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Ecologists increasingly rely on camera-trap data to estimate biological parameters such as population abundance. Because 
of the huge amount of data camera trap can generate, the assistance of non-scientists is often sought after, but an assessment 
of the data quality is necessary. We tested whether volunteers data from one of the largest citizen science projects – Snap-
shot Serengeti – could be used to study breeding phenology. We tested whether the presence of juveniles (less than one 
or 12 months old) of species of large herbivores in the Serengeti: topi, kongoni, Grant’s gazelle, could be reliably detected 
by the ‘naive’ volunteers versus trained observers. We expected a positive correlation between the proportion of volunteers 
identifying juveniles and their effective presence within photographs, assessed by the trained observers. The agreement 
between the trained observers was good (Fleiss’ κ > 0.61 for juveniles of less than one and 12 month(s) old), suggesting that 
morphological criteria can be used to determine age of juveniles. The relationship between the proportion of volunteers 
detecting juveniles less than a month old and their actual presence plateaued at 0.45 for Grant’s gazelle, reached 0.70 for 
topi and 0.56 for kongoni. The same relationships were much stronger for juveniles younger than 12 months, reaching 1 
for topi and kongoni. The absence of individuals < one month and the presence of juveniles < 12 months could be reliably 
assumed, respectively, when no volunteer and when all volunteers reported a presence of a young. In contrast, the presence 
of very young individuals and the absence of juveniles appeared more difficult to ascertain from volunteers’ classification, 
given how the classification task was presented to them. Volunteers’ classification allows a moderately accurate but quick 
sorting of photograph with/without juveniles. We discuss the limitations of using citizen science camera-traps data to study 
breeding phenology, and the options to improve the detection of juveniles.

Keywords: African ungulates, age determination, Alcelaphus cokii, Damaliscus jimela, Nanger granti

Camera trapping is increasingly used for ecological monitor-
ing due to its low cost, relative ease of use and the variety 
of data it can supply (O’Connell et al. 2010). For instance, 
camera trap data are used to study species’ occupancy and 
co-occurrence (Anderson et al. 2016), population dynamics 
(Karanth et al. 2006) or individual behaviour (e.g. vigilance 
behaviour: Chamaillé-Jammes et al. 2014, or diel activity 
patterns: Luo et al. 2019). A potential drawback of camera 

traps is the huge amounts of data that are generated (> 7 
millions photographs for the Snapshot Serengeti initiative 
alone). Ecologists have realized that the benefits of contin-
uously collecting data in the field can quickly be negated 
by the burden of database management, and visual inspec-
tion and analysis of photographs to record the desired data 
(Wearn and Glover-Kapfer 2017).

To process such a massive amount of information in a 
reasonable time, scientists have sought the help of non-spe-
cialists who perform diverse tasks like counting objects in 
photographs, describing picture content or identifying ani-
mal and plant species (McShea et al. 2015). Initially, part of 
the scientific community was sceptical about citizen science, 
in particular questioning data quality (Riesch and Potter 
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2014). However, volunteers have sometimes proven to be 
as efficient as experts, for instance for the identification of 
large herbivore species in savanna ecosystems (Swanson et al. 
2016). More recently, the advances in deep learning have 
led computers to become as efficient as people at identify-
ing species, and, sometimes, behaviour classification prob-
lems (Norouzzadeh et al. 2018). However, human judgment 
is still valuable in particular cases where too little data are 
available to train models (e.g. active learning, Joshi et al. 
2009), or when differences among the objects to be classi-
fied are subtle and classification requires some subjectivity 
(Miele et al. 2021). We believe this is the case for age clas-
sification problems, for which to the best of our knowledge 
the number of precisely labelled pictures taken in the wild is 
currently too small to allow an efficient and reliable automa-
tization of the process.

Under the assumption that the detectability of juveniles 
and adult females segments of the population is not biased by 
camera traps methodology, classifying individuals into age-
classes such as juveniles and adults would allow estimates of 
key demographic parameters (e.g. reproductive rates) or life-
history traits (e.g. breeding phenology). For instance, Ogutu 
and colleagues (2008) highlighted that rainfall influences 
the abundance of several large herbivore species of the Mara-
Serengeti ecosystem, by acting differently on each segment of 
the populations at specific periods of the year. Furthermore, 
it would facilitate the study of the relationships between 
population characteristics and their environments such as 
between birth phenology, diet and food resource availability 
(Sinclair et al. 2000), or their potential evolution in the con-
text of climate change (Visser and Both 2005). Until now, 
the study of those key demographic parameters has been 
mainly conducted by direct field observations (Côté and 
Festa-Bianchet 2001 in mountain goats, Plard et al. 2013 in 
roe deer). However, this methodology still requires an inten-
sive and often costly field effort. Identifying and counting 
juveniles from camera traps could reduce this field effort, 
or allow larger-scale or longer-term studies, as suggested by 
Hofmeester et al. (2020), but could also be time-consuming 
because of tedious data processing. With the help of citizen 
science, data handling time could be substantially reduced, 
but the accuracy of non-specialists in detecting juveniles of 
large mammals from photographs has not yet been explored.

