscillations than NT1. In terms of

RMSEN, the performances of the two unstructured

models were comparable (RMSEN ¼ 506 for NT1

Table 1. The best models according to selection criteria SRM, BIC and AICc as explained in the main text. The first letter of the Model ID
indicatesunstructuredmodelling (N)or structuredmodelling: females’ (F),males’ (M) andkids’ rate of demographic variation (K)orweaning
success (W).The second letter inModel IDisT for threshold formulationsorC forcontinuous formulations.Dt is the compartment considered
for densitydependence: ’all’ indicates total populationdensity (i.e.Dt¼Nt), ’females’ indicatesDt¼FtþKtþYt/2while ’males’ indicatesDt¼
Mt þ Yt/2. p is the number of free model parameters (not including variance), while symbol ’x’ denotes inclusion of the corresponding
polynomial term into the best models. The column R̂2 contains the adjustedR2 considering the degrees of freedom of the model according to
the formula R̂2¼1 - (SSE(n - 1)/SST(n - p - 1)), where n is the numberof calibrationdata, SSE is the sumof squaredprediction errors andSST is
the total sum of squares. All indicators of model performances are calculated over the entire data set. For all selection criteria reported in the
relevant column, the corresponding indicator should be minimum.

Model ID Rate Dt p b1(Dt) b2(St) b3(St Dt) b4(St
2) SRM BIC AICc R̂2

NT1 log Ntþ1
Nt

� �
all 6 x - x - 0.0108 -221.8 -231.2 0.73

NT2 log Ntþ1
Nt

� �
all 6 - x x - 0.0104 -223.5 -232.9 0.74

FT1 log(rF) females 6 x x - - 0.0075 -237.6 -247.0 0.65

FT2 log(rF) females 6 x - x - 0.0075 -237.5 -246.9 0.65

MT log(rM) males 4 - - x - 0.0113 -217.8 -225.2 0.54

KC1 log(rK) females 4 - x x x 0.1167 -115.2 -122.5 0.52

KC2 log(rK) all 4 - x x x 0.1159 -115.5 -122.8 0.53

WC log(w) females 4 - x x x 0.0285 -177.2 -184.6 0.48

324 � WILDLIFE BIOLOGY 18:3 (2012)

Downloaded From: https://complete.bioone.org/journals/Wildlife-Biology on 28 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use



and 531 for NT2), and they were both significantly

more effective than the model by Jacobson et al.
(2004; RMSEN ¼ 852) which did not include the

double estimate of b0.

The structured global models did not perform

qualitatively better than the unstructured model, or
provide quantitatively significant improvements

(RMSEN ¼ 577 for STR1, 570 for STR2, 524 for
STR3 and 520 for STR4). As in the case of
unstructured models, trends simulated with struc-
tured models underestimated the peak and overesti-
mated the abundances of recent years (see Fig. 4).
The temporal evolution of RMSEN(k) for the best

structured and unstructured models is shown in
Figure 5. Structured models performed better than
unstructured ones in terms of RMSEN(k) along
almost the entire simulation period, with the excep-
tion of the first and last years. On the other hand,
recent data were systematically included between the
5th and 95th percentiles of all simulations obtained
with unstructured models (see Fig. 4), while this was
not true for simulations obtained with structured
models. However, unstructured models displayed
very high variability of long-term predictions, sim-
ulating unrealistic abundances as high as 10,000
individuals or more.
Even though structured models did not signifi-

cantly improve the prediction of total population
numbers, it was useful to explore the contribution of
the different compartments to the simulated dynam-
ics. The simulated numbers of adult males and
females obtained from the models in equation 5,
while considering the time series of yearlings Yt as a
known input, are shown in Figure 6A-C. The two
bestmodels FT1 andFT2 performed rather similarly
and both underestimated the population peak of the
1990s but reproduced fairly well the subsequent
decreasing trend. The model for males was more
precise than the two models for females. Observa-
tions were almost always included between the 5th
and 95th percentiles of bootstrapped simulations for
both males and females. Simulations for the adult
male compartmentweremore variable than those for
females. Thiswas expectedbecause the coefficients of
variation of the estimated parameters of model MT
were higher than unity when snow depth was below
threshold (see Appendix I: Table 5). Data in Figure
6D-F show the juvenile compartments of kids and
yearlings and were obtained with equations 6. While
the counts data were often included in the prediction
range before and during the population peak, they
were frequently below the 5th percentile starting
from the mid-1990s, especially in the case of year-
lings.

