Isolation and Characterization of Microsatellite Loci for Smilax sieboldii (Smilacaceae)

Authors: Ru, Yalu, Cheng, Ruijing, Shang, Jing, Zhao, Yunpeng, Li, Pan, et al.

Source: Applications in Plant Sciences, 5(3)

Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps. 1700001

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Isolation and characterization of microsatellite loci for Smilax sieboldii (Smilacaceae) ${ }^{1}$

\author{

Abstract

${ }^{2}$ Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; ${ }^{3}$ Laboratory of Systematic and Evolutionary Botany and Biodiversity, Institute of Ecology and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou 310058, People's Republic of China; and ${ }^{4}$ College of Agriculture and Biotechnology, Zhejiang University,

} Hangzhou 310058, People's Republic of China

- Premise of the study: Polymorphic microsatellite markers were developed for Smilax sieboldii (Smilacaceae), a member of the S. hispida group with a biogeographic disjunction between eastern Asia and North America, to study the phylogeography and incipient speciation of this species and its close relatives.
- Methods and Results: Transcriptome sequencing produced 47,628 unigenes. Seventeen loci were developed from 122 randomly selected primer pairs. Polymorphism and genetic variation were evaluated for 68 accessions representing five populations of S. sieboldii. The number of alleles per locus ranged from four to 18 ; the expected heterozygosity ranged from 0.59 to 0.92 . Twelve loci were successfully amplified in five related species: S. scobinicaulis, S. californica, S. hispida, S. moranensis, and S. jalapensis.
- Conclusions: These novel expressed sequence tag-derived microsatellite markers will facilitate further population genetic research of S. sieboldii and its close allies of the S. hispida group.

Key words: eastern Asian and North American disjunction; microsatellite primers; Smilacaceae; Smilax sieboldii; transcriptome sequencing.

The Smilax hispida group is a well-supported clade including six species in Smilacaceae (Qi et al., 2013) with a disjunct distribution including eastern Asia (S. sieboldii Miq. and S. scobinicaulis C. H. Wright), western North America (S. californica (A. DC.) A. Gray), eastern North America (S. hispida Raf.), and Mexico (S. moranensis M. Martens \& Galeotti and S. jalapensis Schltdl.). Smilax sieboldii is a typical element of temperate broadleaved forests that occurs widely in mainland China, Taiwan, Japan, and Korea. Previous studies based on two cpDNA intergenic regions indicated that at least four biogeographic lineages exist, with each lineage containing at least one private haplotype. This phylogeographic structure is considered to be related to the historical fluctuation of climate and sea level (Zhao et al., 2013). However, this study was limited by the lack of nuclear markers. Therefore, polymorphic microsatellite markers will enhance our understanding of population genetic diversity and

[^0]historical demography (e.g., gene flow, genetic bottlenecks) and will allow for connecting these patterns to geological and environmental changes.

Existing microsatellite markers for Smilax species (Xu et al., 2011; Martins et al., 2013) showed limited transferability and polymorphism for the S. hispida group due to phylogenetic distance. Therefore, in the current study we aimed to develop more polymorphic and transferable expressed sequence tag-simple sequence repeat (EST-SSR) markers from the transcriptome, which contains abundant ESTs, based on a high-throughput sequencing approach.

METHODS AND RESULTS

Transcriptome sequencing-Fresh young leaves of one wild accession of S. sieboldii were collected at Tianmu Mountain, Zhejiang Province, China (Appendix 1), and frozen in liquid nitrogen. RNA was extracted using TRIzol Reagent (Invitrogen Life Technologies, Carlsbad, California, USA) and treated with DNase (TaKaRa Bio, Shuzo, Kyoto, Japan) following the manufacturer's instructions. A 2×150-bp paired-end RNA-Seq library was prepared following the normalized eukaryote transcriptome library preparation protocol of the Beijing Genomics Institute (Shenzhen, China) and sequenced on the Illumina HiSeq 2500 platform (Illumina, San Diego, California, USA). A total of $65,863,062$ raw reads were generated and uploaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession SRP095761). The raw data were filtered using FASTX-TOOLKIT version 0.0.14 (Gordon and Hannon, 2010) by removing adapter sequences and low-quality reads with $>5 \%$ unknown bases and/or $>15 \%$ low-quality bases (quality value <20). Remaining reads were assembled into 66,482 transcripts using TRINITY version 2.3.2
Table 1. Characteristics of 17 newly developed microsatellite loci in Smilax sieboldii. ${ }^{\text {a }}$