Here, we evaluate the usefulness of camera trap data 
annotated by citizen scientists online to assess the presence 
of juveniles of large herbivores in the photographs. We use 
photographs and citizen classifications from the Snapshot 
Serengeti project (Swanson et al. 2015), one of the world’s 
largest citizen science programs, on a subset of the data. We 
focus on the detection of juveniles in three species found in 
the Serengeti National Park, Tanzania with contrasting social 
and neonatal behaviours: topi Damaliscus jimela, kongoni 
Alcelaphus cokii and Grant’s gazelle Nanger granti. We first 
evaluate the agreement between trained observers from our 
research team, and then test the ability of the volunteers to 
detect juveniles by comparing their classification with ours. 
We predict a better agreement between trained observers 
for the youngest age class because determination criteria are 
clearer and easier to identify than for older juveniles (e.g. 
absence of horns). Consequently, the level of agreement 

should decrease for age classes that are based on more sub-
jective or difficult-to-assess criteria (e.g. shape of the horns). 
Under the hypothesis that volunteers could generally iden-
tify juveniles correctly, we expect a positive relationship 
between the proportion of volunteers reporting a juvenile 
on a photograph and the probability of the actual presence 
of a juvenile, as determined by the trained observers. Again, 
we expect the correlation to be stronger for the youngest age 
class of juveniles because they are easier to differentiate from 
adults. Across species, we expect a higher agreement and cor-
relation for topi and kongoni than for Grant’s gazelle because 
the former are larger, live in smaller groups and have similar 
body growth rate between males and females (Wilson and 
Mittermeier 2011), hence reducing the risk of confusion 
between young males and older females. Overall, our study 
details the strengths and weaknesses of camera trap data, in 
particular when classified by citizen scientists, for the study 
of reproductive traits such as reproductive rates or breeding 
phenology.

Material and methods

Study site

The surveyed area within the Serengeti National Park, Tan-
zania, is composed of open plains and savanna woodlands. 
Rain mostly occurs between November and June (wet sea-
son), with mean annual rainfall increasing from 500 mm  
in the southeast to 1100 mm in the northwest. This area 
harbours a rich community of large herbivores, composed of 
gregarious and migratory wildebeest Connochaetes mearnsi, 
zebra Equus sp. and Thomson’s gazelle Eudorcas nasalis, 
but also resident populations such as Cape buffalo Synce-
rus caffer or warthog Phacochoerus africanus (Sinclair and 
Norton-Griffiths 1995). Community dynamics are driven 
both by herbivores, maintaining an open state of the grass-
land by intensive grazing (McNaughton 1985, Sinclair 
and Norton-Griffiths 1995) as well as large predators (e.g. 
lion Panthera leo and hyena Crocuta crocuta, Sinclair and  
Norton-Griffiths 1995).

Camera trap data

The Snapshot Serengeti camera trap grid was deployed in 
2010 in Serengeti National Park, Tanzania, to monitor lions 
and their prey, though the bycatch of numerous other species 
has proven useful as well. Running continuously since 2010, 
the grid spans 1125 km2 in the center of the park. We used 
data provided by Snapshot Serengeti camera survey recorded 
between July 2010 and April 2013 (Supporting informa-
tion 1). The camera traps were set ~ 50 cm above ground 
in the centre of a 5 km2 grid cell. The detection radius was 
approximately 45° and their field of view about 14 m (Swan-
son et al. 2015). Cameras took a rapid series of three pictures 
upon trigger of the motion and heat sensors (‘capture event’ 
in Swanson et al. 2015, hereafter called a ‘sequence’ follow-
ing Meek et al. 2014) in a few seconds interval, with a one-
minute delay between sequences.
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Choice of studied species and sorting steps of the 
dataset

Among the many large herbivore species present in the study 
site, we selected topi, kongoni and Grant’s gazelle due to 
their contrasting biology and characteristics useful to assess 
the age classes of individuals. The criteria considered were 
1) number of available sequences, 2) relatively small group 
size, 3) presence of horns in males and females, 4) relatively 
large size of the young (young of larger species are larger, 
and therefore criteria like horns are easier to detect), 5) con-
trasting anti-predator of behaviour of the young (Supporting 
information 2).

