

# Polymorphic SSR Markers for Plasmopara obducens (Peronosporaceae), the Newly Emergent Downy Mildew Pathogen of Impatiens (Balsaminaceae)

Authors: Salgado-Salazar, Catalina, Rivera, Yazmín, Veltri, Daniel, and Crouch, Jo Anne

Source: Applications in Plant Sciences, 3(11)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1500073

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.



PRIMER NOTE

## POLYMORPHIC SSR MARKERS FOR *PLASMOPARA OBDUCENS* (PERONOSPORACEAE), THE NEWLY EMERGENT DOWNY MILDEW PATHOGEN OF *IMPATIENS* (BALSAMINACEAE)<sup>1</sup>

CATALINA SALGADO-SALAZAR<sup>2,3</sup>, YAZMÍN RIVERA<sup>2,3</sup>, DANIEL VELTRI<sup>2,4</sup>, AND JO ANNE CROUCH<sup>2,5</sup>

<sup>2</sup>USDA-ARS, Systematic Mycology and Microbiology Laboratory, Beltsville, Maryland 20705 USA; <sup>3</sup>Rutgers University, Department of Plant Biology and Pathology, New Brunswick, New Jersey 08901 USA; and <sup>4</sup>Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, Tennessee 37831 USA

- Premise of the study: Simple sequence repeat (SSR) markers were developed for Plasmopara obducens, the causal agent of the newly emergent downy mildew disease of Impatiens walleriana.
- Methods and Results: A 202-Mb draft genome assembly was generated from P. obducens using Illumina technology and mined to identify 13,483 SSR motifs. Primers were synthesized for 62 marker candidates, of which 37 generated reliable PCR products. Testing of the 37 markers using 96 P. obducens samples showed 96% of the markers were polymorphic, with 2–6 alleles observed. Observed and expected heterozygosity ranged from 0.000–0.892 and 0.023–0.746, respectively. Just 17 markers were sufficient to identify all multilocus genotypes.
- *Conclusions:* These are the first SSR markers available for this pathogen, and one of the first molecular resources. These markers will be useful in assessing variation in pathogen populations and determining the factors contributing to the emergence of destructive impatiens downy mildew disease.

**Key words:** de novo assembly; high-throughput marker identification; ornamental impatiens; *Plasmopara obducens*; population genetics; simple sequence repeats.

Downy mildew is a newly emergent disease of *Impatiens* walleriana Hook. f. (impatiens; Balsaminaceae), a high-value, flowering annual plant contributing \$105 million annually to the horticulture industry in the United States alone. This destructive disease threatens the cultivation of impatiens worldwide (Brasier, 2008). In 2011, widespread outbreaks of impatiens downy mildew (IDM) disease were observed for the first time in the United States, affecting plants grown in greenhouses, nurseries, and landscapes (e.g., Wegulo et al., 2004; Baysal-Gurel et al., 2012; Palmateer et al., 2013; Crouch et al., 2014). Similar disease outbreaks have been reported through the United Kingdom, continental Europe, and Australia (e.g., Lane

<sup>1</sup>Manuscript received 24 June 2015; revision accepted 23 July 2015.

Funding was provided by the 2013–2015 U.S. Department of Agriculture– Animal and Plant Health Inspection Service (USDA-APHIS) Farm Bill 10201 and 10007 Programs and USDA–Agricultural Research Service (USDA-ARS); D.V. is supported through the USDA-ARS Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the USDA, managed under DOE contract number DE-AC05-06OR23100. We are grateful to Ed Ismaiel for technical assistance and Sonja Sheffer and Matt Lewis for the use of the ABI 3730xl instrument. All opinions expressed in this paper are the author's and do not necessarily reflect the policies and views of USDA, ARS, DOE, or Oak Ridge Associated Universities (ORAU)/ORISE. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer.

<sup>5</sup>Author for correspondence: Joanne.Crouch@ars.usda.gov

doi:10.3732/apps.1500073

et al., 2005; Cunnington et al., 2008; Toppe et al., 2010). The causal agent of IDM, *Plasmopara obducens* (J. Schröt.) J. Schröt., is one of many obligate biotrophic plant pathogens in the Oomycota (Chromalveolata, Heterokontophyta) afflicting numerous economically important plants around the world (Kamoun et al., 2015). Impatiens infected with *P. obducens* are quickly defoliated, and death occurs within weeks of disease onset. Infected plants cannot be cured, and the pathogen might be capable of persisting in the soil from one season to the next.

Despite the global impact of IDM on cultivated impatiens, there is currently no information about pathogen population structure or the factors that led to the epidemics, delaying the development of effective mitigation strategies (Plantegenest et al., 2007). Downy mildew pathogens engage in classic gene-for-gene interactions with their hosts during the infection process, producing fast-evolving elicitor molecules that in turn give rise to diverse physiological races varying in their ability to infect a given plant (e.g., Lebeda and Cohen, 2011). As such, knowl-edge of pathogen variability provides key information required to develop durable host disease resistance. In this study, we developed 37 simple sequence repeat (SSR) markers from the genome of *P. obducens* to support investigations of population diversity, and demonstrate the utility of these markers in a sample of 96 *P. obducens* collected throughout the United States.

