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New systematic insights about Plio-Pleistocene moles 
from Poland
GABRIELE SANSALONE, TASSOS KOTSAKIS, and PAOLO PIRAS

Sansalone, G., Kotsakis, T., and Piras, P. 2016. New systematic insights about Plio-Pleistocene moles from Poland. Acta 
Palaeontologica Polonica 61 (1): 221–229. 

The generic attribution of the Plio-Pleistocene Polish moles ?Neurotrichus polonicus and ?Neurotrichus skoczeni has 
been questioned several times in the past. The fossil material belonging to ?Neurotrichus polonicus and ?Neurotrichus 
skoczeni is re-evaluated here and a new diagnosis is provided on the basis of qualitative considerations. In addition, a 
Geometric Morphometric analysis of the humerus has been performed including both extant and extinct Neurotrichini 
and Urotrichini taxa for comparison. Our results proved the unique morphology of the Polish material suggesting a dis-
tinct taxonomic state. The morphological variations evidenced by the humeral shape analysis agree with the observed 
qualitative differences and support a new generic allocation. The new genus Rzebikia gen. nov. is proposed for all the 
material previoulsly ascribed to ?Neurotrichus polonicus and ?Neurotrichus skoczeni.
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Introduction
The Polish Plio-Pleistocene mammal bearing localities 
provided a huge amount of fossil talpid remains (Rzebik-
Kowalska 2005). Skoczeń (1976, 1980, 1993) described 
five new species belonging to extant genera currently en-
demic of North America: Condylura kowalskii Skoczeń, 
1976, Condylura izabellae Skoczeń, 1976, Parascalops 
fossilis Skoczeń, 1993, ?Neurotrichus polonicus Skoczeń, 
1980 and ?Neurotrichus minor Skoczeń, 1993. Storch and 
Qiu (1983) suggested the inclusion of ?Neurotrichus po-
lonicus in the genus Quyania, but, due to the lack of the 
upper and lower antemolar rows they maintained the generic 
status given by Skoczeń (1980). They suggested that the 
Polish species is inserted in an ancestor-descendant lin-
eage in relationship with Quyania chowi Storch and Qiu, 
1983, hypothesizing a lineage characterized by a gradual 
reduction of the precingulid, the strenghtening of the upper 
molar protoconules and size increase. The description of 

the small species ?Neurotrichus minor raised the question 
by the large size as an advanced evolutionary character 
(Skoczeń 1993). Popov (2004), following the hypothesis of 
Storch and Qiu (1983), assigned the material from Varshets 
(Early Pleistocene, Bulgaria) to Quyania aff. Q. polon-
ica. Popov (2004) considered the Polish species as more 
advanced than Neurotrichus gibbsii by having reduced 
precingulids and a humerus more adapted to a fossorial 
lifestyle. Rzebik-Kowalska (2005), maintained the origi-
nal taxonomic identification provided by Skoczeń (1980). 
Dalquest and Burgner (1941) described the extant North-
American subspecies Neurotrichus gibbsii minor which is 
still considered valid. Therefore Zijlstra (2010) proposed the 
new name Neurotrichus skoczeni. Rzebik-Kowalska (2014) 
pointed out that the generic attribution of ?Neurotrichus 
polonicus still represents an open question. Her revision 
showed that the Polish species displays characters shared by 
both genera Neurotrichus and Quyania. Rzebik-Kowalska 
(2014) left the generic attribution given by Skoczeń (1980) 
considering the attribution to the genus Quyania as still im-
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motivated. Although the generic attribution of these species 
has been questioned (Storch and Qiu 1983; Popov 2004; 
Rzebik-Kowalska 2014), no new analyses or diagnoses have 
been provided till now. Here we re-examined the mate-
rial previously attributed to ?Neurotrichus polonicus and 
?Neurotrichus skoczeni and provided a new generic diagno-
sis in the light of the most recent studies on talpid morphol-
ogy and evolution (Gambaryan et al. 2003; Sánchez-Villagra 
et al. 2004, 2006; Piras et al. 2012). We also investigated 
the patterns of shape and size variation of the humerus by 
means of Geometric Morphometrics Analysis. The humerus 
experienced the most remarkable transformations during 
talpid evolution (Dobson 1882; Freeman 1886; Reed 1951; 
Yalden 1966; Sánchez-Villagra et al. 2004; Piras et al. 2012). 
This skeletal element is usually found well preserved and 
abundant in fossil assemblages. It is thus widely used in sys-
tematic studies of extinct Talpidae (Ziegler 2003) and, due 
to its abundance, allows the use of modern multivariate and 
univariate statistical methods.