We selected the final dataset (n = 2359 sequences) to con-
duct the analyses following several sorting steps, based on 
the detection of the species of interest and of the presence 
of juveniles from the initial complete dataset (n = 1 184 657 
sequences) by the volunteers. We then corrected this data-
set thanks to the trained observers reclassifications (details 
in Table 1).

Assessing the presence or absence of juveniles in 
photographs

All Snapshot Serengeti photographs have been uploaded 
to the online citizen science platform ‘The Zooniverse’ 
(<www.zooniverse.org>) to be classified by volunteers. 
Each sequence was processed by as many as 25 volunteers 
(minimum = 11, maximum = 57, Swanson et al. 2016), 
who each identified what species was present in the sequence 
and recorded whether at least one juvenile was present or 
not. Note that no formal definition of a juvenile was pro-
vided to volunteers, nor were there any particular guide-
lines about how to identify a juvenile. Volunteers simply 
searched and checked ‘young’ in the Zooniverse interface 
when they suspected the presence of non-adult individu-
als. Regarding age classes, the only question volunteers had 
to reply to was: ‘Are there any young present?’. For each 
sequence, the volunteers’ classifications were then compiled 

via a plurality algorithm to yield a consensus classification, 
leading to a proportion of volunteers (Pv) who identified at 
least one juvenile in each sequence (details in Swanson et al. 
2015). Here, we used all sequences where volunteers iden-
tified topi, kongoni and Grant’s gazelle, with at least one 
volunteer (Pv > 0%) having annotated the presence of a 
juvenile. We could not analyse all sequences for which no 
volunteer had reported a juvenile, as these were too many 
(n = 2018, 11 141 and 6628 for topi, kongoni and Grant’s 
gazelle respectively) to be reviewed individually. However, 
we checked a subset of them (n = 1000 for each species), 
and the chance that a trained observer observed a ‘true’ 
juvenile (i.e. of less than 12 months old, see age classes defi-
nition below) was < 6.5% for all three species studied when 
no volunteer did report one. We did not correct observa-
tions for recaptures of the same individuals as we were only 
interested in the ability of volunteers to detect the presence 
of juveniles on the sequences, but not the actual number  
of juveniles.

Three of us (LT, LK and MC), considered here as trained 
observers, searched all sequences retained for juveniles, 
which were assigned to an age class when detected. We 
used previously published morphological descriptions of 
the studied species (e.g. shape and size of horns, size relat-
ing to the adult; Supporting information 3) to identify and 
age individuals. We distinguished between 1) juveniles < 
one month, 2) between one and six months, 3) between 
six and 12 months, 4) between 12 and 24 months, termed 
yearling hereafter and 5) individuals over two years old, 
termed adults hereafter. We defined age classes accord-
ing to biological characteristics relevant to juvenile iden-
tification for each species (e.g. very young individuals for 
birth phenology identification, juveniles under one year 
for recruitment estimation). We recorded observers’ clas-
sifications with Aardwolf software (Krishnappa and Turner 
2014). Ultimately, we produced a dataset describing the 
presence or absence (Mi,s,j), in each sequence of individu-
als of any of the five age categories i, for the species s, by 
trained observer j.

Table 1. Number of sequences at each sorting step from the extraction of raw data to the selection of all the independent sequences with at 
least one individual < 1 month old, for the three species of the study: topi, kongoni and Grant’s gazelle (pictures from Snapshot Serengeti 
program, Tanzania, between July 2010 and April 2013). Standard deviations are calculated on the basis of the classifications of the three 
trained observers.

Step no. Step name Consists in Classifier

Number of sequences

Topi Kongoni
Grant’s 
gazelle

1 Row data all sequences produced during the survey none 1 184 657 1 184 657 1 184 657
2 Blank sorting sequences with animals volunteers 319 915 319 915 319 915
3 Species sorting 1 sequences with study species volunteers 2299 12 431 7723
4 Young sorting 1 sequences with at least more than 0% of 

volunteers identifying young
volunteers 281 1290 1095

5 Species sorting 2 sequences with study species corrected by 
trained observers

trained observers 324 1281 754

6 Young sorting 2 sequences with at least one young trained observers 216 ± 1 830 ± 17 348 ± 18
7 Young sorting 3 sequences with at least one young less than 

one month old
trained observers 59 ± 9 137 ± 33 58 ± 3

8 Re-sight sorting 1 independent sequences (remove of resights 
notified by the observers)

trained observers 39 ± 7 71 ± 27 50 ± 5

8’ Re-sight sorting 2 independent sequences (remove of sequences 
taken less than 10 minutes after the 
previous one by the same camera trap)

theoretical sorting 42 ± 8 70 ± 22 40 ± 4
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Statistical analyses

We first evaluated the agreement between the three trained 
observers on the detection of individuals assigned to each age 
class for each species. We measured this agreement with the 
Fleiss’ κ, implemented in the ‘raters’ R package (Quatto and 
Ripamonti 2014). Fleiss’ κ (Fleiss 1971) is the comparison 
of agreement between 2+ judges and the level of agreement 
expected by chance alone. It takes values between −1 and 1, 
values < 0 indicating an agreement lower to what could be 
expected by chance, values > 0 indicating a greater agree-
ment than expected by chance, and values = 0 indicating an 
agreement close to random. We tested for significance of the 
difference between the Fleiss’ κ using a bootstrap procedure 
following Vanbelle and Albert (2008) (Supporting informa-
tion 4).

