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ABSTRACT.—Determining a species’ geographic range is important for conservation planning, yet this
information is lacking for many raptors. In rapidly changing environments, defining current and predicting
future distributions can help define priority areas for monitoring and research. The Laggar Falcon (Falco
jugger) is a rare and understudied raptor resident across the Indian subcontinent, categorized as Near
Threatened, with populations potentially in rapid decline. Using a Species Distribution Modelling framework
we update current distribution and predict future distribution based on two future climate change scenarios
for 2050. Our current distribution model had high predictive accuracy, and defined core areas of high climatic
suitability in western India and southeastern Pakistan. Three bioclimatic variables contributed 79.9% to model
prediction: mean temperature of the wettest quarter (50.1%), precipitation seasonality (17.6%), and
precipitation in the driest month (12.2%). Projecting our model into climate change scenarios for 2050
resulted in up to 6% mean gain in suitable climate space for a lower emission scenario, but a 5% mean loss in
suitable climate by 2050 in a high emissions scenario. All future predictive models showed similar
multidirectional range movements within the current predicted core range. Based on these results, Laggar
Falcon distribution may not be adversely affected by climate change. We recommend directed population
surveys and monitoring based on current model predictions of areas of highest climate suitability, which are
likely where Laggar Falcons will persist into the near future. Regular monitoring and research will enhance our
knowledge for this raptor, while contributing further data to improve our model predictions.

KEY WORDS: Laggar Falcon; Falco jugger; climate change; conservation planning; raptor distributions; species
distribution modelling.

RESTRICCIONES CLIMÁTICAS EN LA DISTRIBUCIÓN DE FALCO JUGGER PREDICEN MOVIMIENTOS
DE RANGO MULTIDIRECCIONALES BAJO ESCENARIOS DE CAMBIO CLIMÁTICO FUTURO

RESUMEN.—Determinar el rango geográfico de una especie es importante para planificar su conservación; sin
embargo, este tipo de información no está disponible para muchas aves rapaces. En ambientes que cambian
rápidamente, definir la distribución actual y predecir la distribución futura de estas aves puede ayudar a
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definir las áreas prioritarias para monitoreo e investigación. Falco jugger es una especie rara y poco estudiada
que reside a lo largo del subcontinente indio. Está categorizada como Casi Amenazada, dado que sus
poblaciones están disminuyendo rápidamente. Usando un enfoque de modelos de distribución de especies,
actualizamos la distribución actual y predecimos la distribución futura basados en dos escenarios de cambio
climático para el 2050. Nuestro modelo de distribución actual tuvo una alta precisión predictiva, y definió
áreas núcleo de alta conveniencia climática en el oeste de India y el sudeste de Pakistán. Tres variables
bioclimáticas contribuyeron en un 79.9% a la predicción del modelo: temperatura media del trimestre más
húmedo (50.1%), estacionalidad de las precipitaciones (17.6%) y precipitaciones del mes más seco (12.2%).
La proyección de nuestro modelo en los escenarios de cambio climático para el 2050 resultó en una ganancia
media de hasta un 6% en espacio climático adecuado para un escenario de bajas emisiones y en una pérdida
media del 5% en el espacio climático adecuado para un escenario de altas emisiones. Todos los modelos
predictivos futuros mostraron movimientos del área de distribución multidireccionales similares dentro del
área de distribución núcleo actual predicha. Basado en estos resultados, la distribución de F. jugger puede no
verse afectada negativamente por el cambio climático. Recomendamos censos poblacionales directos y
monitoreo basados en las predicciones actuales del modelo de áreas de mayor conveniencia climática, que
son las áreas dónde F. jugger probablemente persistirá en un futuro cercano. El monitoreo y la investigación
periódicos aumentará nuestro conocimiento sobre esta rapaz al mismo tiempo que aportará datos que
permitirán mejorar las predicciones de nuestros modelos.

[Traducción del equipo editorial]

Identifying current and future species’ distribu-
tions is a key element for planning management
strategies and assessing conservation status in a
rapidly changing environment (Miller 2010, Lawler
et al. 2011). However, assessing geographic ranges of
rare and understudied species can be problematic
due to scarcity of available data, resulting in limited
information for use by conservation managers
(Pearce and Boyce 2006). Species Distribution
Models (SDMs) can overcome deficiencies in distri-
butional data by correlating the underlying environ-
mental data from known occurrences and predicting
to areas of highest environmental suitability based
on the similarity to environmental conditions of
known occurrence points (Scott et al. 2002, Pearce
and Boyce 2006, Elith and Leathwick 2009). For
example, SDMs can be used to direct survey efforts
to find new populations of known species (Raxwor-
thy et al. 2003), define protected areas and potential
reintroduction sites (D’Elia et al. 2015, Bennett et al.
2017), and predict future effects of climate change
(Aryal et al. 2016). Most traditional atlas range maps
are too vague to direct action to specific areas within
a species’ distribution (Rodrı́guez et al. 2007). SDMs
can provide a more focused approach for current
and future climate scenarios, enabling targeted long-
term management to core areas of highest environ-
mental suitability where the focal species is most
likely to occur currently and into the future.

