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Applications
in Plant Sciences

Vandenboschia speciosa (Willd.) G. Kunkel (Hymenophylla-
ceae) is a Macaronesian-European fern that has been considered 
one of the most vulnerable plant species in continental Europe, 
being protected under both the Bern Convention and the Habitats 
Directive (Anonymous, 1979, 1992). Both phases of its life cycle 
(sporophyte and gametophyte) are perennial and are capable of 
vegetative propagation, with extensive clonal development of ei-
ther generation; therefore, independent sporophyte and gameto-
phyte populations are usual throughout its distribution (Rumsey 
et al., 1998a). A differential geographic distribution exists be-
tween the two phases, with the gametophyte being more widely 
distributed than the sporophyte. Sporophyte populations are re-
stricted to the European Atlantic coast and the Macaronesian Is-
lands, in places considered shelters during the Quaternary glacial 
cycles, while gametophyte populations occur also in continental 
Northern Europe and Central Europe (Rumsey et al., 2005 [and 
references therein]). This property of V. speciosa raises questions 

about its biogeographic history (e.g., the refugial status of its 
populations, especially the Northern and Central European ones), 
as well as crucial implications for the conservation strategies of 
the species (e.g., how much genetic diversity do the gametophyte 
populations harbor in relation to the sporophyte ones?). These 
questions can be answered from a population genetics approach.

Earlier studies on the population genetics of V. speciosa have 
used allozymes as molecular markers and, although with low 
resolution, they have contributed to an understanding of the 
current distribution of V. speciosa (Rumsey et al., 1996, 1998b, 
1999, 2005). Because V. speciosa is a tetraploid species (Manton, 
1950; Manton et al., 1986), the allozyme banding patterns were 
coded as phenotypes in all the cited studies, thus decreasing 
further the resolution capacity of the allozymes. The aim of this 
paper is to develop a suite of microsatellite markers for V. spe-
ciosa to generate a highly informative evaluation of the genetic 
composition of its populations. To this end, 10 microsatellite 
markers were developed that will allow the genetic diversity 
and population structure of V. speciosa to be assessed through-
out its distribution.

METHODS AND RESULTS

Genomic DNA was extracted from fresh fronds of V. speciosa from four 
samples of the population Canuto de Ojén Quesada (COQ), Cádiz Province, 
Andalusia, Spain (voucher deposited at the herbarium of the Universidad de 
Granada [GDA]: GDA 61589; georeference: 36.12794°N, 5.58523°W) using 
the NucleoSpin Plant Kit (Macherey-Nagel GmbH & Co. KG, Düren, Ger-
many). A final solution with 2 μg of total genomic DNA was created pooling 
ca. 400 ng of DNA from each sample. Microsatellite loci were isolated by 
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•	 Premise of the study: We characterize 10 microsatellite loci in the endangered fern Vandenboschia speciosa (Hymenophylla-
ceae), enabling studies on the genetic population structure of this Macaronesian-European species using DNA hypervariable 
markers.

•	 Methods and Results: Ten primer sets were developed and tested on 47 individuals in a total of two Iberian populations of  
V. speciosa. The primers amplified di- and hexanucelotide repeats. The number of alleles ranged from two to eight, and the 
expected heterozygosity ranged from 0.107 to 0.807 among the populations analyzed.

•	 Conclusions: The 10 microsatellite markers developed will be useful in characterizing the genetic diversity of V. speciosa and 
understanding its population structure (including the possible structure between sporophyte and gametophyte phases) and  
biogeographic history, and will provide important genetic data for the conservation of this species.

Key words: endangered fern; Hymenophyllaceae; microsatellite markers; population genetics; Vandenboschia speciosa.
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taBle 1. Characteristics of 10 microsatellite loci developed in Vandenboschia speciosa.

Locus Primer sequences (5′–3′)a Repeat motif
Allele size  
range (bp) Bet (M) MgCl2 (mM) Ta (°C)

EMBL  
accession no.