Locus	Primer sequences ($5^{\prime}-3^{\prime}$)	Repeat motif	Allele size range (bp) ${ }^{\text {b }}$	Fluorescent dye ${ }^{\mathrm{c}}$	GenBank accession no.	Function ${ }^{\text {d }}$	Organism	E-value
SS2	F: ACTGTAGGAGTTGAGCACAGAGG	$(\mathrm{GA})_{17}$	60-100	FAM	KY404961	Auxin response factor 15	Oryza sativa subsp. japonica	0
	R: AGATTCGGGAAAACAGAGGAAT							
SS5	F: CAACCCAAAACAAAACAAGAGAG R: GATACACGGGTAACCACCACC	$(\mathrm{AG})_{12}$	96-132	TAMRA	KY404962	Hydrolase protein 30	Arabidopsis thaliana	5E-24
SS19	F: ACTTTGCCTATTAAGCATCCGTT	$(\mathrm{CT})_{10}$	116-154	ROX	KY404963	Polygalacturonase inhibitor	Pyrus communis	5E-98
SS20	R: AGTACTGCTTCCTCCACAACAAG	$(\mathrm{GAA})_{15}$	89-122	FAM	KY404964	Protein FAF-like, chloroplastic	Arabidopsis thaliana	6E-18
	R: CGTCGTCATCTTCTTCTCTGTTT							
SS21	F: GAATCCTTTCGCTTAGGGAAGT R: CACAAAGAATAAAAGAACGCTCG	$(\mathrm{CT})_{12}$	107-137	TAMRA	KY404965	Probable ADP-ribosylation factor GTPase-activating protein AGD14	Arabidopsis thaliana	2E-15
SS33	F: AGTAGGATCCCAGCTTTTCTTGAG	$(\mathrm{AG})_{11}$	141-179	HEX	KY404966	Uncharacterized protein At4g08330, chloroplastic	Arabidopsis thaliana	2E-32
SS43	R: CTCTCTCATCCCCAAATGTTTCT	$(\mathrm{GA})_{11}$	154-180	HEX	KY404967	Oxygen-evolving enhancer protein 2, chloroplastic	Fritillaria agrestis	7E-119
SS74	R: GTGGAGGAAACATGCAGTTGAT F: GACGGCACCAAGAGAAGAAT	$(\mathrm{CTG})_{8}$	181-241	FAM	KY404968	-	-	-
SS95	R: GTGGATATCATCACCTCGGG F: GTAGAGGCGCTGGGTTCC	(TGG) ${ }_{8}$	135-180	ROX	KY404969	Sulfated surface glycoprotein 185	Volvox carteri PE	3E-06
SS100	R: GCCAAGCTCTGGAAGAACAC F: GATTAGTGAGAGCTTGGCGG R:	(GAG)9	137-170	TAMRA	KY404970	Threonine-protein kinase-like protein At5g23170	Arabidopsis thaliana	2E-64
SS103	R: ATGCACCAACTCCTTCCAAC F: ACCATCTGTCCCAGTTGCAT R: CTCCCGAGGTTGTCAAAGAG	(TGG) ${ }_{10}$	263-281	ROX	KY404971	E3 ubiquitin-protein ligase At1g12760	Arabidopsis thaliana	8E-24
SS108	F: AAAGGCCCCCAATTATCATC R: CGGCTGGAGAAGATGAACTC	(TGC) ${ }_{13}$	106-124	FAM	KY404972	Formin-like protein 5	Oryza sativa subsp. japonica	5E-29
SS109	F: CCGGCAAGTATTGAGGATGT R: GGTGGAAGAGCTCAAAGACG	$(\mathrm{ATC})_{14}$	139-175	HEX	KY404973	-	-	-
SS113	F: CTGATTTCCTTCCTGTTACGTTG R: CAAATAACCGACTTCAGCTCCTA	(CTGT) ${ }_{6}$	132-172	TAMRA	KY404974	-	-	-
SS114	F: TATTCGTGTAAAGATACGTGGGC R: TCGGCCATTATTTTAATCACATC	(GTGTGA)9	137-167	ROX	KY404975	DNA-directed RNA polymerase II subunit 1	Arabidopsis thaliana	6E-09
SS120	F: ATATGCCGTCGAGTATCGTCTT R: GAGGAGGTGGTGTACAGGGTAAG	(GCAGTA) 4	146-200	ROX	KY404976	ABC transporter G family member 14	Arabidopsis thaliana	0
SS122	F: GACGGACTGACTGATACTTGGAT R: GGAATACTCAAGTTCGCCGTATC	(TAGCAC) ${ }_{4}$	125-185	HEX	KY404977	Protein PHLOEM PROTEIN 2-LIKE A1	Arabidopsis thaliana	7E-13