Climate change is predicted to reduce the amount
of suitable climate space for many narrow climate-
adapted taxa, resulting in poleward latitudinal and

upslope altitudinal range shifts (Walther et al. 2002,
Parmesan and Yohe 2003, Chen et al. 2011). The
predicted effects of increasing temperatures are
most likely to affect bird species at higher latitudes
or elevations, where poleward and upslope eleva-
tional range shifts with increased temperatures are
predicted to be higher than at lower latitudes and
elevations (Sxekercioğlu et al. 2008, Sodhi et al. 2011,
Freeman et al. 2018). Conversely, within the tropics,
where precipitation may be the most important
determinant of avian distributions (Pearce-Higgins
and Green 2014), climate change may not necessar-
ily result in poleward range shifts but in multidirec-
tional shifts in suitable climate space (VanDerWal et
al. 2013).

The predicted effects of climate change are thus
unclear for species such as the Laggar Falcon (Falco
jugger), which occupies a restricted range of arid
climatic conditions within tropical and subtropical
open habitats such as deserts, steppes, and savannas
(Naoroji 2006). This species is a medium-sized
raptor within the sub-genus Hierofalco, along with
other congeneric ‘‘desert falcons’’: Gyrfalcon (Falco
rusticolus), Lanner Falcon (Falco biarmicus), and
Saker Falcon (Falco cherrug; Nittinger et al. 2007).
The Laggar Falcon has an Indo-Malayan distribution
from southeastern Iran and Afghanistan in the west,
across the Indian subcontinent to Myanmar in the
east (Ferguson-Lees and Christie 2005, Naoroji
2006). Therefore, the distribution of the Laggar
Falcon straddles the Tropic of Capricorn and
extends into the Tropical zone across lower eleva-
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tions. This falcon is regarded as a climatic semi-
specialist, adapted to arid and semi-arid climates
(Naoroji 2006, Finlayson 2011), from sea level up to
1000 masl in open, sparsely wooded landscapes with
an estimated Extent of Occurrence (EOO) covering
4.2 million km2 (Ferguson-Lees and Christie 2005,
BirdLife International 2016). However, current
distribution maps lack detail (BirdLife International
2016), resulting in a significant knowledge gap for
defining current distribution and extrapolating to
future areas of highest climatic suitability.

The Laggar Falcon is the least known of all the
Hierofalcons (Cade 1982). Indeed, a recent review
found that the species has been the subject of only
four peer-reviewed studies, compared to 102 for
Gyrfalcon, 70 for Saker Falcon, and 41 for Lanner
Falcon (Buechley et al. 2019). Currently, Laggar
Falcon populations are thought to be declining
rapidly, and the species is categorized as Near
Threatened on the IUCN Red List, due to increased
pesticide use and incidental trapping for the
falconry trade (BirdLife International 2016). Al-
though not straightforward, predicting where future
suitable climate space will exist for Laggar Falcons
might assist long-term conservation management for
this species.

With reliable distribution estimates based on
climatic variables, the effect of climate change on
Laggar Falcon populations can be assessed, and
conservation actions implemented to assist in
species management. Further, an initial assessment
of climatic factors influencing Laggar Falcon distri-
bution will highlight climatic constraints, and
provide fundamental biogeographical information
for the species. Our study aimed to increase
understanding of the biogeographical constraints
on distribution of the Laggar Falcon for use within
conservation actions and management. The specific
research objectives were to: (1) update current
distribution for the Laggar Falcon and define core
areas of climatic suitability, (2) determine the key
climatic constraints that explain these distributions,
and (3) predict future distribution under various
climate change scenarios. Specifically, we expect
range size of the Laggar Falcon to contract and shift
multidirectionally in line with future climate change
projections.

METHODS

Laggar Falcon Occurrence Data. Presence-only
occurrence data for the Laggar Falcon were sourced
from the Global Raptor Impact Network (GRIN; The

Peregrine Fund 2018), an information system
containing data for all raptor species. For Laggar
Falcons, GRIN contains occurrence data from the
Global Biodiversity Information Facility (2019),
which mostly consist of eBird records (89.5%,
Sullivan et al. 2009). GRIN also contains three
records of Laggar Falcon nests collected by the
authors (SK and RS). We cleaned occurrence data by
removing duplicate records and those with no
georeferenced location. To account for spatial
autocorrelation, sampling bias, and clustering in
the occurrence points, we selected a spatial filter of
10 km from each occurrence point to minimize the
effects of over-sampling in highly surveyed areas,
using the ‘‘thin’’ function in the R package SPTHIN
(Aiello-Lammens et al. 2015). The relatively coarse
thinning distance of 10 km was chosen based on the
environmental heterogeneity of the study area, and
high potential of sampling bias from citizen science
datasets (Beck et al. 2013). Spatial filtering by
removing clustered occurrence points reduces mod-
el over-fitting, minimizes omission errors, and
improves model predictive performance (Kramer-
Schadt et al. 2013, Boria et al. 2014, Radosavljevic
and Anderson 2014), and performs better than
other spatial bias correction methods (Fourcade et
al. 2014).