## METHODS AND RESULTS

Genomic DNA from *P. obducens* sample H12.14-11 (Appendix 1) was extracted from a sporangial mass using the OmniPrep DNA Kit (G-Biosciences, St. Louis, Missouri, USA) following manufacturer's instructions, then purified

Applications in Plant Sciences 2015 3(11): 1500073; http://www.bioone.org/loi/apps © 2015 Salgado-Salazar et al. Published by the Botanical Society of America. This article is a U.S. Government work and is in the public domain in the USA.

| Locus    | Primer sequences $(5'-3')$                                                      | Repeat motif <sup>a</sup> | Observed<br>allele size (bp) | $T_{\rm a}$ (°C) | N  | A 1     | H <sub>o</sub> E | r <sub>e</sub> PIC | GenB<br>C accessio   | ank<br>on no. | BLAST top hit<br>description [organism] <sup>b</sup>                                               |
|----------|---------------------------------------------------------------------------------|---------------------------|------------------------------|------------------|----|---------|------------------|--------------------|----------------------|---------------|----------------------------------------------------------------------------------------------------|
| Pob52    | F: ACAGGAATTCATCGGCTCAA                                                         | $(TTA)_5$                 | 222–234                      | 65               | 59 | 2 0.    | 695 0.4          | .86 0.48           | 35 KP70 <sup>2</sup> | 4220 P        | redicted polyprotein                                                                               |
| Pob1601  | K: TAAUAUGAGUTTGUTTGUTGUC<br>F: CTGCCCTGACTGACCTTGTC<br>D. memmmenemenemaaanoo  | (TTC) <sub>5</sub>        | 142-148                      | 65               | 87 | 3 0.    | 023 0.0          | 23 0.02            | 22 KP70 <sup>2</sup> | 4221 C        | [ <i>rnytophthora myestans</i> ]<br>Conserved hypothetical protein                                 |
| Pob1861  | F: CTCAGAGTTCCTCCGTCTGG                                                         | (CTA) <sub>5</sub>        | 266–275                      | 65               | 48 | 2 0.    | 042 0.0          | 80 0.0             | 79 KP704             | t222 T        | [ <i>Enytoputtor parastitca</i> ]<br>KL protein kinase                                             |
| Pob2171  | K: GACTTTGAGGATCCAUGAGU<br>F: AAGCTTGCTAGACGAGGCAG                              | (GAC) <sub>5</sub>        | 250-262                      | 65               | 89 | 3 0.    | 640 0.5          | 08 0.50            | )8 KP70              | 4223 P        | [Phytophthora parastitica]<br>redicted crinkler (CRN) family protein                               |
| Pob2497  | F: CACGAGCACCACCAGCATAGIA<br>F: CGAGGAGAACAAGCACAACA<br>P: ZZCTTCGZZZZAGCACAACA | (GAA) <sub>5</sub>        | 260-272                      | 65               | 75 | 3 0.    | 013 0.1          | 14 0.1             | 14 KP70              | 4224 F        | [ <i>Fnytophthora injestans</i> ]<br>Jypothetical protein PHYSODRAFT_502025<br>[Phytophtora soida] |
| Pob2739  | F: CIGCTICTCCTGCTTGCTCT                                                         | (GGA) <sub>5</sub>        | 286–289                      | 65               | 47 | 2 0.    | 000 0.0          | 81 0.08            | 31 KP70 <sup>2</sup> | 4225 F        | lypothetical protein F443_14337                                                                    |
| Pob2910  | R: TCAAAGCCAAGGATACCCAC<br>F: GATCTTAGGCGTCATCCACG                              | (GTAT) <sub>5</sub>       | 165–169                      | 65               | 71 | 2<br>0. | 718 0.4          | 75 0.47            | 75 KP70              | 4226 F        | [Phytophthora parasitica]<br>Jypothetical protein F441_23092                                       |
| Pob2933  | R: CATTIGTCCACGCTACCCTT<br>F: CTTCGACAGGATCTGCAACA                              | (AGA) <sub>5</sub>        | 219–228                      | 65               | LL | 2 0.    | 403 0.3          | 22 0.32            | 22 KP70 <sup>2</sup> | 4227 F        | [Phytophthora parasitica]<br>lypothetical protein L915_15226                                       |
| Pob3024  | R: GGCCCATGCACTTGTAAAAT<br>F: TCGTGCCATCTCTGCATAAG                              | (TTC) <sub>5</sub>        | 292–295                      | 65               | 71 | 2 0.    | 549 0.4          | 43 0.4             | 43 KP702             | 4228 R        | [Phytophthora parasitica]<br>teverse transcriptase                                                 |
| Pob3075  | R: AAGACGAGGAGGATGGACGTG<br>F: CCTCATTCTTCGGTCTGAGC                             | $(CCG)_7$                 | 269–275                      | 65               | 79 | 2 0.    | 570 0.4          | 18 0.4             | 18 KP70              | t229 C        | [Phytophthora sojae]<br>conserved hypothetical protein                                             |
| Pob3197  | R: CTAGTGTCGGAACGCACGTA<br>F: GACGTTTTCTCCTGCTCGTC                              | (TTC) <sub>5</sub>        | 266                          | 58               | 35 | -       | '                | 1                  | - KP704              | t230 F        | [Phytophthora infestans]<br>lypothetical protein L915_01983                                        |
| Pob3896  | R: CAGCCATAAATATCCGGCCAT<br>F: GGACGACAATGAAGAAATGGA                            | (CGA) <sub>5</sub>        | 280–295                      | 64               | 72 | 3 0.    | 069 0.1          | 67 0.10            | 57 KP70-             | 4231 F        | [Phytophthora parasitica]<br>Jypothetical protein L915_17322                                       |