Discussion and conclusions

The models proposed and analysed in our study
relate the total annual growth rate (unstructured
models) or the rates of demographic variation and

Figure 2. Models for kid rate of demographic variation (A) and

weaning success (B) vs snowdepth,where asterisks indicate the data

and the dotted vertical line corresponds to the snow threshold value

of 154 cm. The continuous line shows the fit frommodels KC1 (A,

the model IDs are as shown in Table 1 ) and WC (B) while dashed

lines correspond to optimal threshold models. As all the models

included both the snow depth and the interaction between snow

depth and density, curves were computed using the mean value of

the population density over the entire study period.
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Figure3.One-step-aheadprediction rangesof thebestmodels (5th to95thpercentiles andmean;greybars) vs the logarithmofobservedvital

rates (connected with black solid or grey dashed lines). Parameters, whose values and statistics are in tables of Appendix I, were calibrated

using 1,000 bootstrap samples from data along the entire time span. The figure shows the total annual growth rates predicted by the

unstructuredmodels NT1 (A) andNT2 (B) and the results of the structuredmodels: C) female rate of demographic variation predicted by

modelFT1 (left axis, black solid line) andFT2 (right axis, greydashed lined),D)male rate ofdemographic variation (modelMT),E)kid rate

of demographic variation predicted bymodelKC1 (left axis, black solid line) andKC2 (right axis, grey dashed line) andF)weaning success

(WC). The structure of each model is summarised in Table 1.

Figure 4. Simulation ranges for the dynamics

after 1980 of the total number of ibex

obtained with unstructured models NT1

(A) and NT2 (B), and with global models

STR1 (C), STR2 (D), STR3 (E) and STR4

(F). Parameter values were calibrated using

1,000 bootstrap samples over the first 20

years of data.Thedarkgrayareas include the

25th to75thpercentiles,while light grayareas

are for the range 5th to 95th percentiles. The

thick continuous line connects data while the

thin dashed line corresponds to the reference

simulation obtained with the unbiased pa-

rameters reported in the tablesofAppendix I.
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weaning success (structured models) to population
density and snow depth. For the unstructured
models, the idea is not new, but here we accounted
for richer functional forms than those available in the

literature. As for the novel compartment-structured

approach, we proposed models aimed at including

the likeliest factors impacting on the juvenile and

adult ibex rates of demographic variation and on

mother weaning success.

The sexually-segregated density-dependence hy-

pothesis almost systematically improved the model

performance and was specifically selected for the

female and male rates of demographic variation and

for the weaning success. For kids, one of the two

selected models was based on sexual segregation,

while the other was not. With the only exception of

one model for adult female demography, all the

structuredmodels selectedamong themanypotential

candidates included the interaction term between

snowdepth and density (StDt). This result reinforced

the evidence that climate strongly intensifies density

dependence of ibex inGPNP, in accordance with the

results of Jacobson et al. (2004). In fact, not only the

total annual growth rate, but every single vital rate

appeared to be crucially dependent on the joint effect

of snow depth and population density.

In contrast to what happened for the rate of

Figure 5. Temporal evolution of RMSEN(k) as defined in the main

text.All parameter values as in the reference simulationsofFigure4.

Figure6.Simulations for adultmales andadult females obtainedwith themodels in equation5usingparametrisation as inFT1 (A),FT2 (B)

andMT(C), respectively. Simulatedkids (D)andyearlings (EandF), respectively,wereobtainedbyapplyingmodelsWC,KC1andKC2 in

equation 6. Parameter values and curve types are as in Figure 4.
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demographic variation of adult males and females,
the best models for kids and weaning success were
continuous rather than threshold-like. Also, they
revealed that an intermediate value of snow depth
was optimal for both demographic parameters. This
non-monotonic snow dependence is presumably
related to different biological mechanisms. Winters
with high snow cover are detrimental to all ibex, and
especially adults, because food is scarcer than in low-
snowwinters andmore energy is required tomove in
the high snowpack and dig out the dry grasses from
below the snow.High ibexdensities amplify the snow
effect as in this case intraspecific competition be-
comes more severe. In addition, winters with large
snow cover have a correspondingly higher probabil-
ity of avalanches and the associated ibex casualties.
This mechanism, where high winter snow has nega-
tive effects on ibex dynamics, has been thoroughly
discussed in Jacobson et al. (2004).