We measured spatial autocorrelation in occur-
rence data using Global Moran’s I index on an
inverse Euclidean distance matrix projected into
Albers Equal Area for India. Moran’s I is an index
ranging from �1 to þ1, with values closer to zero
indicating no spatial autocorrelation, negative values
indicate negative spatial autocorrelation, and posi-
tive values indicating positive spatial autocorrela-
tion. We measured spatial clustering using Nearest
Neighbor Index (NNI) in the R package SPATIA-
LECO (Evans 2017) with a convex hull window. NNI
is the ratio of the observed distance divided by the
expected distance between neighbors in a hypothet-
ical random distribution. NNI values ,1 indicate
spatial clustering, values .1 indicate random dis-
persion, and those closer to 2 indicate regular
dispersion.

Climatic Predictors. Bioclimatic data for current
distributions were obtained from WorldClim (ver-
sion 1.4), generated through interpolation of
average monthly weather station climate data from
1960 to 1990 (Hijmans et al. 2005). We used solely
climatic predictors, rather than other topographical
or habitat variables, as an indication of changing
climatic conditions assuming all else remains equal.

MARCH 2020 3REVISED LAGGAR FALCON DISTRIBUTION

Downloaded From: https://complete.bioone.org/journals/Journal-of-Raptor-Research on 16 Apr 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Although there are many factors that affect species’
distributions, reliable SDMs for future changes in
distribution can only be developed based on future
climate model predictions. At present we are unable
to predict how habitat will change by 2050 but there
are a suite of future global climate change models
that can be used to make predictions based on
current climate constraints. Further, at broad scales
examined in this study, climate is viewed as the main
driver of species’ distributions and thus bioclimatic
predictors are the most appropriate variables to use
(Pearson and Dawson 2003). We cropped raster
layers �78 over the extent of Laggar Falcon
occurrences using a delimited polygon. This im-
proves model predictive power by defining the full
range of suitable environmental conditions across
the known range of the Laggar Falcon (Lawler et al.
2011) and reducing the background area used for
testing points used in model evaluation (Radosavl-
jevic and Anderson 2014).

Multicollinearity between environmental predic-
tor variables can bias models by overrepresenting the
biological relevance of correlated variables (Franklin
2009). Before model construction, we tested all 19
bioclimatic variables for multicollinearity using
Variance Inflation Factor (VIF) analysis (Guisan et
al. 2006, Hair et al. 2006) in the R package USDM
(Naimi et al. 2014). VIF is based on the square of
multiple correlation coefficients, regressing a single
predictor variable against all other predictors. VIF
tests can detect hidden correlations in predictors not
always apparent in pair-wise correlations. VIF .10
indicates collinearity in the variables; thus, we used a
stepwise elimination of highly correlated variables,
retaining predictors with a more stringent VIF
threshold of ,5 (see Table S1 in Supplemental
Materials, available online), considered as suitable
for multivariable correlation (Dormann et al. 2013).
We then checked the remaining variables for
collinearity using Pearson’s Correlation Coefficient,
with only variables r ¼ j0.7j retained for consider-
ation as predictors. After removing highly correlated
variables, we included eight bioclimatic variables as
predictors (mean diurnal temperature range, iso-
thermality, mean temperature wettest quarter, mean
temperature driest quarter, precipitation driest
month, precipitation seasonality, precipitation
warmest quarter, precipitation coldest quarter), at
a spatial resolution of 2.5 arc-min (approximately 4.5
km2 resolution at the equator).

We based final predictor selection on representing
seasonal climatic trends, extremes, and limiting

environmental factors strongly related theoretically
and empirically to species’ distributions (Stockwell
2006, Reineking et al. 2016, Bradie and Leung
2017), and specifically to distributions of vagile bird
species in arid environments (Reside et al. 2010).
Because current knowledge of Laggar Falcon biolo-
gy is limited, we selected predictors known to affect
avian distributions in arid environments (Sutton and
Puschendorf 2018). We selected mean diurnal
temperature range as an important predictor for
diurnal species in arid environments because vari-
ability in daily temperatures likely affects avian
survival and population viability (Briga and Verhulst
2015). In arid and semi-arid ecosystems, rainfall
regime and seasonality is predicted to have a strong
effect on avian survival, food availability, and
reproductive effort (Winterbottom and Rowan
1962, Dean et al. 2009). We thus selected predictors
reflecting seasonal and monthly extremes of precip-
itation interacting with temperature as potential
limiting factors on Laggar Falcon distribution based
on existing knowledge from other arid environment
avian species (Gargett et al. 1995, Zann et al. 1995,
Illera and Diaz 2006, Dean et al. 2009, Cavalcanti et
al. 2016).