| Pob4176  | R: CTGAAATTGACGCTGTGCAT<br>F: AAAAGCTTTGCCGCTCATTA                              | $(AAT)_5$                 | 210-222                      | 65               | 49 | 2 0.    | 041 0.0          | 40 0.0             | 40 KP704             | 4232 F        | [Phytophthora parasitica]<br>Iypothetical protein PPTG_05406                                       |
| Pob4357  | R: GGCGGGCTCTTGTGATAATA<br>F: GCAATGGCAAGAAAGAGGAG                              | (TGG),                    | 266–272                      | 63               | 81 | 3<br>0. | 741 0.4          | 83 0.48            | 33 KP702             | t233 P        | [Phytophthora parasitica]<br>redicted crinkler (CRN) family protein                                |
| Poh4700  | R: GATTTAGCCAAACGCGTGAT<br>F: TACCCACTGTCAATCCAGCA                              | (TTC)                     | 257-269                      | 65               | 82 | 4       | 073 0.5          | 03 0.50            | 13 KP704             | 1234 F        | [Phytophthora infestans]<br>[Vnothetical protein F443 20714                                        |
| Pob5097  | R: TGCAGATGCACTAAACGAGG<br>F: CCACCCGATTCTGGTATGTC                              | (GCA)                     | 237–249                      | 65               | 74 | 4 v     | 270 0.5          | 69 0.50            | 69 KP70              | 1235 F        | [ <i>Phytophthora parasitica</i> ]<br>[Vbothetical protein F441 16564                              |
| Pob5487  | R: GGACGCTTCCACACGTTAAT<br>F: TTTGGGAAATCGACTCTTGG                              | (CTT) <sub>5</sub>        | 272–284                      | 59               | 70 | 5 0.    | 100 0.3          | 76 0.37            | 76 KP70              | 4236 F        | [Phytophthora parasitica]<br>Iypothetical protein F442_04463                                       |
| Pob5494  | R: TTGCGGGATTAATGGAAGAG<br>F: CTGCAACCAGGGGTTCTTTTC                             | (TAT)₅                    | 285–303                      | 65               | 78 | 5 0.    | 103 0.2          | 25 0.23            | 25 KP702             | t237 R        | [ <i>Phytophthora parasitica</i> ]<br>teverse transcriptase                                        |
| Pob5875  | R: GAGACGTCCCAGCTCGTTAG<br>F: GGTTCGGCAGTCGTAGAAAG                              | (CTT),                    | 221–230                      | 65               | 68 | 3       | 074 0.0          | 90°0 66            | 90 KP70              | t238 C        | [Phytophthora sojae]                                                                               |
| Pob6030  | R: GATGTTTGACGTGGATGTGC<br>F: CCTTCTTTCTGTGCTACGCC                              | (TTC) <sub>5</sub>        | 220-229                      | 65               | 82 | 2       | 341 0.2          | 83 0.28            | 33 KP704             | 4239 F        | [Phytophthora infestans]<br>Iypothetical protein PHYSODRAFT_                                       |
| Pob7328  | R: GTCTCGAGTTTCCAAGCGAC<br>F: GCTTTAGCTGTTCGCTACGG                              | (AGA),                    | 137–155                      | 64               | 74 | 4       | 892 0.5          | 07 0.5(            | 17 KP70              | 1240 F        | 519760 [Phytophthora sojae]<br>[vpothetical protein F443 0318]                                     |
| Pob7989  | R: GGCTTTCTCGTGTCTTCGTC<br>F: AAGGAGATGGACGAGAGACCCT                            | (AAG) <sub>6</sub>        | 202                          | 63               | 8  | -       |                  | 1                  | - KP70               | 4241 F        | [Phytophthora parasitica]<br>[ypothetical protein F444_13637                                       |
| Pob8649  | R: TITITCTTCTTGTCGTCGCC<br>F: TGGATCCATTCTCCGTCGG                               | (TCG) <sub>5</sub>        | 159–174                      | 65               | 78 | 3 0.    | 603 0.4          | 25 0.42            | 25 KP70 <sup>2</sup> | 1242 F        | [Phytophthora parasitica]<br>lypothetical protein PPTG_04971                                       |
| Pob10169 | R: TAATGCCAATTCGTGCACAT<br>F: TCAGATAGCCTTCCCCCTTT                              | $(GAC)_7$                 | 293                          | 65               | 64 | -       |                  |                    | - KP70               | t243 F        | [Phytophthora parasitica]<br>Jypothetical protein L915_12540                                       |
| Pob11069 | R: TAACACCAGCGTAGCGATTG<br>F: CAACATCCACCATTAGCGTG                              | (CTT) <sub>5</sub>        | 188-200                      | 65               | 80 | 5 0.    | 563 0.5          | 01 0.50            | 11 KP70              | 1244 F        | [Phytophthora parasitica]<br>Jypothetical protein F441_08549                                       |
| Pob11700 | R: GGTGGTGTGTCCTCCTTAGC<br>F: CATCGACAAAGAGTGGCTCA                              | (AAT) <sub>6</sub>        | 272–299                      | 65               | 74 | 5 0.    | 541 0.7          | 46 0.7             | 46 KP702             | t245 P        | [Phytophthora parasitica]<br>redicted carbon-nitrogen hydrolase                                    |
| Pob11993 | R: CCAGCAAATAATCCAGGTCC<br>F: CGACAGTTGGATGCAAACAC<br>R: AATTTCTTGGCTTCTGCTGC   | (TTA) <sub>5</sub>        | 208-217                      | 65               | 69 | 2 0.    | 072 0.0          | 70 0.0             | 70 KP704             | 1246 F        | [Phytophthora infestans]<br>[ypothetical polyprotein<br>[Phytophthora infestans]                   |

http://www.bioone.org/loi/apps

TABLE 1. Characteristics of the 37 novel genomic SSR loci developed for Plasmopara obducens.