[^1]${ }^{\mathrm{b}}$ Size range values based on 68 individuals.
${ }^{\text {c }}$ Forward 5^{\prime} label.
${ }^{\mathrm{d}}$ The unigenes containing microsatellite loci were searched against the SWISS-PROT database (http://www.expasy.ch/sprot/); $-=$ not found.
(Grabherr et al., 2011), which were then clustered into 47,628 unigenes with TGICL version 2.1 (Pertea et al., 2003).

Microsatellite development—Using the MIcroSAtellite identification tool (MISA) (Thiel et al., 2003), microsatellite regions in the unigenes were screened according to the following criteria for repeat numbers: dinucleotide repeats ≥ 6, trinucleotide repeats ≥ 5, and tetranucleotide, pentanucleotide, and hexanucleotide repeats ≥ 4. Primers were designed for the screened microsatellite loci using Primer3 (Untergasser et al., 2012) with the default parameter settings. A total of 9263 microsatellite sequences were obtained, from which 2252 primer pairs were designed. Of these, 122 primer pairs were randomly selected and their forward primers were synthesized with one of three different universal primers (5^{\prime}-CACGACGTTGTAAAACGAC-3', 5^{\prime}-TGTGGAATTGTGAGCGG- 3^{\prime}, or 5'-CTATAGGGCACGCGTGGT-3') (Boutin-Ganache et al., 2001; Sakaguchi and Ito, 2014). To prevent primer dimers, hairpin structures, and mismatches, the best matches of forward primers and universal primers were selected using OLIGO version 6.67 (Molecular Biology Insights, Cascade, Colorado, USA).

We selected 12 accessions from various populations (Appendix 1) to test the effectiveness of primer amplification and to preliminarily assess genetic variation. Total genomic DNAs were extracted from silica-dried leaves using Plant DNAzol (Invitrogen Life Technologies). PCR amplifications were performed following the standard protocol of the Tsingke PCR kit (Tsingke Biotech Company, Beijing, China) in a final volume of $10 \mu \mathrm{~L}$, which contained approximately 5 ng of DNA, $5 \mu \mathrm{~L}$ of $2 \times$ PCR Master Mix, $0.1 \mu \mathrm{M}$ of forward primer, $0.4 \mu \mathrm{M}$ of reverse primer, and $0.3 \mu \mathrm{M}$ of fluorescently labeled universal primer (FAM, ROX, HEX, TAMRA; Table 1). The PCR thermal profile involved an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min ; followed by 35 cycles of $94^{\circ} \mathrm{C}$ for 40 s , $58^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 30 s ; and a final $10-\mathrm{min}$ extension step at $72^{\circ} \mathrm{C}$. Fragment lengths of PCR products were analyzed on a $3730 x 1$ DNA Analyzer (Applied Biosystems, Foster City, California, USA) with GeneScan 500 LIZ as an internal reference (Applied Biosystems). Electrophoresis peaks were scored using GeneMarker version 2.2.0 (SoftGenetics, State College, Pennsylvania, USA). A total of 17 primer pairs with stable repeatability and high variation were selected for further analysis. All primer sequences obtained from this study were submitted to GenBank (Table 1).

Polymorphism assessment-To further evaluate the applicability of these primers, 68 individuals from five representative populations from China, Korea, and Japan (Appendix 1) were used to calculate genetic variation parameters. DNA extraction, PCR amplification, and length assessment of PCR products were performed following the procedures described above. The presence of null alleles and their bias on genetic diversity were evaluated based on the expectation maximization method implemented in FreeNA (Chapuis and Estoup, 2007). Deviation from Hardy-Weinberg equilibrium for each population and linkage disequilibrium for each primer pair were tested using GENEPOP version 4.0.7 (Rousset, 2008). The number of alleles, observed heterozygosity, expected heterozygosity, and polymorphism information content were calculated to assess the genetic polymorphism at each locus using CERVUS version 3.0.3 (Kalinowski et al., 2007).