For future predictions, we used four General
Circulation Models (GCMs) from the Coupled
Model Inter-comparison Project Phase 5 (CMIP5)
to predict Laggar Falcon distributions for two future
climate scenarios in 2050 (averaged over the time
period 2041–2060): INMCM4 (Institute of Numeri-
cal Mathematics Climate Model, v4.0, Volodin et al.
2010), MIROC5 (Model for Interdisciplinary Re-
search on Climate, v5, Watanabe et al. 2010), MPI-
ESM-LR (Max Planck Institute Earth System Model
Low Resolution, Giorgetta et al. 2013), and Nor-
ESM1-M (Norwegian Earth System Model, Bentsen
et al. 2013). We selected four GCMs to account for
variation in model outputs, and any uncertainty in
single model predictions (Lutz et al. 2016), with all
four GCMs predicting future climate for south Asia
well (Mishra et al. 2014, Sharmila et al. 2015). We
aimed to select a representative choice of the least
interdependent climate models spanning the spec-
trum of variability in future climate change predic-
tion (Sanderson et al. 2015). Data were downloaded
from the WorldClim database (version 1.4, Hijmans
et al. 2005) for two different CMIP5 greenhouse gas
concentration scenarios or Representative Concen-
tration Pathways (RCPs, Meinshausen et al. 2011):
RCP4.5 (lower emissions), and RCP8.5 (high emis-
sions). RCP 4.5 represents CO2 concentrations
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stabilizing to 650 ppm by 2100 without exceeding
that value (Thomson et al. 2011), and RCP 8.5
corresponds to CO2 concentrations of 993 ppm to
2150 (Meinshausen et al. 2011) or ‘‘business as
usual’’ (Riahi et al. 2011).

Species Distribution Models. We fitted SDMs using
a maximum entropy machine-learning algorithm,
MAXENT (version 3.3.3k, Phillips et al. 2006).
MAXENT uses presence-background data, and is a
high-performing SDM algorithm, more accurate
than other SDM methods, even at low sample sizes
(Gibson et al. 2007, Duan et al. 2013, Elith et al.
2006, Wisz et al. 2008). MAXENT correlates envi-
ronmental variables underlying species occurrences
against a random sample of background environ-
mental conditions. Over-fitting in complex models is
reduced by using L1-regularization (b, Hastie et al.
2005), further reducing bias in correlated predictor
variables (Phillips and Dudı́k 2008, Elith et al. 2011).
Within the MAXENT software, we selected logistic
output as a continuous index of climate suitability,
with 0 ¼ low suitability and 1 ¼ high climatic
suitability. We used default model parameters for
generated background absences (10,000) and con-
vergent threshold (10�5), and increased iterations to
5000 from the default 500 allowing for model
convergence.

Optimal-model selection was based on Akaike’s
Information Criterion (Akaike 1974) corrected for
small sample sizes (AICc, Hurvich and Tsai 1989) to
determine the most parsimonious model from two
key MAXENT parameters: regularization multiplier
and feature classes (Warren and Seifert 2011).
Tuning MAXENT parameters smooths response
curves, limits sampling bias, and reduces over-fitting
in presence-only predictions (Merow et al. 2013,
Radosavljevic and Anderson 2014). Forty-eight can-
didate models of varying complexity were built by
comparing a range of regularization multipliers
from 0.5 to 4.0 in 0.5 increments, and five feature
classes (Linear, Quadratic, Hinge, Product, Thresh-
old) in all possible combinations using the ‘‘block’’
method of cross-validation (k ¼ 5) within the
ENMEVAL package in R (Muscarella et al. 2014).
Block partitioning masks the geographical structure
of the data according to latitude and longitude lines,
dividing all occurrences into four spatially indepen-
dent bins of equal numbers. By masking the
geographical structure of test-data, the models are
projected onto an evaluation region not included in
the calibration process. All occurrence and back-
ground test points are assigned to their respective

bins dependent on location, thus further reducing
spatial autocorrelation between testing and training
localities (Muscarella et al. 2014, Radosavljevic and
Anderson 2014). We chose the block method as our
preferred data-partitioning method, because we are
transferring model predictions in time where there
is a high possibility of encountering no-analog
climate conditions.

Model Evaluation. We evaluated model perfor-
mance within ENMEVAL using both threshold-
independent and threshold-dependent measures
(Radosavljevic and Anderson 2014). Area Under
the Curve (AUC) of the Receiver Operating Char-
acteristic plot (ROC) (Hanley and McNeil 1982), is a
nonparametric, threshold-independent measure
representing an overall value of model performance
across all thresholds (Peterson et al. 2011), with
AUC ¼ 1.0 being the maximum predictive perfor-
mance, and an AUC ¼ 0.5 being no better than a
random prediction (Fielding and Bell 1997). AUC
values .0.9 are considered of high predictive
accuracy (Franklin 2009), though a moderate AUC
value .0.7 is deemed viable for conservation
planning (Pearce and Ferrier 2000, de Carvalho et
al. 2017). Further, to quantify any over-fitting
present in the models, AUCDIFF (AUCTRAIN �
AUCTEST) was also used to measure predictive
performance (Muscarella et al. 2014). This value is
expected to be close to zero in low over-fitted models
(Warren and Seifert 2011). Two threshold-depen-
dent measures were employed based on omission
rates from two threshold rules: minimum training
presence (MTP) and 10% training presence
(10%TP) omission rate thresholds. Omission rates
report the proportion of training points that are
outside of the model when converted into a binary
prediction. Omission rates evaluate discriminatory
ability and over-fitting at specified thresholds.
Overall lower omission rates show improved dis-
crimination between suitable and unsuitable areas
(indicating higher performance), while over-fitted
models show higher omission rates than expected by
theory (Radosavljevic and Anderson 2014). There-
fore, for models with low over-fitting the expectation
in MTP is a value close to zero and for 10%TP a value
close to 0.10.