Institutional abbreviations.—LACM, Los Angeles County 
Museum, Los Angeles, USA; MF, Institute of Systematic 
and Evolution of Animals, Kraków, Poland; NMNS, 
National Museum of Nature and Science, Tsukuba, Japan; 
V, Institute of Zoology, Bulgarian Academy of Sciences, 
Sofia, Bulgaria; ZPAL, Institute of Paleobiology, Polish 
Academy of Sciences, Warszawa, Poland.

Other abbreviations.—ANOVA, univariate analysis of 
variance; bgPCA, between group Principal Components 
Analysis; CS, Centroid Size; GM, Geometric Morphometrics; 
MANOVA, multivariate analysis of variance; UPGMA, 
Unweighted Pair Group Method with Arithmetic Mean.

Material and methods
Specimens collection.—We analyzed a total of 48 left humeri 
belonging to Urotrichus talpoides Temminck, 1841 (n = 12), 
Dymecodon pilirostris True, 1886 (n = 8), Urotrichus doli-
chochir Gaillard, 1889 (n = 5), Quyania chowi Storch and 
Qiu, 1983 (n = 2), Neurotrichus gibbsii Baird, 1856 (n = 16), 
Rzebikia polonica Skoczeń, 1980 (n = 6). We included in the 
analysis all the Late Neogene Neurotrichini and Urotrichini 
species for which complete humerus was available. For de-
tails about specimen codes, localities, and collection storage 
see SOM 1, Supplementary Online Material available at 
http://app.pan.pl/SOM/app61-Sansalone_etal_SOM.pdf.

Geometric morphometrics.—The humeri have been pho-
tographed in caudal view at a fixed distance of 50 cm with 
a Nikon D100 camera with a Micro-Nikkor 105mm lens. 
We digitized 21 landmarks and 15 semi-landmarks (Fig. 1) 
using the tpsDig2 software (Rohlf 2006). Semi-landmarks 
are a useful tool to capture the morphology of complex out-
lines due to the lack of homologous anatomical points. They 
assume that curves or contours are homologous among 

specimens (Adams et al. 2004; Perez et al. 2006). Thus, 
semi-landmarks are useful to depict the shape of curved 
lines where landmarks cannot be detected. Successively, 
a Generalized Procrustes Analysis (GPA; Bookstein 1991; 
Goodall 1991) implemented in the procSym() function from 
R-package “Morpho” (Schlager 2014) was used to rotate, 
translate and scale landmark configurations to the unit cen-
troid size (CS = the square root of the sum of squared dis-
tances of a set of landmarks from their centroid; Bookstein 
1986). Rotation of the scaled and translated landmark sets 
starts by comparison with a reference configuration (usually 
the first specimen in the dataset). Once the first rotation is 
completed, a mean shape is calculated and the rotation pro-
cess is repeated using the mean shape as the reference con-
figuration for the sample (including the reference-specimen 
configuration). This mean shape/rotation procedure is iter-
ated to minimize rotation differences between subsequent 
iterations through a least-square procedure (Rohlf and Slice 
1990). The residual differences correspond to real shape 
differences plus measurement error. In order to visualize 
the ordination of the aligned specimens we performed a be-
tween group PCA (bgPCA), using the function groupPCA() 
included in the R-package “Morpho”. The bgPCA provides 
a projection of the data onto the principal components of the 
group means, leading to an ordination of the shape variables 
between the group means. The new axes are orthogonal and 
can be computed even when the data are not of full rank, 
such as for Procrustes shape coordinates (Mitteroecker and 
Bookstein 2011). This method offers a good performance 
when the number of observations is smaller than the number 
of variables (Boulesteix 2005), which is often the case for 