We tested the relationship between the proportion of 
volunteers identifying at least one juvenile (Pv) and the 
probability that trained observers had identified at least one 
juvenile < 1 month (category i = 1). We also explored the 
same relationship with juveniles < 12 months (therefore 
including juveniles of categories 1–3 above). We fitted three 
generalized estimating equation models: one linear (Eq. 1 
below) and two piecewise models. The first piecewise model 
was characterized by a slope on both sides of the threshold 
(Eq. 2), the second by a slope before and a plateau after the 
threshold (Eq. 3). We fitted piecewise models to search for 
a potential ‘saturation’ phenomenon, whereby beyond a spe-
cific proportion of volunteers the probability to effectively 
observe a juvenile does not increase anymore. We also fit-
ted the null model for comparison. All the models were 
fitted for the two age classes and for each species individu-
ally, using the wgee function implemented in the ‘wgeesel’ 
R package (Xu et al. 2018). We selected the best model 
using the Quasi-likelihood under the independence model 
criterion QIC (thresholds selected by comparison of QIC 
of the models for each species and age class as well). It is a 
modification of the Akaike information criterion AICc, suit-
able when quasi-likelihood is used instead of likelihood (Pan 
2001), implemented in the ‘MuMIn’ R package (Bartoń 
2019). We used a logit link function and a binomial distri-
bution of errors (Agresti 2002), considering the proportion 
of volunteers identifying at least one juvenile as fixed effect, 
and the identity of the sequence as clustering variable with 
an exchangeable correlation structure:

logit M Pvs i j s i s, , ,( ) = + ´m b  (Eq. 1 – linear model)

and

logit M
Pv Pv
Pv Pvs i j

s i s s

s i s s
, ,

,

,
( ) =

+ ´ £
+ ´ >

ì
í
î

m b q
m b q

1
2

if
if   (Eq. 2 – piecewise model 1)

and

logit M
Pv Pv
Pvs i j

s i s s

s
, ,

,( ) =
+ ´ £

>
ì
í
î

m b q
m q
1

2
if

if  (Eq. 3 – piecewise model 2)

where Ms,i,j denotes the presence or absence of at least one 
juvenile of the age class i (< 1 or 12 months) for a given 
sequence, for the species s and the observer j, µ is the expected 
mean probability of actual presence of at least one juvenile 
of the age class i when none of the volunteers identified the 
presence of a juvenile, Pvs is the proportion of volunteers 
identifying at least one juvenile for a given sequence, for the 
species s and θ is the best threshold. We performed all analy-
ses using the R statistical software (<www.r-project.org>).

Results

From the Snapshot Serengeti monitoring program, we 
obtained 281, 1290 and 1095 sequences for topi, kongoni 
and Grant’s gazelle respectively (Fig. 1a) sorting step ‘Young 
sorting 1’ and Table 1. Our selection process led to a dra-
matic drop in the number of usable sequences (i.e. those 
containing at least one < 1 month old juvenile), with a ten-
fold reduction at the species level: it only remained between 
7.7% and 18.1% of the complete dataset available for the 
species (n = 59 ± 9 SD, 137 ± 33 SD and 58 ± 3 SD for 
each species respectively, Fig. 1a) sorting step ‘young sorting 
3’ and Table 1. The largest losses of sequences happened dur-
ing the phases of selection of sequences containing the stud-
ied species and then juveniles (Fig. 1a and Table 1). Figure 
1b suggests that we would obtain similar results concerning 
the loss of sequences after selection for sequences contain-
ing juveniles for any large herbivore species recorded in the 
Snapshot Serengeti program.

The three trained observers identified 993 ± 49 SD, 3020 
± 180 SD and 2128 ± 224 SD individuals of any age class. 
On average, they could not assign an age class to ~11% 
(n = 118 ± 68 SD), ~20% (n = 775 ± 256 SD) and 32% 
(n = 1026 ± 492 SD) of the individuals for topi, kongoni 
and Grant’s gazelle respectively, a significant between-species 
difference (χ2 = 262.83, df = 2, p < 0.001).