Here, however, another effect was discovered.
Winters with very low snow cover (such as the
winters in the last 20 years) were also detrimental to
ibex, but this time through their effects on kid
survival and weaning success. This seems to reflect a
major sensitivity of juveniles to a lack of snowduring
winter. Pettorelli et al. (2007) have shown that,
possibly because of climate change, the green-up of
GPNP vegetation has become faster. Indeed, the
annualmaximal increase in the normaliseddifference
vegetation index (NDVI), a satellite-based measure
that is strongly correlated with the net primary
productivity, appeared to increase over time (Pettor-
elli et al. 2007). This may lead to a shorter period of
availability of high-quality forage over a large spatial
scale, decreasing the opportunity for mountain
ungulates to exploit high-quality forage. The rate of
demographic variation in kids might thus be influ-
enced either directly or possibly via the state of
mothers during lactation.

Although simulations obtained with the best
structured and unstructured models showed quite
high variability within the range of bootstrapped
parameter values, the actual time series of animal
counts was not always included in that range.
Reference simulations made using unbiased param-
eters (see Fig. 4) showed that all models underesti-
mated the population peak (occurring from the mid-
1980s to the mid-1990s) and overestimated recent
counts.

The long-term simulations of each single com-
partment showed an underestimation of the adult
compartments during the growing phase of the peak

and an overestimation of the juvenile compartments
(kids and yearlings) during the population decline
which started from the mid-1990s. These results
indicate that weaknesses in modelling adult rates of
demographic variation are responsible for the un-
derestimation of the population peak in the 1990s,
while the overestimation of the recent declining trend
can be mainly ascribed to inadequate modelling of
recruitment and rate of demographic variation of
kids.
Our findings suggest that mechanisms other than

direct climate effects and population density could
influence the dynamics of ibex in GPNP. As
mentioned above, the recent drop in kid survival
might also be related to the state of pastures. Other
important, yet poorly explored factors, are parasite
infections and interspecific competition. In fact,
emergence of parasitic infections that critically affect
the demography of ungulates have been recorded in
different Arctic populations (Kutz et al. 2004). Such
epidemics appear tobe favouredby climatewarming.
Modelling their effects on ibex population dynamics
is thus a promising avenue for investigation (see for
example Ferrari et al. 2010). As for interspecific
competition, it is known that ibex share their habitat
with chamois Rupicapra rupicapra in the GPNP.
Actually, the populations of chamois and ibex
showed similar trends until 1993 (Picollo 2002).
After that year, however, chamois stayed approxi-
mately constant, while ibex started to decrease.
Therefore, testing whether competition between the
two species (documented in Pfeffer & Settimo 1973)
might be responsible for the decrease of ibex is worth
exploring.
Finally, a big step ahead and a possible remedy

to the shortcomings of currently available models
would consist in formulating age-structured mod-
els that consider a more realistic subdivision into
yearly classes of individuals of the same sex.
Models at this finer scale would include the effects
of senescence on male and female rates of demo-
graphic variation, which has been clearly docu-
mented, for instance in a French population of
ibex (Toı̈go et al. 2007). As reported for other
species of large herbivores (Gaillard et al. 2000), it
is plausible that old ibex suffer much more than
young individuals in years characterised by par-
ticularly unfavourable environmental conditions.
Compartmented models, like those proposed in
our present study, cannot account for animal
senescence, because all adults are included in the
same class independent of their age. To develop
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truly age-structured models, one could integrate
the count data with capture-mark-resight data
collected on cohorts of individually marked ani-
mals (currently under way at GPNP) and use
inversion techniques such as those based on the
Kalman filter approach (for an example on Soay
sheep Ovis aries see Tavecchia et al. 2009). In any
case, the long and unique time series of population
counts at GPNP will again provide an excellent
empirical database against which to test different
hypotheses on the mechanisms at work.

Acknowledgements - this work could not have been per-
formed without the dedication of the GPNP park wardens
who have been collecting the ibex data for . 50 years. To
them, we express our gratitude. Part of this work has been
performed during Andrea Mignatti’s PhD, supported by
Fondazione Lombardia per l’Ambiente (project SHARE-
Stelvio). The meteorological data were kindly provided by
the IREN ENERGIA SPA, Torino, Italy. We also thank
two anonymous reviewers and technical editor Jan Drach-
mann for the usefull comments and suggestions, which
significantly contributed to improving the quality of the
publication.

References

Bianchi, M., Corani, G., Guariso, G. & Pinto, C. 2006:

Prediction of ungulates abundance through local linear

algorithms. - Environmental Modelling and Software 21:

2004-2007.

Burnham, K. & Anderson, D. 2002: Model selection and

multimodel inference: a practical information-theoretic

approach. - SpringerVerlag,NewYork,NewYork,USA,

496 pp.