Fig. 1. Landmarks (black circles) and semilandmarks (white circles) dig-
itized on the humerus in caudal norm: 1, lateral end of greater tuberosity; 
2, articular facet for clavicula; 3, proximal edge of the articular facet for 
clavicula; 4, bicipital notch; 5, proximal end of lesser tuberosity; 6, medial 
edge of the minor tuberosity; 7, lateral edge of the lesser tuberosity; 8, 
bicipital ridge; 9, middle point of the bicipital tunnel; 10, lateral end of the 
scalopine ridge; 11, proximal end of the teres tubercle; 12–14, surface of 
the teres tubercle; 15, distal end of the teres tubercle; 16–18, minor sulcus; 
19, posterior margin of the lateral epicondyle; 20–22, lateral epicondyle; 
22–24, trochlear area; 25–27, medial epicondyle; 28, posterior margin of 
the medial epicondyle; 29–32, greater sulcus; 33–36, humeral head.
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GM analyses. The significance of the observed shape dif-
ferences among species was evaluated by performing a per-
mutational multivariate analysis of variance (perMANOVA) 
on Procrustes coordinates using adonis() function included 
in the “vegan” R package (Oksanen 2013). The significance 
of shape differences between species was then evaluated 
performing a pairwise permuted MANOVA using the pw-
permanovac() wrapper function, available in SOM 4. Size 
variation was visualized using a boxplot. The significance 
of size differences has been evaluated by performing a per-
mutational univariate analysis of variance (perANOVA) on 
CS using the function adonis(). Between species size dif-
ferences were evaluated performing a pairwise permuted 
ANOVA using the wrapper function pwperanovac(), avail-
able in SOM 4. All p-values were corrected using “Holm” 
correction. We excluded Quyania chowi from all the pair-
wise permuted comparisons due to its small sample size 
(n = 2). The phenetic relationships among the taxa included 
in this study have been visualized performing an UPGMA 
on the Euclidean distance matrix computed on per-species 
mean shape variables.

Systematic paleontology
Class Mammalia Linnaeus, 1758
Order Eulipotyphla Waddel, Okada, and Hasegawa, 
1999
Family Talpidae Fischer, 1814
Subfamily Talpinae Fischer, 1814
Tribe Neurotrichini Hutterer, 2005
Genus Rzebikia nov.
Type species: Rzebikia polonica (Skoczeń, 1980); see below.
Included species: Type species and Rzebikia skoczeni (Zijlstra, 2010). 
Etymology: Dedicated to Barbara Rzebik-Kowalska for her extensive 
and fundamental contributions to the knowledge of Eulipotyphla.

Diagnosis.—Humerus with moderate digging adaptations 
having a large teres tubercle separated by a marked notch 
from the pectoral ridge, partially unfused bicipital tunnel 
(the suture between the proximity of the pectoral ridge 
and the lesser tuberosity is present but not complete; see 
Fig. 2A), large minor sulcus, lesser tuberosity poorly devel-
oped toward the proximal end of the shaft. p4 with straight 
metacristid and distinct entoconid separated from the proto-
conid by a furrow. The cingula are weakly developed with 
the M1

 having the precingulid extending only halfway its 

Fig. 2. Photographs showing the different conditions of the bicipital tun-
nel (arrowed) in talpid mammals. A. Rzebikia polonica (Skoczeń, 1980) 
gen. nov. (MF/1020/1), Early Villanyian (MN 16) of Poland, Rębielice 
Królewskie 1A, frontal view with partially unfused bicipital tunnel. B. Uro-
trichus talpoides Temminck, 1841 (NMNS 28207), Recent, frontal view 
with completely open bicipital tunnel. C. Neurotrichus gibbsii Baird, 1856 
(LACM 93944), Recent, lateral view with completely fused bicipital tunnel.
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width. The entoconids of both M1 and M2 are robust and 
displaced lingually making the lingual side of the lower 
molars concave. The M1 and M2 bear a strong paraconule. 
The M2 lack precingulum and the parastyle is separated 
from the paracrista. The clavicle dorsal prominence of the 
manubrial articular facet is straight and the ventral process 
line is concave and possess two small spines.
Stratigraphic and geographic range.—Pliocene–Pleisto-
cene boundary, Poland, Late Villanyian (MN17) locali-
ties: Kadzielnia, Zamkowa Dolna Cave A, Kielniki 3B; 
Ruscinian–Villanyian (MN15, MN16) boundary, local-
ity Węże 2, Early Villanyian (MN16), locality Rębielice 
Królewskie 1A. Bulgaria, Villanyian (MN17), locality 
Varshets.