Downloaded From: https://complete.bioone.org/journals/Applications-in-Plant-Sciences on 26 Apr 2024 Terms of Use: https://complete.bioone.org/terms-of-use

|          |          |                                                |                                 | Observed             |                  |         |        |            |             |           | GenBank        | BLAST top hit                                       |
|----------|----------|------------------------------------------------|---------------------------------|----------------------|------------------|---------|--------|------------|-------------|-----------|----------------|-----------------------------------------------------|
| Locus    |          | Primer sequences $(5'-3')$                     | Repeat motif <sup>a</sup>       | allele size (bp)     | $T_{\rm a}$ (°C) | Ν       | A      | $H_{ m o}$ | $H_{\rm e}$ | PIC       | accession no.  | description [organism] <sup>b</sup>                 |
| Pob12309 | Б        | : GCCAAGTCGGCAATATCTGT                         | (AGT) <sub>5</sub>              | 270–282              | 65               | 74      | 4      | 0.257      | 0.605       | 0.605     | KP704247       | Conserved hypothetical protein                      |
|          | Ц        | : TTTGACAACAGGTGACCCAA                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora infestans]                            |
| Pob14678 | Бц<br>сс | : GTCTACCACCAGACGCCAAC                         | (GTC) <sub>5</sub>              | 208–220              | 65               | 78      | 0      | 0.397      | 0.318       | 0.318     | KP704248       | Conserved hypothetical protein                      |
|          | Ц        | : GCAAAGTGAAGAGGGGTGC                          |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora infestans]                            |
| Pob21005 | Ē        | : GTGTACACCACCTGAACCCC                         | (TCTTGTCTCCAGC) <sub>4</sub>    | 134–163              | 65               | 88      | 0      | 0.670      | 0.489       | 0.489     | KP704249       | Hypothetical protein PPTG_07274                     |
|          | Ц        | : GTTCAGGTCCTTGGCAATGT                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora parasitica]                           |
| Pob29057 | Ē        | : CGACCAGGGAGTCCAAGATA                         | (GTT) <sub>5</sub>              | 251–260              | 65               | 83      | 0      | 0.325      | 0.272       | 0.272     | KP704250       | Hypothetical protein L914_08176                     |
|          | Ц        | : GGAGGCAGAAGAAAGTGCTG                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora parasitica]                           |
| Pob33638 | Бц       | : CGCTTCCTTCTTCTCCT                            | $(CTT)_{10}$                    | 166–196              | 65               | 50      | 9      | 0.280      | 0.486       | 0.486     | KP704251       | Hypothetical protein PHYSODRAFT_353608              |
|          | Ц        | : GACGAAACGGAAGACGAAAA                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora sojae]                                |
| Pob36128 | Бц       | : AGATTGGCCTTGCGACTCTA                         | $(ATTTA)_{5}$                   | 198–214              | 65               | 47      | 3      | 0.021      | 0.102       | 0.102     | KP704252       | Hypothetical protein H257_19342                     |
|          | Ц        | : TGGCTGAGGCTAAGACGCT                          |                                 |                      |                  |         |        |            |             |           |                | [Aphanomyces astaci]                                |
| Pob47245 | ы        | : ACCCGAGATAGACGTTGTCG                         | $(GAAA)_5$                      | 262–274              | 62               | 58      | 0      | 0.431      | 0.338       | 0.338     | KP704253       | Hypothetical GK15001 protein                        |
|          | Ц        | : CTTGTGACCCCTGTTCACCT                         |                                 |                      |                  |         |        |            |             |           |                | [Albugo laibachii]                                  |
| Pob48178 | ы        | : CGGATAAGTACGCAACCGAT                         | (CGA) <sub>9</sub>              | 214–226              | 65               | LL      | с<br>С | 0.831      | 0.553       | 0.553     | KP704254       | Di-trans, poly cis-decaprenylcistransferase         |
|          | Ц        | : TGGCTACAGTTGTGAGTCGC                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora parasitica]                           |
| Pob52381 | Ē        | : ATGAGACGACGGTCGAGACT                         | $(AAG)_6$                       | 173-179              | 65               | 70      | 0      | 0.714      | 0.459       | 0.459     | KP704255       | Hypothetical protein PPTG_06711                     |
|          | Ц        | : CACCGTCCTTTTCTTCTTGC                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora parasitica]                           |
| Pob60359 | Ei<br>G  | : TGGAATCTGGAGGACTGACC                         | (ATA) <sub>5</sub>              | 200–203              | 65               | 70      | 0      | 000.0      | 0.459       | 0.459     | KP704256       | Hypothetical protein F444_17394                     |
|          | Ц        | : TTCCTGCACATGCAATCTTC                         |                                 |                      |                  |         |        |            |             |           |                | [Phytophthora parasitica]                           |
| Note: A: | = nu     | mber of alleles; $H_e = \text{expected heter}$ | $xygosity; H_0 = observed hett$ | erozygosity; $N = n$ | umber of i       | solates | that p | ositivel   | / amplifi   | ed; PIC = | = polymorphism | information content; $T_a =$ annealing temperature. |