AUC has been criticized as a measure of model
performance for presence-background SDMs (Lobo
et al. 2008, Jiménez-Valverde 2012). Therefore, we
tested our final model prediction against random
expectations using partial ROC (pROC), which
estimates model performance by giving precedence
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to omission errors over commission errors (Peterson
et al. 2008). We set function parameters with a 10%
omission error rate, and 1000 bootstrap replicates
on 50% test data to determine significant (a¼ 0.05)
pROC values .1.0 in the R package ENMGADGETS
(Barve and Barve 2013). Further, we used the null
model approach from Raes and ter Steege (2007),
which calculates 95% AUC Confidence Intervals
(CI) on a frequency histogram, randomly drawing
points without replacement on 999 replicate models
under the same environmental parameters used in
our best-fit model. With fitted 95% CI AUC values,
we assessed whether our model accuracy was
significantly higher than expected by chance (P ,

0.05). We used continuous Boyce index (B) as a
second threshold-independent evaluation metric on
the final model prediction (Hirzel et al. 2006,
Ramı́rez-Albores et al. 2016). B measures how much
climate suitability predictions differ from a random
distribution of observed presences across the pre-
dictive maps (Boyce et al. 2002). It is consistent with
a Spearman correlation (rs) with values of B ranging
from�1 toþ1, with positive values indicting climatic
suitability predictions consistent with observed
presences, and values closer to zero no different
than a random model, and negative values indicat-
ing areas with frequent presences having low
climatic suitability. B evaluation was used on all
presence data points split into 80% training
(BTRAIN), 20% testing (BTEST), plus a measure of
over-fitting in the final models (BDIFF). B was
calculated using the default settings in the ECO-
SPAT package in R (Di Cola et al. 2017), with a
moving window for threshold-independence and 10
defined bins. Final continuous predictive maps used
all the occurrence data points to achieve the highest
predictive accuracy for estimating distribution
(Fielding and Bell 1997, Fehérvári et al. 2012).
Lastly, we used a jack-knife test to estimate variable
performance within the optimal calibration model
by excluding each value, then developing the model
with a sole variable to determine percentage
contribution and regularized training gain of each
environmental variable to model performance.

For future predictive models, we calculated pair-
wise niche overlap metrics for all continuous
MAXENT predictions to quantify how predictions
from the four GCMs differ in geographic space using
Schoener’s D (Schoener 1968, Warren et al. 2008),
and the I similarity statistic (Warren et al. 2008).
Both statistics range from 0 (no overlap) to 1
(identical predictions), with Schoener’s D focusing

on niche similarity between habitats, whereas the I
similarity statistic uses Hellinger distances that carry
no biological assumptions but solely compares the
probability distributions. Future continuous predic-
tions were reclassified as binary presence/absence
predictions to calculate future climate space and aid
interpretation, with a 10% TP threshold to deter-
mine the number of incorrect occurrences with
environmental conditions. We chose 10%TP as a
suitable threshold for a small sample of presence-
only occurrences to reject the lowest 10% of
predicted values accounting for any uncertainty in
the occurrence data (Pearson et al. 2007). Further,
using 10%TP in MAXENT models generally main-
tains a higher proportion of presences correctly
predicted by artificially reducing sample size (Pear-
son et al. 2007), with improved predictive ability if a
10%TP threshold is set. Model development, GIS
analysis, and predictive maps were built in R (version
3.5.1, R Core Team 2018) using the DISMO
(Hijmans et al. 2017) and RASTER (Hijmans 2016)
packages.

RESULTS

Laggar Falcon Occurrence Data. A total of 171
Laggar Falcon geo-referenced records were sourced
from the GRIN database for inclusion in model
calibration. Cleaned occurrence data were spatially
autocorrelated (Moran’s I¼ 0.750, P � 0.001). After
applying the 10-km spatial filter, spatial autocorrela-
tion was reduced (Moran’s I ¼ 0.504, P � 0.001),
resulting in 115 filtered occurrence records for use
in the calibration models. Cleaned occurrence data
showed spatial clustering (NNI¼ 0.482, z¼�12.969,
P � 0.001), with clustering moving towards random
dispersion after applying the 10-km spatial filter
(NNI¼ 0.630, z¼�7.587, P � 0.001).