Cherkassky, V., Shao, X., Mulier, F. & Vapnik, V. 1999:

Model complexity control for regression using VC gener-

alization bounds. - IEEE Transactions on Neural Net-

works 10(5): 1075-1089.

Corani,G.&Gatto,M. 2007: Structural riskminimization: a

robust method for density-dependence detection and

model selection. - Ecography 30(3): 400-416.

Efron, B. 1979: Bootstrap methods: another look at the

jackknife. - The Annals of Statistics 7(1): 1-26.

Efron, B. & Tibshirani, R. 1993: An introduction to the

bootstrap. - Chapman & Hall/CRC, New York, New

York, USA, 436 pp.
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Appendix I. Parameter values of the best selected models

The following tables contain parameter values of the
selected best models, together with their statistics.
The labelling scheme of models and parameters is
explained in the main text (see as references equa-
tions 3 and 4). Since there is no risk of confusing bi,C

with bi,w or vice versa, we have omitted the second
subscript in the tables. For threshold models, the
superscripts refer to parameters calibrated using
data of years with snow depth lower (L) or higher
(H) than the threshold of �S ¼ 154 cm used in

Jacobson et al. (2004). The column ’Best fit’
indicates the best fitted value of the parameter
obtained by minimising the square errors (data until
1980), while ’Unbiased value’ indicates the bias-
corrected parameter as suggested in Efron et al.
(1993). The column l 6 SD represents the mean 6

the standard deviation of the parameter values
obtained by using the bootstrapped 1,000 samples
(see main text for details). CV is the coefficient of
variation.
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Table 2. Parameters for the logarithm of the total annual growth rate qualifying the unstructured threshold model NT2.

Parameter Best Fit

Bootstrap analysis

l 6 SD CV Unbiased value

bL
0 9.59 3 10-2 9.43 3 10-2 6 6.86 3 10-2 7.26 3 10-1 9.76 3 10-2

bL
1 - - - -

bL
2 3.25 3 10-1 3.03 3 10-1 6 2.04 3 10-1 6.72 3 10-1 3.46 3 10-1

bL
3 -1.08 3 10-4 -1.01 3 10-4 6 5.76 3 10-5 5.71 3 10-1 -1.14 3 10-4

bH
0 3.71 3 10-1 3.80 3 10-1 6 1.41 3 10-1 3.73 3 10-1 3.62 3 10-1

bH
1 - - - -

bL
2 3.46 3 10-1 3.38 3 10-1 6 1.71 3 10-1 5.05 3 10-1 3.55 3 10-1

bL
3 -1.69 3 10-4 -1.68 3 10-4 6 3.58 3 10-5 2.13 3 10-1 -1.70 3 10-4

Table 3. Parameters for the logarithm of the adult female rate of demographic variation of the age-structured model FT1.

Parameter Best Fit

Bootstrap analysis

l 6 SD CV Unbiased value

bL
0 1.34 3 10-1 1.64 3 10-1 6 1.57 3 10-1 9.56 3 10-1 1.04 3 10-1

bL
1 -1.23 3 10-4 -1.39 3 10-4 6 7.29 3 10-5 5.26 3 10-1 -1.08 3 10-4

bL
2 4.64 3 10-2 4.81 3 10-2 6 4.68 3 10-2 9.73 3 10-1 4.46 3 10-2

bL
3 - - - -

bH
0 9.13 3 10-1 1.06 6 2.65 3 10-1 2.49 3 10-1 7.63 3 10-1

bH
1 -4.08 3 10-4 -4.82 3 10-4 6 1.33 3 10-4 2.75 3 10-1 -3.35 3 10-1

bH
2 -1.23 3 10-1 -1.20 3 10-1 6 3.86 3 10-2 3.21 3 10-1 -1.26 3 10-1

bH
3 - - - -

Table 4. Parameters for the logarithm of the adult female rate of demographic variation of the age-structured model FT2.

Parameter Best fit

Bootstrap analysis

l 6 SD CV Unbiased value

bL
0 1.91 3 10-1 2.16 3 10-1 6 1.54 3 10-1 7.14 3 10-1 1.66 3 10-1

bL
1 -1.53 3 10-4 -1.65 3 10-4 6 8.35 3 10-5 5.05 3 10-1 -1.40 3 10-4

bL
2 - - - -

bL
3 2.39 3 10-5 2.46 3 10-5 6 2.75 3 10-5 1.12 2.32 3 10-5

bH
0 6.66 3 10-1 8.29 3 10-1 6 2.96 3 10-1 3.57 3 10-1 5.02 3 10-1

bH
1 -2.96 3 10-4 -3.75 3 10-4 6 1.68 3 10-4 4.48 3 10-1 -2.16 3 10-4

bH
2 - - - -

bH
3 -5.59 3 10-5 -5.46 3 10-5 6 2.60 3 10-5 4.77 3 10-1 -5.71 3 10-5

Table 1. Parameters for the logarithm of the total annual growth rate qualifying the unstructured threshold model NT1.