Rzebikia polonica (Skoczeń, 1980) comb. nov.
Fig. 2A.
1980 ?Neurotrichus polonicus Skoczeń; Skoczeń 1980: 427–440, pls. 

V–VI.
1983 ?Neurotrichus polonicus Skoczeń; Storch and Qiu 1983: 100–

101, 105.
1993 Neurotrichus polonicus Skoczeń; Skoczeń 1993: 133–134, fig. 4.
1994 “?Neurotrichus polonicus” Skoczeń; Rzebik-Kowalska 1994: 80, 

89–91.
1995 ?Neurotrichus polonicus Skoczeń; Doukas et al. 1995: 51.
2003 Neurotrichus polonicus Skoczeń; Ziegler 2003: 639.
2004 Quyania polonica (Skoczeń); Popov 2004: 71–75, fig. 6–8.
2005 Neurotrichus? polonicus; Rzebik-Kowalska 2005: 128–131.
2006 Neurotrichus polonicus; Ziegler 2006: 139, 141.
2009 Neurotrichus polonicus Skoczeń; Rzebik-Kowalska 2009: 9, 22, 

24–26, 51.
2014 ?Neurotrichus polonicus Skoczeń; Rzebik-Kowalska 2014: 9–11, 

figs. 2, 3.
Etymology: In reference to its origin from Poland.
Holotype: Incomplete right mandible with p4–m2 (MF/1016/1) 
(Skoczeń 1980: pl. VI).
Type locality: Kadzielnia, Poland.
Type horizon: Late Villanyian (MN17) or Pliocene–Pleistocene boun–
dary.

Material.—Rębielice Królewskie 1A, Poland: One right 
P4 (MF/1015/1); one right and two left M1 (MF/1015/2–
4); right M3 (MF/1015/5); incomplete premolar portion 
of the right mandible with p3 (MF/1015/6); incomplete 
premolar portion of the right mandible with m1 and m2 
(MF/1015/7); two middle fragments of left mandibles with 
m1 and m2 (MF/1015/8, 9); posterior part of left mandi-
ble with m2 and m3 (MF/1015/10); right m1 (MF/1015/11); 
three m2 (MF/1015/12–14); right and left m3 (MF/1015/15, 
16); six clavicles (MF/1015/17–22); 13 humeri (MF/1015/23–
35); ulna (MF/1015/36); radius (MF/1015/37). Zamkowa 
Dolna Cave near Częstochowa, layer C, Poland: three M1 
(MF/1017/1–3); right M2 (MF/1017/4); right m1 (MF/1017/5); 
right m2 (MF/1017/6); right and left m3 (MF/1017/7, 8); right 
humerus (MF/1017/9). Kadzielnia, Poland: two right mandi-
ble (MF/1016/1, 2), one with p4–m2 and other with m1–m2, 
2 humeri (MF/1016/3, 4). Kielniki 3B, Poland: 1 humerus 
(MF/1020/1). Varshets, North Bulgaria: 3 fragments of man-