For all species, and as expected, the agreement between 
trained observers was highest for the youngest age class, then 
declined with age until the yearling class was reached (Fig. 
2). Yearlings were reasonably well classified in kongoni, but 
overly misclassified in topi and Grant’s gazelle (Fig. 2). As 
expected, the agreement among trained observers was the 
highest for the youngest age class of juveniles, but also for 
the second age class and the adults, with Fleiss’ κ values 
almost always > 0.61 (denoting a substantial agreement, fol-
lowing Landis and Koch 1977), except for Grant’s gazelle 
aged between one and six months and adult topi. Agreement 
among observers was the highest for topi aged < 1 month 
old (Fleiss’ κ = 0.78 [0.72; 0.84]). In support of our predic-
tion, we observed the lowest agreement for juveniles aged six 
months and older, and more obviously so for Grant’s gazelle. 
Agreement among observers concerning the three first age 
classes pooled together (representing the juveniles) was very 
good, with Fleiss’ κ values largely > 0.61 for all the spe-
cies. The same holds true for juveniles between one and 12 
months old when pooled together. Our results were globally 
consistent among the three species studied, with the highest 
agreement for topi, and the least for Grant’s gazelle (Fig. 2). 
All estimated Fleiss’ κ were significantly different from an 

Downloaded From: https://complete.bioone.org/journals/Wildlife-Biology on 29 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use



5

agreement obtained by chance (p-values < 0.001, see Sup-
porting information 4).

The model best describing our data for the age class < 1 
month was the linear model for topi, the piecewise model 
with slopes on both sides of the threshold for kongoni and 
the piecewise model with slope before and plateau after 
the threshold for Grant’s gazelle (Table 2). The model best 
describing our data for the age class < 12 months was the 
threshold model with slopes on both sides of the threshold 
for topi, kongoni and Grant’s gazelle (Table 2).

The probability of observing a juvenile when all volun-
teers reported one was near 1 for juveniles < 12 months 
for topi and kongoni. Concerning Grant’s gazelle, this 
probability only reached 0.90 when 41% of the volun-
teers recorded the presence of young. Between 41% and 
100% of volunteers identifying young in the sequences, 
the probability decreased (Fig. 3d–f ). When investigating 
the presence of juveniles < 1 month, the probability that 
a juvenile was actually present was never greater than 70% 
(Fig. 3a–c). On the other hand, the model predicted that 
when no volunteer reported the presence of juveniles, the 
probability that there was juveniles < 1 month was under 
1.8%, but there was at least 9.6% chance to observe a juve-
nile < 12 months.

Contrary to our expectations, the piecewise model char-
acterized by two slopes was almost always selected as the 
best model for the three species and both age classes. This 
denotes a sudden change in the rate of detection from a cer-

Figure 1. (a) Number of sequences available at each sorting step 
from the extraction of raw data to the selection of all the indepen-
dent sequences with at least one individual < 1 month old, for the 
three species of the study: topi, kongoni, Grant’s gazelle. Pictures 
from Snapshot Serengeti, Tanzania, between July 2010 and April 
2013. Raw data: all sequences produced during the survey; blank 
sorting: sequences with animals; species sorting 1: sequences with 
study species according to the volunteers; young sorting 1: 
sequences with at least one volunteer identifying ‘young’; species 
sorting 2: sequences with study species corrected by trained observ-
ers; young sorting 2: sequences with at least one young according to 
the trained observers; young sorting 3: sequences with at least one 
young < 1 month old according to the trained observers; resight 
sorting: independent sequences once sequences taken less than 10 
minutes after the previous one by the same camera trap and pre-
senting the same species have been removed (following Palmer et al. 
2018). Note the log scale for the ordinate axis, vertical bars repre-
sent the standard deviations. (b) Number of sequences available for 
all the large herbivore species present in the study site. The propor-
tions indicate the proportion of sequences where at least one volun-
teer identified juveniles for a given species.

Figure 2. Fleiss’ κ denoting the level of agreement between the three 
trained observers (LT, LK and MC) in the identification of presence 
or absence of at least one individual belonging to any of the five age 
classes (< 1 month, 1–6 months, 6–12 months, > 12 months, 
adults), for the three species of interest. Pictures from Snapshot 
Serengeti Program, Tanzania, between July 2010 and April 2013. 
The two combined age classes ‘1–12 months’ and ‘< 12 months’ are 
also presented. Light grey dots: topi, dark grey dots: kongoni, black 
dots: Grant’s gazelle. Vertical bars represent the confidence intervals 
of the points estimates. A Fleiss’ κ near 1 denotes an almost perfect 
agreement, whereas a value near or < 0 means a very poor agree-
ment between raters.
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tain percentage of volunteers. The detection rate decreases 
for kongoni and Grant’s gazelle for young < 12 months 
beyond 12 and 41% of volunteers voting for the presence 
of young respectively. The number of volunteers who did 
classify a photograph was independent from the probability 
to detect a young.