<sup>2</sup> Putative identifications based on BLASTN and BLASTX searches of the NCBI GenBank nonredundant database (threshold *E*-value = 1.0E-06)

http://www.bioone.org/loi/apps

Salgado-Salazar et al.-Plasmopara obducens SSRs

to the Zyno DNA Clean and Concentration Kr (Zyno Research, Ivine, Canfornia, USA). DNA was sheared to 600 bp using the Covaris M220 ultrasonicator (Covaris, Woburn, Massachusetts, USA), and then used to construct a library with the Illumina TruSeq DNA LT Sample Prep kit (Illumina, San Diego, California, USA). Library sequencing was conducted on an Illumina MiSeq instrument (Illumina) using 600-cycle sequencing cartridges, run as  $2 \times$ 300-bp paired-end reads. Reads were processed using CLC Genomics Workbench version 7.5.1 (CLC Bio, Boston, Massachusetts, USA), and a de novo assembly was performed after removal of adapters, indices, bases with lowquality scores (limit = 0.05), and runs of ambiguous bases >2 bp. The assembly measured 202 Mb, contained in 137,754 scaffolds (N50 = 1486), with an average depth of coverage of 120.76×.

Using PrimerPro version 1.0 (http://webdocs.cs.ualberta.ca/~yifeng/primerpro/), the *P. obducens* H12.14-11 genome assembly was mined for SSR motifs, screened for optimal PCR primer pairs, and BLASTN searched to ensure unique priming sites. Motif size search ranged from mono- to tridecanucleotides, with minimum repeat units set as follows: mononucleotides  $\geq$ 10; di-, tri-, tetra-, penta-, and hexanucleotides  $\geq$ 5; the remaining repeat motifs  $\geq$ 5. The genome assembly contained 13,483 SSR motifs. Dinucleotide repeats were the most abundant class, followed by mononucleotides and trinucleotides. SSRs averaged 17.4 bp in length, with 78% smaller than 21 bp. Repeats averaged 7.4 ± 4.15 units/SSR. SSR relative abundance (# SSRs/genome size [Mb]) was 66.9, and SSR density (combined length of SSRs [bp]/genome size [Mb]) was 1083.5.

From the set of candidate SSR loci suitable for marker development (e.g., those found as a single copy in the genome assembly, with repeat units of trinucleotide or greater, and unique priming sites), we identified loci that were heterozygous in the genome assembly of H12.14-11 by performing probabilistic variant detection using CLC Genomics, then visually inspecting candidate regions. Because P. obducens is an obligate biotroph and the H12.14-11 sporangial sample was collected directly from the surface of the host plant, candidate markers were further assessed by performing BLAST searches of the National Center for Biotechnology Information (NCBI) GenBank nonredundant (nr) database to ensure the sequences were not derived from the plant host or other environmental components. This filtering yielded 189 primer sets, from which 62 primer sets were tested for amplification using DNA extracted from P. obducens sporangial sample PA1-1 (Appendix 1). Twenty-five primer sets were discarded due to lack of amplification, or the production of stutter and/or multiple bands. The 37 remaining markers represented a wide variety of repeat motif and length (Table 1) and were located on 37 different contigs. All but three of the markers contained trinucleotide motifs. When tested on I. walleriana DNA, none of the markers produced an amplicon. The 37 microsatellite loci were used to perform BLAST searches against the NCBI GenBank database to determine putative functions, as summarized in Table 1. Sequence contigs containing microsatellite loci shared homology to predicted proteins of different oomycete plant pathogens (Table 1).

A total of 96 P. obducens samples collected between 2012 and 2014 from *I. walleriana* (n = 73) and from four additional *Impatiens* species (n = 23) at different localities in the United States were used for marker validation (Appendix 1). DNA was extracted from leaves visibly afflicted with downy mildew using the DNeasy Plant Kit (QIAGEN, Germantown, Maryland, USA). PCR amplifications were performed as described (Schuelke, 2000) in 10-µL volumes: 6.5 µL of 2× Mango Mix (Bioline Inc., Tauton, Massachusetts, USA), 1 µL of DNA (2-10 ng/µL), 7 µM of forward primer with 5' M13 tail, 13 µM of reverse primer, 7 µM of dye-labeled M13 (FAM, PET, VIC, NED), and 25 mM of MgCl<sub>2</sub>. Fragment sizing was performed by adding 1 µL amplicon to 9 µL of Hi-Di Formamide (Applied Biosystems, Carlsbad, California, USA) containing GeneScan 500 LIZ Size Standard (Applied Biosystems), denaturing at 95°C for 2 min, then injecting onto an ABI 3730xl DNA Analyzer (Applied Biosystems). Results were analyzed using GeneMarker version 2.6.3 (SoftGenetics, State College, Pennsylvania, USA); GenAlEx version 6.5 (Peakall and Smouse, 2012) was used to generate summary statistics. Allele frequencies were used to calculate polymorphism information content (PIC; Botstein et al., 1980).

Only three of the SSR markers (Pob3197, Pob7989, and Pob10169) were monomorphic across the 96 *P. obducens* samples. Marker Pob10169 could be amplified from just 8% of the *P. obducens* samples; therefore, the monomorphic data might be an artifact of the small sample size. The 34 polymorphic markers displayed 2–6 alleles, for a total of 104 alleles (Table 1). Observed heterozygosity ranged from 0.023-0.746 (mean = 0.355), while expected heterozygosity ranged from 0.022-0.746 (mean = 0.354), with 18 of the markers moderately informative (PIC > 0.40) and one marker highly informative (PIC > 0.70; Pob11700). Analysis in GenClone version 2.0

(http://www.ccmar.ualg.pt/maree/software.php?soft=genclon) showed that just 17 of the 37 SSR markers (45.9%) were sufficient to identify all multilocus genotypes.