dible with m1–m3 and one m2 (V23: 4–5, V339), 3 humeri 
(V23: 1–3). All from Villanyian (Pliocene–Pleistocene). See 
SOM 2 for linear measurements of the material.
Emended diagnosis.—Medium to large sized shrew-mole 
with moderate adaptation to digging. The humerus has 
an evident scalopine ridge and partially unfused bicipital 
tunnel (Fig. 2A). The protoconules are absent or vestigial. 
Lower molars have vestigial mesoconids.
Description.—See Skoczeń (1980, 1993), Popov (2004) and 
Rzebik-Kowalska (2014) for a complete and detailed de-
scription of the material.
Remarks.—The material from Varshets (Popov 2004) fit 
well in both size and morphological characters with that of 
Rzebikia polonica from Poland, so we ascribe the Bulgarian 
material to the Polish species.
Stratigraphic and geographic range.—Pliocene–Pleisto-
cene boundary, Poland, Late Villanyian (MN17) localities: 
Kadzielnia, Zamkowa Dolna Cave A, Kielniki 3B; Early 
Villanyian (MN16), locality Rębielice Królewskie 1A. 
Bulgaria, Villanyian (MN17), locality Varshets.

Rzebikia skoczeni (Zijlstra, 2010) comb. nov.
1993 Neurotrichus minor Skoczeń; Skoczeń 1993: 130–133, fig. 4.
1994 Neurotrichus minor Skoczeń; Rzebik-Kowalska 1994: 80, 88.
2004 Quyania minor (Skoczeń); Popov 2004: 75.
2005 Neurotrichus minor Skoczeń; Rzebik-Kowalska 2005: 127.
2009 Neurotrichus minor Skoczeń; Rzebik-Kowalska 2009: 9, 21.
2010 Neurotrichus skoczeni; Zijlstra 2010: 1903.
2014 ?Neurotrichus skoczeni Zijlstra; Rzebik-Kowalska 2014: 11–12.
Etymology: In honor of Stanisław Skoczeń, who originally described 
this species.
Type material: Holotype: right humerus ZPAL/M-2/2 (Skoczeń 1993: 
fig. 4). Paratype: isolated left M1 (ZPAL/M-2/1).
Type locality: Węże 2, Poland.
Type horizon: Ruscinian–Villanyian boundary (MN 15, MN 16).

Emended diagnosis.—Small sized shrew-mole with moder-
ate digging adaptation. The humerus have a well developed 
scalopine ridge and partially unfused bicipital tunnel, the 
pectoral tubercle is laterally displaced. The cingula of the 
M1 weaker and reduced.
Description.—See Skoczeń (1993) for a complete and de-
tailed description of the material. See SOM 2 for linear 
measurements of the material.
Remarks.—The humerus is very similar to that of Rzebikia 
polonica, it differs only for its smaller size and the lat-
erally displaced pectoral tubercle. The M1 is longer and 
narrower relative to that of Rzebikia polonica and differs for 
the shorter protoconus lacking a cingulum, the paraconus is 
narrower, the proto- and metaconuli are less prominent and 
the precingulum is markedly weak and short.

This species has been previously described as Neuro-
trichus minor by Skoczeń (1993). Although we changed 
the generic attribution for this species we maintained the 
specific attribution of skoczeni because the name minor is 
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a primary homonym and permanently invalid (ICZN 1999: 
art. 57.2; Zijlstra 2010).

The following differential diagnoses are based on 
Rzebikia polonica because of the high similarity with the 
smaller species Rzebikia skoczeni and because of the most 
abundant material available for comparison.

Neurotrichus gibbsii: Rzebikia polonica shows many 
similarities in particular for the teeth (see Skoczeń 1980 
for a detailed description) with the North American shrew 
mole, but differs by having reduced precingulids in m1. It 
is distinct from Neurotrichus gibbsii in the morphology of 
the humerus which is clearly less adapted to fossoriality by 
having: (i) a partially unfused bicipital tunnel, (ii) a more 
conspicuous scalopine ridge, (iii) a shorter teres tubercle, 
(iv) a longer greater sulcus, (v) the lesser tuberosity is less 
expanded in proximal direction.

Urotrichus talpoides: Rzebikia polonica is different in 
many features from the Japanese greater shrew mole in 
particular by having: (i) a partially unfused bicipital tunnel, 
(ii) a longer teres tubercle, (iii) a lesser distance between the 
teres tubercle and the lesser tuberosity, (iv) the presence of 
the scalopine ridge, (v) metacristid of the p4 in stright line, 
(vi) less robust mandible, (vii) presence of the p3, (viii) pres-
ence of the talonid notch.