Discussion

Our study reveals the strength and weaknesses of using citi-
zen-based assessment of age classes on camera trap pictures. 
Clearly, citizen involvement through an online platform has 
been critical for the classification of the millions of photo-

Table 2. Statistics of models investigating the relationship between the proportion of volunteers identifying at least one ‘young’ and the prob-
ability of presence of at least one individual < 1 or 12 months, assessed by the trained observers on a given sequence for the three species 
of interest: topi, kongoni and Grant’s gazelle. Best models are in bold. θ = estimated threshold (% of volunteers), QIC = Quasi-likelihood 
under the Independence model Criterion, estimates ± standard error.Best models are in bold type.

Age class Species Model type θ QIC Quasi-likelihood Estimates

< 1 month Topi Null 924.6 −459.77 µ = −1.509 ± 0.133
Linear 630.9 −311.05 µ = −4.013 ± 0.342

β = 0.048 ± 0.005
Piecewise – slope/plateau 90 635.2 −313.23 µ = −4.102 ± 0.362

β1 = 0.051 ± 0.005
μ2 = 0.626 [0.523; 0.720]

Piecewise – slope/slope 78 634.7 −310.49 µ = −8.863 ± 1.763
β1 = 0.045 ± 0.007
β2 = 0.064 ± 0.023

Kongoni Null 2614.4 −1304.83 µ = −2.125 ± 0.081
Linear 1993.0 −992.05 µ = −3.977 ± 0.174

β = 0.043 ± 0.003
Piecewise – slope/plateau 90 2005.8 −998.42 µ = −4.007 ± 0.178

β1 = 0.044 ± 0.003
μ2 = 0.498 [0.434; 0.563]

Piecewise – slope/slope 10 1966.7 −977.58 µ = −10.522 ± 1.740
β1 = 0.687 ± 0.178
β2 = 0.039 ± 0.003

Grant’s gazelle Null 1236.2 −615.91 µ = −2.479 ± 0.117
Linear 1016.6 −501.81 µ = −3.653 ± 0.181

β = 0.055 ± 0.007
Piecewise – slope/plateau 43 969.7 −480.75 µ= −4.355 ± 0.227

β1 = 0.097 ± 0.008
μ2 = 0.451 [0.353; 0.552]

Piecewise – slope/slope 43 974.6 −480.48 µ = −4.573 ± 0.544
β1 = 0.094 ± 0.010
β2 = 0.006 ± 0.013

< 12 months Topi Null 1241.3 −618.00 µ = 0.698 ± 0.111
Linear 948.0 −468.64 µ = −0.866 ± 0.184

β = 0.059 ± 0.007
Piecewise – slope/plateau 60 964.6 −477.23 µ = −0.987 ± 0.191

β1 = 0.069 ± 0.007
μ2 = 0.958 [0.926; 0.977]

Piecewise – slope/slope 30 946.5 −464.45 µ = −3.202 ± 0.624
β1 = 0.031 ± 0.017
β2 = 0.090 ± 0.022

Kongoni Null 4992.3 −2493.63 µ = 0.609 ± 0.054
Linear 3726.5 −1858.95 µ = −1.139 ± 0.108

β = 0.089 ± 0.006
Piecewise – slope/plateau 90 3726.6 −1859.03 µ = −1.140 ± 0.108

β1 = 0.089 ± 0.006
μ2 = 0.999 [0.997; 1]

Piecewise – slope/slope 12 3684.8 −1835.45 µ = −3.041 ± 0.271
β1 = 0.213 ± 0.029
β2 = 0.066 ± 0.006

Grant’s gazelle Null 3127.4 −1561.20 µ = −0.154 ± 0.067
Linear 2940.5 −1463.22 µ = −0.837 ± 0.140

β = 0.049 ± 0.010
Piecewise – slope/plateau 30 2866.2 −1428.27 µ = −1.285 ± 0.132

β1 = 0.091 ± 0.009
μ2 = 0.809 [0.748; 0.859]

Piecewise – slope/slope 41 2866.4 −1425.59 µ = −0.009 ± 0.506
β1 = 0.083 ± 0.010

β2 = −0.029 ± 0.013
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graphs collected by the Snapshot Serengeti initiative. Also, 
despite leaving it to the volunteers to decide what a juvenile 
looks like, volunteers’ classification allows a rough, moder-
ately accurate, but quick sorting of sequences with/without 
juveniles.