## CONCLUSIONS

The oomycete *P. obducens* is one of many obligate biotrophic plant pathogens currently impacting the health of economically important plants worldwide. The SSR markers developed here are the first molecular resource available for *P. obducens*. The high level of polymorphism present in these markers will enhance efforts to monitor pathogen population genetic structure and diversity over time, trace source populations, and understand the role of pathogen physiological races on host susceptibility.

## LITERATURE CITED

- BAYSAL-GUREL, F., N. J. TAYLOR, J. CHATFIELD, AND S. A. MILLER. 2012. First report of impatiens downy mildew caused by *Plasmopara obducens* in Ohio. *Plant Disease* 96: 1699.
- BOTSTEIN, D., R. WHITE, M. SKOLNICK, AND R. DAVIS. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *American Journal of Human Genetics* 32: 314–331.
- BRASIER, C. M. 2008. The biosecurity threat to the UK and global environment from international trade in plants. *Plant Pathology* 57: 792–808.
- CROUCH, J. A., M. P. KO, AND J. M. MCKEMY. 2014. First report of impatiens downy mildew outbreaks caused by *Plasmopara obducens* throughout the Hawai'ian Islands. *Plant Disease* 98: 696.

- CUNNINGTON, J. H., R. ALDAOUD, M. LOH, W. S. WASHINGTON, AND G. IRVINE. 2008. First record of *Plasmopara obducens* (downy mildew) on impatiens in Australia. *Plant Pathology* 57: 371.
- KAMOUN, S., O. FURZER, J. D. G. JONES, H. S. JUDELSON, G. S. ALI, R. J. D. DALIO, S. G. ROY, ET AL. 2015. The top 10 oomycete pathogens in molecular plant pathology. *Molecular Plant Pathology* 16: 413–434.
- LANE, C. R., P. A. BEALES, T. M. O'NEILL, G. M. MCPHERSON, A. R. FINLAY, J. DAVID, O. CONSTANTINESCU, AND B. HENRICOT. 2005. First report of impatiens downy mildew (*Plasmopara obducens*) in the UK. *Plant Pathology* 54: 243.
- LEBEDA, A., AND Y. COHEN. 2011. Cucurbit downy mildew (*Pseudo-peronospora cubensis*)–Biology, ecology, epidemiology, host-pathogen interaction and control. *European Journal of Plant Pathology* 129: 157–192.
- PALMATEER, A. J., P. LOPEZ, T. E. SEIJO, AND N. A. R. PERES. 2013. Severe outbreak of downy mildew caused by *Plasmopara obducens* on *Impatiens walleriana* in Florida. *Plant Disease* 97: 687.
- PEAKALL, R., AND P. E. SMOUSE. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. *Bioinformatics* 28: 2537–2539.
- PLANTEGENEST, M., C. LE MAY, AND F. FABRE. 2007. Landscape epidemiology of plant diseases. *Journal of the Royal Society, Interface* 4: 963–972.
- SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.
- TOPPE, B., M. B. BRURBERG, A. STENSVAND, AND M. L. HERRERO. 2010. First report of *Plasmopara obducens* (downy mildew) on *Impatiens* walleriana in Norway. *Plant Pathology* 59: 800.
- WEGULO, S. N., S. T. KOIKE, M. VILCHEZ, AND P. SANTOS. 2004. First report of downy mildew caused by *Plasmopara obducens* on impatiens in California. *Plant Disease* 88: 909.

| Accession no. | Origin              | Host <sup>a</sup> | Collection date | Collector                    |
|---------------|---------------------|-------------------|-----------------|------------------------------|
| 1300252A      | Cattaraugus, NY     | I. walleriana     | 07/23/13        | G. Sphar, M. Daughtery       |
| 1300252F      | Cattaraugus, NY     | I. walleriana     | 07/23/13        | G. Sphar, M. Daughtery       |
| 1300272G      | Rockland, NY        | I. walleriana     | 07/16/13        | M. Formichelli, M. Daughtery |
| 1300315F      | Westchester, NY     | I. walleriana     | 08/04/13        | M. Formichelli, M. Daughtery |
| CA1-A         | Santa Clara Co., CA | I. walleriana     | 08/21/13        | Jane Trolinger               |
| CA1-B         | Santa Clara Co., CA | I. walleriana     | 08/21/13        | Jane Trolinger               |
| CA2-B         | Santa Clara Co., CA | I. walleriana     | 08/21/13        | Jane Trolinger               |
| CA3-A         | Santa Clara Co., CA | I. walleriana     | 08/21/13        | Jane Trolinger               |
| COL1          | Silver Spring, MD   | I. walleriana     | 2013            | Jo Anne Crouch               |
| CT1-A         | New Haven, CT       | I. walleriana     | 07/1/13         | Yonghao Li                   |
| CT1-C         | New Haven, CT       | I. walleriana     | 07/1/13         | Yonghao Li                   |
| CT1-F         | New Haven, CT       | I. walleriana     | 07/1/13         | Yonghao Li                   |
| CT1-G         | New Haven, CT       | I. walleriana     | 07/1/13         | Yonghao Li                   |
| DE1-6         | Frederick, MD       | I. balsamina      | 08/29/13        | Nina Shiskoff                |
| DE1-7         | Frederick, MD       | I. balsamina      | 08/29/13        | Nina Shiskoff                |
| DE1-I         | Frederick, MD       | I. balsamina      | 08/29/13        | Nina Shiskoff                |
| FL14A         | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL14B         | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL18          | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL23          | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL26          | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL33          | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL39C         | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL45          | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL49          | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| FL7           | Homestead, FL       | I. walleriana     | Winter 2013     | Aaron Palmateer              |
| H12.14-11     | Harbor Springs, MI  | I. walleriana     | 08/14/12        | Mary Hausbeck                |
| HI10-2        | Keneohe, HI         | I. walleriana     | 06/03/13        | Becky Azama                  |
| HI10-5        | Keneohe, HI         | I. walleriana     | 06/03/13        | Becky Azama                  |
| HI10-8        | Keneohe, HI         | I. walleriana     | 06/03/13        | Becky Azama                  |
| HI11-11       | Honolulu, HI        | I. walleriana     | 06/06/13        | Mann Ko                      |
| HI11-8        | Honolulu, HI        | I. walleriana     | 06/06/13        | Mann Ko                      |
| HI12-7        | Manoa, HI           | I. walleriana     | 06/19/13        | Christopher Lao              |