Two loci (SS20, SS95) with high occurrence of null alleles ($>5 \%$) were excluded from the following analysis. No significant deviation from Hardy-Weinberg equilibrium ($P<0.001$) was observed for the remaining 15 loci except SS5 in populations CZJ and JFS; SS19 in population KMJ; and SS21, SS100, and SS109 in population JFS, which might be caused by Wahlund effect of specific populations. There was no evidence of significant linkage disequilibrium in any pair of loci. We detected 156 alleles in total, and the number of alleles at each locus ranged from four to 18 , suggesting a moderate to high level of polymorphism. The observed heterozygosity, expected heterozygosity, and polymorphism information content for each locus ranged from 0.36 to $0.97,0.59$ to 0.92 , and 0.53 to 0.91 , respectively (Table 2).

Transferability evaluation-Transferability of the 15 primers was examined in the accessions of the five related species, i.e., five accessions each for S. californica, S. hispida, S. moranensis, and S. jalapensis and 10 accessions for S. scobinicaulis (Appendix 1). All loci were successfully amplified except two loci (SS21 and SS100) for S. hispida and one (SS33) for S. moranensis (Table 3). Polymorphism was detected in all but two loci (SS21 and SS100) for S. californica, five (SS2, SS19, SS103, SS120, and SS122) for S. hispida, four (SS21, SS74, SS103, and SS114) for S. moranensis, and one (SS100) for S. jalapensis (Table 3). The levels of both cross-amplifiability and polymorphism largely decreased with increasing phylogenetic distance. In total, 12 loci were amplifiable across the other five species in the S. hispida group.
 Note: $A=$ number of alleles sampled; $H_{\mathrm{e}}=$ expected heterozygosity; $H_{\mathrm{o}}=$ observed heterozygosity; $n=$ number of individuals sampled; PIC = polymorphism information content. * Significant deviation from Hardy-Weinberg equilibrium $(P<0.001)$.

Table 3. Fragment sizes detected in cross-amplification tests of the 15 newly developed microsatellite markers in the remaining five species of the Smilax hispida group. ${ }^{\text {a }}$

Locus	S. scobinicaulis $(n=10)$	S. californica $(n=5)$	S. hispida $(n=5)$	S. moranensis $(n=5)$	S. jalapensis $(n=5)$
SS2	$66-80$	$72-84$	72	$72-76$	$66-84$
SS5	$98-124$	$114-116$	$114-116$	$114-124$	$114-116$
SS19	$116-150$	$132-136$	140	$132-138$	$128-138$
SS21	$125-127$	125	-	131	$123-129$
SS33	$157-179$	$167-177$	$167-179$	-	$167-179$
SS43	$164-176$	$168-188$	$168-170$	$164-176$	$166-168$
SS74	$184-241$	$193-199$	$202-217$	196	$199-214$
SS100	$152-170$	164	-	$152-164$	164
SS103	$263-278$	$272-278$	272	278	$257-278$
SS108	$106-118$	$109-118$	$106-118$	$106-109$	$94-118$
SS109	$172-175$	$127-142$	$136-142$	$127-136$	$127-151$
SS113	$132-164$	$160-164$	$160-164$	$156-164$	$132-156$
SS114	$137-155$	$137-149$	$143-149$	137	$137-155$
SS120	$146-164$	$170-182$	158	$152-170$	$164-182$
SS122	$125-179$	$167-191$	173	$173-191$	$167-179$

Note: - = amplification failed.
${ }^{\text {a }}$ Voucher and locality information are provided in Appendix 1.

CONCLUSIONS

Using high-throughput sequencing, we sequenced and assembled the transcriptome of S. sieboldii without a reference genome. Fifteen EST-SSR markers were successfully developed to evaluate the genetic structure and demography of S. sieboldiii, of which 12 are likely to be useful for all six species of the S. hispida group.

LITERATURE CITED

Boutin-Ganache, I., M. Raposo, M. Raymond, and C. F. Deschepper. 2001. M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTechniques 31: 24-28.
Chapuis, M., and A. Estoup. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621-631.
Gordon, A., and G. J. Hannon. 2010. FASTX-TOOLKIT, version 0.0.14. Computer program and documentation distributed by the author.