Our study makes clear that, for the species studied 
and given the minimal guidelines given to volunteers, the 
'absence' of very young (< 1 month) individuals on pic-
tures can be reliably assumed when no volunteer reports a 
presence. The sequences almost never labelled by volunteers 
as containing ‘young’ were very unlikely to contain young 
under one month of age according to the trained observers. 
This suggests that volunteers rarely miss very young juve-
niles. This likely occurs because very young juveniles are dis-
tinctively smaller than adults, and possibly also because very 
young mammals share some physical characteristics such as 
relatively large eyes, long legs, short and rounded nose, all 
belonging to 'Kindchenschema', known to be very attractive 
stimuli for humans (Brosch et al. 2007, Golle et al. 2013). 
By contrast, the 'presence' of very young individuals appears 
more difficult to ascertain from volunteers’ data, and this 
apparently comes from the lack of guidelines given to volun-
teers. Indeed, consistent with the idea that volunteers easily 
identify very young individuals, a large consensus among vol-
unteers around the presence of a very young juvenile could 
be a reliable indication of actual presence, but only when no 
older juveniles are present (compare Fig. 3a–c and Support-

ing information 5 – Fig. A). Unfortunately, the absence or 
presence of older juveniles cannot currently be known with-
out a reassessment of the pictures because volunteers were 
not asked to differentiate between juvenile age classes. There-
fore, the presence of very young juveniles remains difficult 
to ascertain. On the other hand, the 'presence' of juveniles, 
irrespectively of their age, can be reliably assumed when all 
volunteers agree about a presence (Fig. 3a–c), especially for 
topi and kongoni: the model predicted that when all the vol-
unteers reported the presence of juveniles, the probability 
that there was juveniles < 12 months was indeed at least 
99.8%. This time, the 'absence' of juveniles regardless of 
their age is less accurate, meaning that they are missed quite 
often. As they grow, juveniles become increasingly similar 
to adults, and are more likely to be mistaken for the latter 
by volunteers. Anyhow, we emphasize that detectability of 
juveniles is not equal between species (Fig. 3).

Among the three trained observers, we found the best 
agreement in the detection of age classes for a given sequence 
for topi and kongoni, suggesting that they are the easiest spe-
cies to classify, and Grant’s gazelle the hardest. The combi-
nation of small body size and gregariousness could explain 
why the determination of age was more difficult and hetero-
geneous for Grant’s gazelle than for the two other species. 
Topi and kongoni are fairly large, and the small body size 
of Grant's gazelle makes the detection of some inconspicu-
ous age criteria challenging (e.g. presence or absence of very 

Figure 3. Relationship, as predicted from the best model (see text for details), between the proportion of volunteers identifying the presence 
of ‘young’ and the probability of presence of at least one individual < 1 (a–c) and < 12 (d–f ) months assessed by the trained observers in a 
given sequence of photographs (0 < proportion of volunteers identifying ‘young’ ≤ 1), for the three species of interest: (a) and (d) topi, (b) 
and (e) kongoni and (c) and (f ) Grant’s gazelle. Pictures from Snapshot Serengeti Program, Tanzania, between July 2010 and April 2013. 
Light grey dots represent the probability of presence of at least one individual < selected age class in each sequence assessed by the three 
trained observers, dark grey dots represent the mean of those probabilities for each 10% volunteers interval, vertical bars represent 95% 
confidence intervals. Solid line represents predicted values from the best model. Shaded areas represent 95% confidence interval of these 
predicted values .
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small horn buds on the forehead of the individuals). On the 
contrary, it is certainly easier to discriminate between adults 
and juveniles in the largest herbivores, such as giraffe Giraffa 
camelopardalis or elephant Loxodonta africana because of 
the marked size difference between them. Discrimination 
between several juvenile age classes will certainly be difficult 
still as individuals are often only partially spotted by camera 
traps and subtle aging criteria are not visible. More gener-
ally, in species forming large herds such as wildebeest, young 
might be particularly difficult to spot and are likely missed 
frequently. In large groups, the body of many individuals 
overlaps, hampering our ability to see aging criteria cor-
rectly, and to age them accurately. This could explain why in 
our study for instance, Grant’s gazelle frequently occurring 
in large herds reaching more than 30 individuals in some 
sequences, is also the one with the lowest identification suc-
cess of juveniles. Finally, a pronounced sexual dimorphism 
in horn growth in Grant’s gazelle likely led to confusions 
between the first two age classes as male horns grow faster, 
a young male can look like an older female when using the 
length of the horns as an aging criteria. This would also be 
the case for species with a sexual dimorphism in which only 
males grow horns like impala Aepyceros melampus or water-
buck Kobus defassa. Clearly, a description of the morphologi-
cal changes that occur throughout the development of young 
herbivores (Spinage 1976 in our species, Cunningham et al. 
2011, Dezeure et al. 2020 in other species) is of great value 
and substantially helps at reaching consistent results among 
different observers.