APPENDIX 1. Plasmopara obducens samples collected from Impatiens and used to screen microsatellite markers developed in this study. Voucher specimens corresponding to the samples used in this study were deposited in the U.S. National Fungus Collections (Herbarium BPI), Beltsville, Maryland, USA.

| Appendix 1. | Continued. |
|-------------|------------|
|-------------|------------|

| Accession no.        | Origin                       | Host <sup>a</sup>         | Collection date | Collector         |
|----------------------|------------------------------|---------------------------|-----------------|-------------------|
| HI13-4               | Kailua, HI                   | I. walleriana             | 06/19/13        | Christopher Lao   |
| HI14-4               | Hilo, HI                     | I. walleriana             | 05/29/13        | Mann Ko           |
| HI15-1               | Kailua-Kona, HI              | I. walleriana             | 06/01/13        | R.T. Curtis III   |
| HI15-4               | Kailua-Kona, HI              | I. walleriana             | 06/01/13        | R.T. Curtis III   |
| I10-D                | Orange Co., NY               | I. walleriana             | 09/11/13        | Brian Eshenaur    |
| I11-A                | Orange Co. NY                | I. walleriana             | 09/11/13        | Betsy Lamb        |
| 111-G                | Orange Co. NY                | I walleriana              | 09/11/13        | Betsy Lamb        |
| I13-A                | Suffolk Co. NY               | I walleriana              | 09/17/13        | Marie Camenares   |
| 113-C                | Suffolk Co. NY               | I walleriana              | 09/17/13        | Marie Camenares   |
| 113-D                | Suffolk Co. NY               | I. walleriana             | 09/17/13        | Marie Camenares   |
| 115-F                | Barnstable Co. MA            | I. walleriana             | 09/19/13        | Paul Lopes        |
| 117-B                | Barnstable Co., MA           | I. walleriana             | 09/19/13        | Paul Lopes        |
| 118-B                | Franklin Co. MA              | I. walleriana             | 09/20/13        | Tina Smith        |
| 110-D<br>110-Δ       | Highland Park NI             | I. walleriana             | 09/26/13        | Ira Grasgreen     |
| 11)-A<br>110 P       | Highland Dark NI             | I. wallewigna             | 00/26/13        | Ira Grasgreen     |
| 119-D                | Highland Dark, NJ            | I. walleriana             | 09/20/13        |                   |
| 119-12               | Mannaa Ca NV                 | I. walleriana             | 10/01/12        | Brian Eshanour    |
| 120-A                | West L sfevetta IN           | I. walleriana             | 10/01/13        | Nore Cotlin       |
| 121-D                | News Larayette, IN           | I. wallerland             | 10/09/13        | Nora Callin       |
| 122-A                | Newport Co., RI              | 1. wallerland             | 10/10/13        | Heather Faubert   |
| 122-C                | Newport Co., RI              | 1. wallerland             | 10/10/13        | Andrea Sleiman    |
| 14-B                 | Centre Co., PA               | 1. wallerlana             | 08/2//13        | Andrea Skirpan    |
| 15-1                 | Tompkins Co., NY             | I. walleriana             | 08/15/13        | Betsy Lamb        |
| 15-H                 | Tompkins Co., NY             | I. walleriana             | 08/15/13        | Betsy Lamb        |
| 1/-G                 | Staten Island, NY            | I. walleriana             | 09/04/13        | Joe Parent        |
| 18-C                 | Rochester, NY                | I. walleriana             | 09/06/13        | Brian Esnenaur    |
| 19-A                 | Orange Co., NY               | I. walleriana             | 09/10/13        | Margery Daughtrey |
| 19-D                 | Drange Co., NY               | 1. wallerland             | 09/10/13        | Data Laurh        |
| IBI-C                | Bullalo, NY                  | I. balsamina              | 08/09/13        | Belsy Lamb        |
| ID2-D                | Niagara Co, NY               | I. balsamina              | 09/10/13        | John Farlagha     |
| ID2-D<br>ID2 II      | Deffete NV                   | I. balsamina              | 09/10/13        | John Farlagha     |
| 1Б3-П                | Duffalo, N I                 | I. balsamina              | 09/28/13        | Detsy Land        |
| 1D3-J<br>1D2 I       | Buffalo NV                   | I. balsamina              | 09/28/13        | Betsy Lamb        |
| IDJ-L<br>IMDADC2212D | Duilaio, N I<br>Divorbood NV | I. Dalsamina<br>L. arouta | 09/28/13        | Margary Daughtray |
| IMPAUD 3012C         | Riverhead, NV                | I. auricoma               | 10/13/12        | Margery Daughtrey |
| IMPOM3812            | Riverhead, NV                | I. auricoma<br>I. omaiana | 10/15/12        | Margery Daughtrey |
| IMPRA3712            | Riverhead NV                 | L arguta 'blue angel'     | 10/15/12        | Margery Daughtrey |
| IMPC1512C            | Riverhead NY                 | I canensis                | 10/13/12        | Margery Daughtrey |
| IMPC1612             | Riverhead NY                 | I capensis                | 10/12/12        | Margery Daughtrey |
| IMPC2012             | Riverhead NY                 | I capensis                | 10/12/12        | Margery Daughtrey |
| IMPC2112A            | Riverhead NY                 | I capensis                | 10/15/12        | Margery Daughtrey |
| IMPC2112B            | Riverhead NY                 | I capensis                | 10/15/12        | Margery Daughtrey |
| IMPC2212A            | Riverhead NY                 | I capensis                | 10/15/12        | Margery Daughtrey |
| IMPF2412A            | Riverhead NY                 | I flanaganae              | 10/12/12        | Margery Daughtrey |
| IMPF2512E            | Riverhead NY                 | I flanaganae              | 10/12/12        | Margery Daughtrey |
| IMPF2812A            | Riverhead NY                 | I flanaganae              | 10/17/12        | Margery Daughtrey |
| IMPH3412B            | Riverhead, NY                | I hochstetteri            | 09/07/12        | Margery Daughtrey |
| IMPW0112A            | Westchester Co. NY           | I. walleriana             | 05/31/12        | Margery Daughtrey |
| IMPW0312A            | Riverhead, NY                | I. walleriana             | 06/18/12        | Margery Daughtrey |
| IMPW0312D            | Riverhead, NY                | I. walleriana             | 06/18/12        | Margery Daughtrey |
| IN3-E                | Tippelanoe Co., IN           | I. balsamina              | 08/27/13        | Margery Daughtrey |
| IN5-A                | Terre Haute, IN              | I. walleriana             | 07/01/13        | Tom Creswell      |
| IN5-F                | Terre Haute, IN              | I. walleriana             | 07/01/13        | Tom Creswell      |
| IN5-I                | Terre Haute, IN              | I. walleriana             | 07/01/13        | Tom Creswell      |
| MA1-9                | Barnestable Co., MA          | I. walleriana             | 07/18/13        | Geoffrey Njue     |
| MA2-11               | Tewksbury, MA                | I. walleriana             | 08/01/13        | Karen McNaughton  |
| MA8-C                | Barnestable Co., MA          | I. walleriana             | 08/26/13        | Paul Lopes        |
| NJ1-1                | Cream Ridge, NJ              | I. walleriana             | 08/01/14        | Cristi Palmer     |
| NJ1-6                | Cream Ridge, NJ              | I. walleriana             | 08/01/14        | Cristi Palmer     |
| NY10-A               | Oneida Co., NY               | I. walleriana             | 07/30/13        | Margery Daughtrey |
| NY10-B               | Oneida Co., NY               | I. walleriana             | 07/30/13        | Margery Daughtrey |
| PA1-1                | Highland, NY                 | I. walleriana             | 06/16/14        | Teresa Rusinek    |
| TN1-3                | Davidson Co., TN             | I. walleriana             | 07/18/13        | Alan Windham      |
| TN1-7                | Davidson Co., TN             | I. walleriana             | 07/18/13        | Alan Windham      |
| TN1-8                | Davidson Co., TN             | I. walleriana             | 07/18/13        | Alan Windham      |