Website http://hannonlab.cshl.edu/fastx_toolkit [accessed 1 February 2017].
Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644-652.
Kalinowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099-1106.
Martins, A. R., A. G. Abreu, M. M. Bajay, P. M. S. Villela, C. E. A. Batista, M. Monteiro, A. Alves-Pereira, et al. 2013. Development and characterization of microsatellite markers for the medicinal plant Smilax brasiliensis (Smilacaceae) and related species. Applications in Plant Sciences 1: 1200507.
Pertea, G., X. Q. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, Y. Lee, et al. 2003. TIGR gene indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics (Oxford, England) 19: 651-652.
Qi, Z. C., K. M. Cameron, P. Li, Y. P. Zhao, S. C. Chen, G. C. Chen, and C. X. Fu. 2013. Phylogenetics, character evolution, and distribution patterns of the greenbriers, Smilacaceae (Liliales), a near-cosmopolitan family of monocots. Botanical Journal of the Linnean Society 173: 535-548.
Rousset, F. 2008. GENEPOP'007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103-106.
Sakaguchi, S., and M. Ito. 2014. Development and characterization of EST-SSR markers for the Solidago virgaurea complex (Asteraceae) in the Japanese archipelago. Applications in Plant Sciences 2: 1400035.
Thiel, T., W. Michalek, R. K. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411-422.
Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3: New capabilities and interfaces. Nucleic Acids Research 40: e115.
Xu, X. H., Y. Wan, Z. C. Qi, Y. X. Qiu, and C. X. Fu. 2011. Isolation of compound microsatellite markers for the common Mediterranean shrub Smilax aspera (Smilacaceae). American Journal of Botany 98: e64-e66.
Zhao, Y. P., Z. C. Qi, W. W. Ma, Q. Y. Dai, P. Li, K. M. Cameron, J. K. Lee, et al. 2013. Comparative phylogeography of the Smilax hispida group (Smilacaceae) in eastern Asia and North America: Implications for allopatric speciation, causes of diversity disparity, and origins of temperate elements in Mexico. Molecular Phylogenetics and Evolution 68: 300-311.

Appendix 1. Voucher information for Smilax species used in this study.

Species	Population code	Voucher specimens ${ }^{\text {a }}$	Collection locality	Geographic coordinates	n
Smilax sieboldii Miq.	CTW	Xiaoxian Liu, 0812003	Mt. Zhu, Taiwan, China	$23.31000 \mathrm{~N}, 120.50000 \mathrm{E}$	6
Smilax sieboldii	CZJ	Yalu Ru, Ru150921001	Mt. Tianmu, Zhejiang, China	$30.37809 \mathrm{~N}, 119.42061 \mathrm{E}$	14
Smilax sieboldii	CJS	Yunpeng Zhao, HZU00441	Mt. Longchi, Jiangsu, China	$31.24818 \mathrm{~N}, 119.74551 \mathrm{E}$	15
Smilax sieboldii	KMJ	Joongku Lee, GG13	Myeongjisan, Gyeonggi-do, Korea	$37.93458 \mathrm{~N}, 127.47325 \mathrm{E}$	16
Smilax sieboldii	JFS	Chengxin Fu \& Xinjie Jin, Fu1505092	Fujiyama, Tokyo, Japan	$35.50281 \mathrm{~N}, 138.76985 \mathrm{E}$	17
Smilax scobinicaulis C. H. Wright		Pan Li, LP150444	Mt. Wuzhi, Hubei, China	$31.08961 \mathrm{~N}, 110.88390 \mathrm{E}$	10
Smilax californica (A. DC.) A. Gray		Pan Li, LP150436	Near Shasta Lake, CA, USA	$40.75954 \mathrm{~N}, 122.03657 \mathrm{~W}$	5
Smilax hispida Raf.		Yunpeng Zhao, 090834	Croatan National Forest, NC, USA	$36.20339 \mathrm{~N}, 86.98333 \mathrm{~W}$	5
Smilax jalapensis Schltdl.		Pan Li, US10041	Teopisca, Chiapas, Mexico	$16.57310 \mathrm{~N}, 92.50445 \mathrm{~W}$	5
Smilax moranensis M. Martens \& Galeotti		Pan Li, US10031	Mexico City, Mexico	$19.30541 \mathrm{~N}, 99.30743 \mathrm{~W}$	5

Note: $n=$ number of individuals sampled.
${ }^{\text {a }}$ Vouchers were deposited in the Herbarium of Zhejiang University (HZU), Hangzhou, Zhejiang, China.

[^0]: ${ }^{1}$ Manuscript received 4 January 2017; revision accepted 13 February 2017.

 The authors thank the editor and anonymous reviewers for their constructive comments that substantially improved the manuscript. This work was supported by the National Natural Science Foundation of China (no. 31461123001,3151101152) and the National Project for Basic Work of Science and Technology of China (no. 2015FY110200).
 ${ }^{5}$ These authors contributed to this work equally.
 ${ }^{6}$ Author for correspondence: ypzhao@zju.edu.cn

[^1]: ${ }^{\mathrm{a}}$ An annealing temperature of $58^{\circ} \mathrm{C}$ was used for all loci.