Species Distribution Models. We selected the
MAXENT feature class parameters Linear, Quadrat-
ic, Hinge, and a regularization multiplier of b ¼ 2
based on the optimal-model output from all 48
candidate models (DAICc ¼ 0.0, wi ¼ 0.673). All
evaluation metrics from the block five-fold cross-
validation mean test data had high predictive
performance (AUCTRAIN ¼ 0.882, AUCTEST ¼
0.802), with low over-fitting and good discrimination
ability (AUCDIFF ¼ 0.080, MTP ¼ 0.089, 10%TP ¼
0.220). Our best-fit model had significantly higher
accuracy than expected by chance, placed within the
highest 5% against 999 null models (P , 0.05).
Testing our final predictive model against a random
expectation resulted in a high mean pROC value of
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1.716 (60.082, range 1.432–1.929, P � 0.01). Boyce
index values in the final model prediction showed
high positive correlation between predicted climatic
suitability and presence training (BTRAIN ¼ 0.963)
and test occurrence points (BTEST ¼ 0.911), with
low over-fitting (BDIFF ¼ 0.052), demonstrating well-
calibrated models.

Current Distribution. The current continuous
predictive map using all occurrence data was
consistent with the known distribution of the Laggar
Falcon, but also predicted new areas with high
climate suitability, and a core range centered in west-
central India and southeastern Pakistan (Fig. 1, S1 in
Supplemental Materials, available online). In India,
Gujarat and Rajasthan had highest climatic suitabil-
ity, including most of the Thar desert and extending

into western Madhya Pradesh. Further high climate
suitability was also indicated along a narrow coastal
strip of the Western Ghats from Gujarat, through the
provinces of Maharashtra and Goa and into north-
ern Karnataka. We also identified small pockets of
high climate suitability in southern India outside of
the current known range for the Laggar Falcon: the
Kurnool and Mahbubnagar regions in west-central
Andhra Pradesh (Fig. 1). In Pakistan, highest
climate suitability was identified in the southern
half of Sind province, bordering similar areas of high
climate suitability in Gujarat and Rajasthan in India.

Environmental Predictors. The distribution of the
Laggar Falcon was most associated with mean
temperature of the wettest quarter (BIO8), which
contributed the highest percentage to model predic-

Figure 1. Predicted distribution model for the Laggar Falcon. Final predictive map using all occurrence data for
increased accuracy. Map denotes continuous logistic prediction with hotter red areas (values closer to 1) having higher
climatic suitability. White filled circles indicate known Laggar Falcon occurrences. Continuous Boyce index (B) using 20%
test data: BTEST¼ 0.911.
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tion (50.1%, Table 1), followed by precipitation
seasonality (BIO15, 17.6%), and precipitation during
the driest month (BIO14, 12. 2%, Table 1). The
remaining climate predictors all contributed ,6% to
model prediction. Response curves to climate vari-
ables demonstrated pronounced thresholds for
Laggar Falcon climate suitability (Fig. 2). Mean
temperature in the wettest quarter plateaued at a
climate suitability of 30–408C, with suitable condi-
tions of mean temperature in the driest quarter
ranging from 10–158C. Precipitation in both the
warmest and coldest quarters, and in the driest
month had highest climate suitability at zero rainfall,
though Laggar Falcons can tolerate a higher level of
seasonal precipitation of between 15–25 mm. Mean
diurnal temperature range was high, peaking at 158C,
reflecting the mainly arid environments the falcons
inhabit, with high variation in day-night tempera-
tures. Jack-knife tests of variable importance showed
that mean temperature in the wettest quarter, and
precipitation seasonality had the highest regularized
training gain (Fig. 3). Mean temperature in the
wettest quarter had the highest gain when used in
isolation, and so had the most useful information on
suitable climatic conditions when used alone. Iso-
thermality had the lowest decrease in gain when
omitted, and therefore has the most information that
is not present in the other variables to explain the
climatic niche of the Laggar Falcon.

Future Distributions. Predicted future distribu-
tions varied spatially among GCMs in where suitable
climate space will exist in 2050 for Laggar Falcons,
with wide variation among GCMs in estimated gain
and loss of future suitable climate space. All future
Laggar Falcon distributions from the four GCMs
showed multidirectional shifts in both RCP scenar-
ios, especially in the high emissions scenario, but

with highest climate suitability still centered in
Gujarat and Rajasthan in India and Sind, Pakistan
(Fig. 4, 5). Niche overlap metrics showed high
geographic overlap among all GCM predictions in
both emission scenarios (Table 2). Future binary
distributions for 2050 based on the 10% training
presence threshold rule and two different climate
scenarios averaged over the four GCMs, showed a
mean gain of þ6.0% (SE ¼ 8.0%) to 2,096,160 km2

(SE¼158,513.4 km2) of suitable climate space in the
RCP 4.5 scenario, and a mean reduction of 5.0% (SE
¼ 8.5%) to 1,880,017 km2 (SE ¼ 167,620.4 km2) of
suitable climate space in the RCP 8.5 scenario (Table
3, Fig. S2, S3 in Supplemental Materials, available
online), compared to the current predicted suitable
climate space of 1,978,070 km2.