Parameter Best Fit

Bootstrap analysis

l 6 SD CV Unbiased value

bL
0 4.46 3 10-1 4.26 3 10-16 2.20 3 10-1 5.16 3 10-1 4.66 3 10-1

bL
1 -1.08 3 10-4 -1.04 3 10-4 6 7.21 3 10-5 6.94 3 10-1 -1.12 3 10-4

bL
2 - - - -

bL
3 -7.13 3 10-6 -6.19 3 10-6 6 1.94 3 10-5 3.14 -8.07 3 10-6

bH
0 1.05 1.05 6 1.76 3 10-1 1.68 3 10-1 1.04

bH
1 -1.86 3 10-4 -1.87 3 10-4 6 6.92 3 10-5 3.70 3 10-1 -1.86 3 10-4

bH
2 - - - -

bH
3 -7.32 3 10-5 -7.39 3 10-5 6 2.00 3 10-5 2.71 3 10-1 -7.25 3 10-5
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Table 5. Parameters for the logarithm of the adult male rate of demographic variation of the age-structured model MT.

Parameter Best fit

Bootstrap analysis

l 6 SD CV Unbiased value

bL
0 -2.51 3 10-2 -2.28 3 10-2 6 1.04 3 10-1 4.56 -2.73 3 10-2

bL
1 - - - -

bL
2 - - - -

bL
3 -4.89 3 10-5 -4.92 3 10-5 6 2.27 3 10-3 1.46 -4.85 3 10-5

bH
0 3.22 3 10-1 3.27 3 10-1 6 1.54 3 10-1 4.70 3 10-1 3.16 3 10-1

bH
1 - - - -

bH
2 - - - -

bH
3 -1.96 3 10-4 -2.00 3 10-4 6 6.38 3 10-5 3.19 3 10-1 -1.92 3 10-4

Table 6. Parameters for the logarithm of the kid rate of demographic variation of the age-structured model KC1.

Parameter Best fit

Bootstrap analysis

l 6 SD CV Unbiased value

b0 -3.65 3 10-1 -4.20 3 10-1 6 2.46 x10-1 5.85 3 10-1 -3.11 3 10-1

b1 - - - -

b2 9.85 3 10-1 1.12 6 4.03 3 10-1 3.59 3 10-1 8.47 3 10-1

b3 -1.88 3 10-1 -2.01 3 10-1 6 1.12 3 10-1 5.59 3 10-1 -1.75 3 10-1

b4 -4.07 3 10-4 -4.45 3 10-4 6 1.58 3 10-4 3.55 3 10-1 -3.69 3 10-4

b5 - - - -

Table 7. Parameters for the logarithm of the kid rate of demographic variation of the age-structured model KC2.

Parameter Best fit

Bootstrap analysis

l 6 SD CV Unbiased value

b0 -4.72 3 10-1 -5.19 3 10-1 6 2.35 3 10-1 4.53 3 10-1 -4.25 3 10-1

b1 - - - -

b2 1.15 1.21 6 3.78 3 10-1 3.13 3 10-1 1.08

b3 -2.33 3 10-1 -2.47 3 10-1 6 1.08 3 10-1 4.37 3 10-1 -2.19 3 10-1

b4 -2.53 3 10-4 -2.55 3 10-4 6 6.47 3 10-5 2.54 3 10-1 -2.51 3 10-4

b5 - - - -

Table 8. Parameters for the logarithm of the kid rate of demographic variation of the age-structured model WC.

Parameter Best fit

Bootstrap analysis

l 6 SD CV Unbiased value

b0 -9.42 3 10-1 -9.31 3 10-1 6 2.15 3 10-1 2.31 3 10-1 -9.54 3 10-1

b1 - - - -

b2 7.60 3 10-1 7.75 3 10-1 6 4.04 3 10-1 5.21 3 10-1 7.44 3 10-1

bb -1.43 3 10-1 -1.24 3 10-1 6 1.11 3 10-1 8.99 3 10-1 -1.63 3 10-1

b3 -2.11 3 10-4 -2.37 3 10-4 6 1.18 3 10-4 4.98 3 10-4 -1.85 3 10-4

bc - - - -
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