Urotrichus dolichochir: This species presents clear 
Urotrichine affinity. It resembles the ex species Urotrichus 
talpoides in both size and shape of the humerus. Urotrichus 
dolichochir presents some primitive humeral features com-
pared with extant Urotrichini such as an even small teres 
tubercle, open bicipital tunnel and a more slender shaft of 
the humerus. Rzebikia polonica differs from this species 
mainly for the same characters expressed for U. talpoides.

Dymecodon pilirostris: This species has been considered 
for long time as a congeneric member of Urotrichus because 
of the strong similarities in their morphology (Kawada and 
Obara 1999). Rzebikia polonica is different from the lesser 
Japanese shrew mole by the same features of U. talpoides.

Quyania chowi: Rzebikia polonica resembles Q. chowi 
in many features (see Storch and Qiu 1983 for a detailed 

description) whereas it is distinct from the Chinese species 
by having: (i) a more rounded and larger teres tubercle, (ii) 
a partially unfused bicipital tunnel, (iii) a shorter distance 
between the teres tubercle and the lesser tuberosity, (iv) a 
weaker development of the cingula, (v) unbent lingual side 
of the lower molars, (vi) more conspicous protoconules of 
the M1 and M2, (vii) parastyle of the M2 separated from the 
paracrista.

Quyania europaea Rzebik-Kowalska, 2014: Rzebikia 
polonica differs from the European species of Quyania by 
having: (i) more robust shaft of the humerus, (ii) larger teres 
tubercle, (iii) more evident and straight scalopine ridge, (vi) 
partially unfused bicipital tunnel, (v) the presence of vesti-
gial mesoconids, (vi) mental foramen situated under the p3.

Neurotrichus columbianus Hutchinson, 1968: According 
with Storch and Qiu (1983) and Popov (2004), Neurotrichus 
columbianus should be related to the genus Yanshuella 
Storch and Qiu, 1983 and does not belong to Neurotrichini 
tribe at all.
Stratigraphic and geographic range.—Pliocene–Pleistocene 
boundary, Poland, Ruscinian–Villanyian (MN15, MN16) 
boundary, locality Węże 2.

Shape and size analyses
The bgPCA performed on the procrustes coordinates shows 
a neat separation between the urotrichine and neurotrich-
ine shrew moles in particular across the PC1 (Fig. 3A). At 
positive values of the PC1 (62.80% of the total variance) the 
humeral shape shows an enlargement of the teres tubercle, 
an enlargement of the medial epicondyle and an expan-
sion of the greater tuberosity, while at negative values the 
humerus shows a contraction of these regions. Along the 
PC2 (17.56% of the total variance) it is possible to observe 
a separation between Neurotrichus gibbsii and Rzebikia 
polonica At positive values the humeral morphology shows 
a reduction of the teres tubercle, a lengthening of the greater 

Fig. 3. A. Scatterplot of the first two axes of the bgPCA. Deformation grids refer to axes extremes (positive and negative values). B. Scatterplot of the first 
and third axes of bgPCA. Deformation grids refer to axes extremes (positive and negative values).
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sulcus and a contraction of the lesser tuberosity, while at 
negative values the humerus shows an enlargement of the 
teres tubercle and of the lesser tuberosity while the greater 
sulcus becomes shorter. Along the PC3 (10.84% of the total 
variance) it is possible to appreciate the separation between 
Urotrichus talpoides and Dymecodon pilirostris (Fig. 3B). 
At positive values the humeral shape shows an enlargement 
of the medial epicondyle and an increase of the greater tu-
berosity, while at negative values it is possible to observe a 
contraction of the regions previously described.

Permutational MANOVA returned an overall highly 
significant difference (p-value < 0.001) among species and 
pairwise permutation MANOVA returned significant val-
ues (Table 1) for all the comparisons.

The boxplot computed for the CS (Fig. 4) showed a signif-
icant size variation (permutational ANOVA p-value < 0.001) 
among species. R. polonica was significantly different from 
all other taxa by means of pairwise permuted ANOVA 
(Table 2).