DISCUSSION

The geographic range of a species is a fundamen-
tal unit within biogeography (Brown et al. 1996),
with SDMs having significant potential to make key
contributions to spatial conservation planning (Law-
ler et al. 2011, Guisan et al. 2013). Our predictive
distribution models for the Laggar Falcon demon-
strated a core range in western India and southeast-
ern Pakistan, consistent with an abundant center
distribution (Andrewartha and Birch 1954, Brown et
al. 1995), though use of only climatic variables may
oversimplify complex biogeographical patterns (Dal-
las et al. 2017). Climatic suitability for the Laggar
Falcon is highest in the center of its range, becoming
less suitable towards range edges, defining priority
areas for conservation management actions. Model
predictive performance was high using a range of
evaluation metrics and explained fundamental
information on the climatic constraints on Laggar
Falcon distribution across the Indian subcontinent.

Table 1. Percent contribution for bioclimatic variables used as environmental predictors in species distribution model for
the Laggar Falcon. All temperature variables in 8C and precipitation variables in mm.

CODE BIOCLIMATIC VARIABLE PERCENT CONTRIBUTION

BIO8 Mean temperature wettest quarter 50.1
BIO15 Precipitation seasonalitya 17.6
BIO14 Precipitation driest month 12.2
BIO9 Mean temperature driest quarter 5.8
BIO3 Isothermalityb 5.3
BIO19 Precipitation coldest quarter 5.0
BIO18 Precipitation warmest quarter 3.1
BIO2 Mean diurnal temperature range 0.9

a Defined as mean diurnal temperature range/temperature annual range*100.
b Coefficient of variation. Standard deviation of monthly precipitation estimates expressed as a percentage of the mean estimate.
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Figure 2. Response curves for each environmental variable model used as predictors in distribution model for the Laggar
Falcon.
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Predicted future distributions under two climate
change scenarios demonstrated multidirectional
range changes in suitable climatic space of up to
6% expansion in a lower carbon emissions scenario
and up to 5% contraction for a high carbon
emissions scenario. The SDMs given here for a rare
and poorly understood species accurately predict
current and estimate future areas of highest climatic
suitability where management actions should be
given precedence.

Revised Current Distribution. Our current distri-
bution model updates previous distribution maps
for the Laggar Falcon (Ferguson-Lees and Christie
2005, Naoroji 2006, Nittinger 2007, BirdLife Inter-
national 2016), and captures the spatial complexity
in the distribution of this rare raptor. According to

Figure 3. Variation in regularized training gain for
climatic predictors from a species distribution model for
the Laggar Falcon using a jack-knife test of variable
importance. Light gray bars represent regularized gain
without the variable and dark gray bars represent regular-
ized gain with only the one variable. All temperature
variables (8C) and precipitation variables (mm).

Figure 4. Predicted distribution in 2050 for the Laggar Falcon using four General Circulation Models (GCMs) under a
low carbon emissions scenario (RCP4.5). Maps denote continuous logistic prediction with hotter red areas (values closer to
1) having higher climatic suitability.
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our analysis, Gujarat and Rajasthan in India and
southern Sind in Pakistan are the three regions
containing the most suitable climatic conditions. We
recommend Gujurat, Rajasthan, and Sind as high
priority areas for population surveys and regular
monitoring, but also recommend exploratory sur-
veys into the Western Ghats and west-central Andhra
Pradesh. At present there are no known conserva-
tion actions underway for the Laggar Falcon (Bird-
Life International 2016); thus, based on these
models we recommend establishing surveys and
monitoring Laggar Falcon populations in the
priority areas described above. We focused solely
on climatic conditions but recognise that our
models have limitations. Distribution model predic-
tions at this scale would likely be improved by

including topographical predictors (Meineri and
Hylander 2017), along with biotic interactions with
potential competitors such as the Red-necked
Falcon (Falco chicquera), distribution of prey resourc-
es (Wisz et al. 2013), and human pressures (Engler
et al. 2017). Future modelling efforts should
examine these other possible drivers of Laggar
Falcon distribution. However, diagnostics revealed
that our models perform well, despite omission of
other potentially important variables.

Climatic Constraints. Defining climatic variables
that drive distributions is important in the context of
designing management plans that adapt to current
and future climate scenarios (Prato 2012). Our
model response curves and jack-knife tests clearly
identify those key climatic characteristics that define

Figure 5. Predicted distribution in 2050 for the Laggar Falcon using four General Circulation Models (GCMs) under a
high carbon emissions scenario (RCP8.5). Maps denote continuous logistic prediction with hotter red areas (values closer
to 1) having higher climatic suitability.
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the distribution of Laggar Falcons. This species can

tolerate high mean temperatures above 308C during

the wettest quarter, but this tolerance decreases to a

mean of 108C during the driest quarter, suggesting a

link between optimal seasonal temperature and

precipitation. Though Laggar Falcons can withstand

variable levels of seasonality in precipitation up to 25

mm, they generally prefer areas with zero or low

rainfall in seasonal or monthly predictions, as

expected from a species adapted to a semi-arid

environment. Laggar Falcons have a broad tolerance

of up to 158C in both mean diurnal temperature

range and isothermality, which points toward distri-

bution being influenced by large temperature

fluctuations on a daily and monthly basis relative
to the year.