VS-CA1-55 F: TTGGGAAGTCCCTCATGATT (AG)10(GAAAT)4 240–258 0.5 5 55 LN864472
R: GCGGCTCTTGGAAGACAATA

VS-CONS12 F: CAACCATAGCCACACCAACA (CTACAT)11 233–247 0.5 3.75 52 LN864473
R: TCAAGCAAACCAACAAACCA

VS-CONS162 F: TTGATGTCATGCATCCAACC (GA)10 107–111 0.5 3.75 50 LN864474
R: CATTCCCTCCTCATCTCACC

VS-GA76 F: GCATGCACACGAGCTTGTG (TC)14(AC)14 99–115 0.5 2.75 50 LN864475
R: ATGCATATAAATCAATAGAC

VS-GA87 F: GTGGGCATTACACATTCT (TC)23 189–207 0.5 3.75 55 LN864476
R: GAGTCTCCTTGACATACC

VS-GT0D8-1 F: CAACCTCCCCCATTGTTTTA (AG)8 208–212 0.5 3.75 50 LN864477
R: GGGTCCCCGACTGACTTTAT

VS-GXSPQ-2 F: TGAGTTGCTTGTGGATGAGG (AT)6(GT)10(GC)4(GT)3 164–174 0.5 3.75 58 LN864478
R: TTTCTTTTAGGGCCCTTTGG

VS-HG1NJ F: AACAAAGTCAAATTTATGTCCCA (TC)10 145–147 0 2.5 50 LN864479
R: TCATATTAATGCCATGCCCA

VS-HKPD7 F: ACATGATCTCACAACAGTCCTCT (CT)6 207–209 0.5 3.75 50 LN864480
R: GCCCAATTTCCAGTTTCCTT

VS-HM60O-1 F: TCAAGCGATGATAGAGGGCTA (AC)10 213–227 0.5 2.5 45 LN864481
R: TCCACCTTGATGACCTAATTGA

Note: Bet = optimal betaine concentration; EMBL = European Molecular Biology Laboratory; MgCl2 = optimal magnesium chloride concentration; Ta = 
annealing temperature.

a Forward primer sequence and allele size range do not include the M13-tail sequence.

GenoScreen (Lille, France) through 454 GS FLX Titanium pyrosequencing of 
enriched DNA libraries, following the methodology in Malausa et al. (2011). 
Genomic DNA was mechanically fragmented and probed for microsatellite re-
peats (AG, AC, AAC, AGG, ACG, AAG, ACAT, ATCT). Amplified and puri-
fied PCR products of the enriched fragments were used to construct GS FLX 
libraries following manufacturer’s protocols (Roche Diagnostics, Penzberg, 
Germany) and sequenced on a GS FLX PicoTiterPlate (454 Life Sciences, a 
Roche Company, Branford, Connecticut, USA). The bioinformatics program 
QDD (Meglécz et al., 2010) was used to analyze the raw sequences, select the 
sequences with target microsatellites, and perform primer design. A total of 
6484 sequences comprising microsatellite motifs were retrieved, and 158 
primer pairs were designed for sequences longer than 100 bp with at least five-
repeat microsatellite loci and tandem-repetition-free flanking regions.