<sup>a</sup>The following *Impatiens* species were sampled: *I. arguta* Hook. f. & Thomson, *I. auricoma* Baill., *I. balsamina* L., *I. capensis* Meerb., *I. flanaganae* Hemsl., *I. hochstetteri* Warb., *I. omeiana* Hook. f., and *I. walleriana* Hook. f.

Salgado-Salazar et al.-Plasmopara obducens SSRs

APPENDIX 2. Summary of simple sequence repeat (SSR) motifs identified from the de novo genome assembly constructed for *Plasmopara obducens* H12.14-11.

| Item                                        | No. of motifs<br>identified |
|---------------------------------------------|-----------------------------|
| Total no. of sequences examined             | 137,754                     |
| Total length of examined sequences (bp)     | 201,342,680                 |
| Total no. of identified SSRs                | 13,483                      |
| Total no. of contigs containing SSRs        | 9860                        |
| No. of contigs containing more than one SSR | 1950                        |
| No. of SSRs present in compound formation   | 1185                        |
| No. of SSRs with effective primer modeling  | 11,940                      |
| Mononucleotide                              | 3312                        |
| Dinucleotide                                | 7360                        |
| Trinucleotide                               | 2317                        |
| Tetranucleotide                             | 218                         |
| Pentanucleotide                             | 58                          |
| Hexanucleotide                              | 76                          |
| Heptanucleotide                             | 75                          |
| Octanucleotide                              | 19                          |
| Nonanucleotide                              | 20                          |
| Decanucleotide                              | 8                           |
| Undecanucleotide                            | 5                           |
| Dodecanucleotide                            | 12                          |
| Tridecanucleotide                           | 3                           |