Another limitation of camera trapping in the context of 
reproductive studies is the level of effort required to obtain a 
sufficient sample size. Here, working with data from one of 
the world’s largest and long-running camera trap studies, we 
ended up with a small number of sequences with juveniles 
< 1 month old after appropriate data selection. We iden-
tified four main explanations for this important reduction 
in exploitable sequences. First and foremost, our ability to 
determine an individual’s age class depends strongly on the 
photograph quality and particularly its framing and expo-
sure. In many cases, individuals were located too far from 
the camera or were only partly visible, or photographs were 
too blurry, dark or overexposed to be scrutinized, leading to 
potentially significant loss of reproductive data and a high 
number of individuals of unknown or over-estimated age. 
Another potential source of information loss was species 
misidentification by volunteers. In our study, about 30% of 
the sequences labelled with Grant’s gazelle were misidenti-
fied because it greatly resembles species such as impala and 
Thomson’s gazelle which are also present in the study site. 
Species abundance obviously directly impacts the number 
of sequences collected. The abundance of the three studied 
species is low compared to other ungulates in the Seren-
geti system. Sinclair and Norton-Griffiths (1995) reported 
55 500 individuals topi, 20 700 individuals kongoni and 
6000 individuals Grant’s gazelle in the 1970s, whereas the 
numbers of wildebeest and zebra were 720 000 and 240 000 
individuals respectively. Finally, the anti-predator strategy of 
juvenile large herbivores, known as the hider-follower gradi-
ent (Lent 1974, Rutberg 1987), could influence the num-
ber of sequences containing very young individuals. While 
followers become active and stick with their mother just a 

few hours after birth, hiders stay concealed in dense vegeta-
tion during their first weeks of life. The detection probabil-
ity of hiders from camera traps should then be much lower 
than of followers, consistent with our observation of very 
young topi seen in a greater proportion than kongoni and  
Grant’s gazelle.

Volunteers' classification provides information that can 
reliably be used to infer the 'presence' of juveniles < 12 
months or the 'absence' of juveniles < 1 month, as these 
annotations appear robust. However, because volunteers 
seem able to discriminate between individuals of less than 
one month old and the rest of the juveniles even in the 
absence of any stated criteria, more precise results could be 
achieved by asking them to differentiate between two age 
classes of juveniles, such as ‘juvenile’ and ‘newborn’. The 
level of agreement between trained observers in the clas-
sification of age classes according to species is also a good 
indication of what kind of tasks could be successfully con-
ducted by volunteers. When this agreement is low (e.g. in 
the identification of topi and Grant’s gazelle yearlings), one 
could not expect volunteers to properly identify such an age 
class. We advise to limit the number of classes the volunteers 
are asked to identify, and to focus on the most recognisable 
ones. Another way to improve results generated via citizen 
science platforms could be the inclusion of detailed infor-
mation, as for species identification (Swanson et al. 2015). 
When a volunteer detects a young on his/her photograph, 
he or she could be prompted with comprehensive keys to 
age juvenile from its morphology along with a set of refer-
ence pictures or drawings. In general, however, we would 
recommend to ask citizen scientists to identify newborns, i.e. 
individuals under one month of age versus other juveniles. 
To identify newborns of bovid species with horns like in our 
study, volunteers would have to look for the smallest indi-
viduals, with no evidence of bud horns, with specific coat 
color (e.g. darker coat color in Grant’s gazelle in our study, or 
lighter coat color in wildebeest) or even with umbilical cord 
remnants. One difficulty is to adapt the different criteria to 
the every species studied.

We finally suggest evaluating volunteers’ classifica-
tion skills by presenting them with images of individu-
als of known age (captive or tagged animals for instance) 
and assessing their accuracy compared to labels provided 
by experts. Volunteers could then be assigned classifica-
tion tasks adapted to their skills (e.g. species identification 
would belong to the easiest tasks, whereas age classifica-
tion would belong to the hardest). Snapshot Safari and 
Zooniverse continue to create new modes of annotation 
that best leverage the public’s interest in contributing to 
research, and this is a logical next step for the Snapshot 
Safari initiative. Overall, we find that by closely investigat-
ing the data already collected by volunteer-based programs, 
data collection procedures can be adjusted to enhance the 
contributions of citizen scientists to scientific research and 
conservation efforts.

Data availability statement

Pictures available from the Labelled Image  
Library of Alexandria – Biology and Conservation:  
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<http://lila.science/datasets/snapshot-serengeti> and data 
from the Zenodo Repository: 10.5281/zenodo.4639695.
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