Future Distributions. Climate change is expected
to alter distributions of many bird species globally
(Huntley et al. 2006), though responses of individual
species will likely vary dependent on current status,
location, and species’ ecology (Møller et al. 2006).
As expected, our future distribution models predict
multidirectional range shifts in suitable climate
space. Unexpectedly, suitable climatic conditions
may expand 6% by 2050, but with a 5% contraction
by 2070. However, there was high variation in the
predicted amount of suitable future climate space
among GCMs, though all were consistent in main-
taining future suitable climate space in areas similar

Table 2. Niche overlap test metrics for continuous prediction maps for the Laggar Falcon using low (RCP4.5) and high
(RCP8.5) emissions climate change scenarios from four General Circulation Models (GCMs).

SCENARIO METRIC GCM

GENERAL CIRCULATION MODEL (GCM)

INMCM4 MIROC5 MPI-ESM-LR NORESM1-M

RCP4.5 D INMCM4 *
MIROC5 0.838 *
MPI-ESM-LR 0.851 0.875 *
NorESM1-M 0.872 0.905 0.901 *

I INMCM4 *
MIROC5 0.976 *
MPI-ESM-LR 0.981 0.984 *
NorESM1-M 0.986 0.989 0.990 *

RCP8.5 D INMCM4 *
MIROC5 0.869 *
MPI-ESM-LR 0.848 0.876 *
NorESM1-M 0.852 0.889 0.883 *

I INMCM4 *
MIROC5 0.983 *
MPI-ESM-LR 0.976 0.983 *
NorESM1-M 0.979 0.986 0.985 *

Table 3. Change in suitable future climate space for the Laggar Falcon using low (RCP4.5) and high (RCP8.5) emissions
climate change scenarios from four General Circulation Models (GCMs).

SCENARIO GCM FUTURE AREA (km2) GAIN OR LOSS (km2) % GAIN OR LOSS

RCP4.5 INMCM4 2,502,241 þ524,171.40 þ26.50
MIROC5 1,749,365 �228,704.80 �11.56
MPI-ESM-LR 1,981,100 þ3030.17 þ0.15
NorESM1-M 2,151,933 þ173,863.20 þ8.79
Mean 2,096,160 þ118,090.00 þ5.97

RCP8.5 INMCM4 2,293,929 þ315,858.60 þ15.97
MIROC5 1,586,677 �391,393.20 �19.79
MPI-ESM-LR 2,010,151 þ32,081.36 þ1.62
NorESM1-M 1,629,312 �348,758.00 �17.63
Mean 1,880,017 �98,052.81 �4.96
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to the current core range. Laggar Falcons currently
face multiple threats, although our models indicate
climate change may not significantly affect popula-
tions. However, because of the small sample size
used for our analysis, we urge caution in dismissing
the threat of climate change for this species. Our
results demonstrate how individual species may
respond differently to changing climate, and that
species-specific SDMs need to be calibrated follow-
ing current best practice to effectively predict future
distributions (Hijmans and Graham 2006, Elith et al.
2010). Using a range of future climate projections
from multiple GCMs can account for any variation in
future predictions, providing more realistic projec-
tions of future range shifts (Sanderson et al. 2015).

Recommendations for Monitoring. By identifying
areas of optimal climate, monitoring and conserva-
tion efforts can be focused to track changes in
population levels associated with environmental and
climate change (Brown et al. 1995). However, we
recognize that our analyses are based on relatively
few occurrence samples, and thus may not capture
the full suite of suitable environmental conditions
(Sagarin and Gaines 2002). Therefore, where
possible we recommend future sampling from across
the entire geographic range of the Laggar Falcon,
along with exploratory surveys into areas of highest
environmental suitability. These data can then be
fed back into our models, enabling more accurate
range maps, and quantification of environmental
constraints on distribution. Increasing the number
of Laggar Falcon occurrence records within GRIN
and establishing a network of field observers would
be an initial first step in this process. With enhanced
model predictions and niche quantification, we
would have increased confidence in conservation
actions such as recommending protected areas.

Climate envelope models have developed rapidly
over the past 10 years and have shown their value as
analytical tools in conservation biology (Pearson and
Dawson 2003, Araújo and Peterson 2012). Our
models accurately predict the current distribution
of Laggar Falcons while also identifying climatic
constraints and predicting future range shifts. We
demonstrate that using online biodiversity data
within a presence-only SDM framework can predict
current distribution accurately and identify key
biogeographical constraints to distribution. We
further show that projecting current predictions
into future climate change scenarios can yield useful
results when applied in a robust modelling method-
ology. Globally, the most pressing research need for

raptors is determining population trends (McClure
et al. 2018), and the Laggar Falcon is no exception.
This study should inform future monitoring efforts
by refining the known distribution of the species and
identifying areas predicted to experience changes in
population levels within the next few decades.

SUPPLEMENTAL MATERIALS. Table S1. Selected
bioclimatic variables used as predictors with VIF
scores.

Figure S1. Projected distribution into core area
of highest suitability in Gujarat and Rajasthan, India,
and Sind, Pakistan.

Figure S2. .Reclassified binary predictive maps
using 10% training threshold under a low carbon
emissions scenario (RCP 4.5).

Figure S3. Reclassified binary predictive maps
using 10% training threshold under a high carbon
emissions scenario (RCP 8.5).
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