For validation tests, 82 primer pairs were used for amplification in eight 
DNA samples of V. speciosa from two populations: COQ and Azketa Erreka 
(AZK), Gipuzkoa Province, Basque Country, Spain (voucher deposited at 
GDA: GDA 61588; georeference: 43.19458°N, 1.94015°W). Forward prim-
ers were synthesized with M13 tails (5′-CACGACGTTGTAAAACGAC-3′) 
preceding the 5′ end to facilitate cost-efficient fluorescent labeling of PCR 
products. DNA was isolated as above and PCR optimizations were performed 
by testing different magnesium chloride (MgCl2) concentrations and by modi-
fying the range of annealing temperatures. PCR reactions were performed in 
10-μL reactions containing 10 ng of genomic DNA, 0.02 μM of the M13- 
labeled forward primer, 0.45 μM of each reverse primer and fluorolabeled 
M13 primer (5′-6FAM, 5′-HEX), 2–5 mM MgCl2, 0.5 mM dNTPs, 0−0.5 M 
Betaine, 1 μL Biotools 10× Reaction Buffer, and 0.5 units of Biotools DNA 
polymerase (Biotools B&M Laboratories S.A., Madrid, Spain). Cycling param-
eters consisted of 3 min of denaturing at 94°C; followed by 35 cycles of 
94°C for 1 min, 45−60°C for 1 min, and 72°C for 45 s; and a final extension 
at 72°C for 20 min. PCR products were analyzed with GeneScan 500 LIZ 
Size Standard (Applied Biosystems, Foster City, California, USA) on an ABI 
3100-Avant Genetic Analyzer (Applied Biosystems) at the Centro de Instru-
mentación Científica at the Universidad de Granada (Granada, Spain). Micro-
satellite data were analyzed with GeneMarker version 1.51 (SoftGenetics, 
State College, Pennsylvania, USA). Of the 82 microsatellite markers tested, 
47 gave a positive signal on electrophoretic gels; of these, 16 yielded an am-
biguous allelic pattern, 21 were monomorphic, and 10 were polymorphic with 
easily interpretable electropherograms. The characteristics of the 10 polymor-
phic loci are shown in Table 1.

Genetic diversity of the selected loci was assessed by genotyping (as above) 
a total of 47 individuals of the two aforementioned populations (17 from AZK, 

30 from COQ). Data were analyzed with the software GenoDive version 2.0b24 
(Meirmans and Van Tienderen, 2004). In total, 41 unique multilocus genotypes 
were identified (AZK: 14, COQ: 27) by using the Assign Clones function and 
the Stepwise Mutation Model for calculating the interindividual distances in 
GenoDive. The distance threshold allowed between two individuals to be con-
sidered clones with the same multilocus genotype was 2 bp (selected after in-
spection of the distance histogram). The total clonal diversity (Meirmans and 
Van Tienderen, 2004) was 0.990 (AZK: 0.971, COQ: 0.991; intrapopulation 
average: 0.981). The average number of alleles per locus was 4.5 (AZK: 3.6, 
COQ: 2.9). Loci VS-CONS162, VS-HG1NJ, and VS-GT0D8-1 were mono-
morphic in COQ. Heterozygosity was only analyzed considering genets, on the 
basis of the unique multilocus genotypes identified, and applying the correction 
for unknown dosage of alleles as in GenoDive. The expected heterozygosity 
across all the populations analyzed was 0.523 (AZK: 0.523, COQ: 0.328; intra-
population heterozygosity: 0.415). The values for allele number and heterozy-
gosity for each locus and population are shown in Table 2.

CONCLUSIONS

The 10 microsatellite markers developed in this study will 
enable population genetics studies of V. speciosa throughout its 
distribution. These microsatellites will help to assess the clonal-
ity level in both mixed and independent sporophyte and game-
tophyte populations, the genetic diversity, and population and/
or between-phase genetic structure. These population genetic 
data will be useful for improved management of populations of 
this endangered species. Moreover, future studies using these 
10 microsatellite markers will allow questions about the bio-
geographic history of V. speciosa to be tested, such as the refu-
gial status of its populations. Our results in this study show two 
sporophyte populations in the Iberian Peninsula—considered a 
glacial refuge (Bennett et al., 1991)—to be moderately diverse 
(AZK in the north being more diverse than COQ in the south), 
which contrasts with the lack of genetic diversity detected 
within Northern and Central European populations using allo-
zyme markers (Rumsey et al., 1998b, 1999, 2005).
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