The UPGMA computed on the Euclidean distance matrix 
calculated on the shape variables (Fig. 5A) evidenced a neat 
morphological difference between the Urotrichini, where 
Urotrichus talpoides and Dymecodon pilirostris showed 
close similarities, and Neurotrichini, where Neurotrichus 
gibbsii and R. polonica showed the closest morphological 
affinities.

Discussion and concluding 
remarks
The continuous humeral shape variation evidenced by the 
GM analysis was congruent with the qualitative morpholog-
ical differences observed in the specimens included in this 
study. In particular, the neat separation between Urotrichini 
and Neurotrichini observed along the PC1 is due to major 
modifications of the regions mainly involved in the digging 
process (Gambaryan et al. 2003; Piras et al. 2012), such 
as the expansion of the teres tubercle. Rzebikia polonica 
has a partially unfused bicipital tunnel (Fig. 2A) while the 
Urotrichini have it open (Fig. 2B). Field observations on 
the extant Neurotrichus gibbsii (Campbell and Hochachka 
2000: 578; Stone 1995: 57) and recent Finite Elements 
Analysis (Piras et al. 2012) suggest that Neurotrichini 
are more adapted to a fossorial lifestyle than Urotrichini. 
The UPGMA (Fig. 5A) confirmed the distinction between 
Neurotrichini and Urotrichini. Rzebik-Kowalska (2014) 
pointed out that Quyania chowi and R. polonica should be 
included in the Neurotrichini tribe. Our results support the 
inclusion of R. polonica in Neurotrichini tribe and exclude 
any Urotrichine affinity. Along the PC2 R. polonica sets 
apart from N. gibbsii and from Q. chowi. According to 
Storch and Qiu (1983) and Popov (2004), R. polonica de-
scends from Q. chowi. In fact, the Polish genus has a more 
robust humerus, a bicipital tunnel showing a higher fusion 
degree between the pectoral crest and the lesser tuberosity, 
and a teres tubercle larger and more rounded. The phenetic 
relationships support R. polonica being more advanced 
than Quyania chowi and hence justify its different generic 
allocation. Storch and Qiu (1983) hypothesized a parallel 
evolution of Neurotrichus gibbsii and Rzebikia polonica, 
suggesting that the Polish species is more andvanced than 
N. gibbsii by having a relatively larger size. Popov (2004), 
following Storch and Qiu (1983), considered R. polonica 
as more advanced than N. gibbsii. Here we reject such hy-
pothesis because Rzebikia gen. nov. shows many primitive 
features of the humerus when compared with the North 
American forms. The most striking features are the par-
tially unfused bicipital tunnel (Fig. 2A), that is completely 

Table 1. Pairwise permuted MANOVA results. All p-values are corrected using “Holm” correction.

Urotrichus dolichochir Urotrichus talpoides Rzebikia polonica Dymecodon pilirostris
Neurotrichus gibbsii 0.0009 0.0009 0.0009 0.0009

Urotrichus dolichochir 0.0019 0.0045 0.0134
Urotrichus talpoides 0.0009 0.0019

Rzebikia polonica 0.0019

Table 2. Pairwise permuted ANOVA results. All p-values are corrected using “Holm” correction.

Urotrichus dolichochir Urotrichus talpoides Rzebikia polonica Dymecodon pilirostris
Neurotrichus gibbsii 0.00159 0.76802 0.00099 0.00559

Urotrichus dolichochir 0.00239 0.00779 0.40215
Urotrichus talpoides 0.00099 0.00159

Rzebikia polonica 0.00449

Fig. 4. Boxplot of the centroid sizes. Bottom and top of the boxes are the 
first and third quartiles, the horizontal black lines represent the median, the 
whiskers represent the minimum and maximum values.

Downloaded From: https://complete.bioone.org/journals/Acta-Palaeontologica-Polonica on 29 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use



SANSALONE ET AL.—PLIO-PLEISTOCENE MOLES FROM POLAND 227

fused (Fig. 2C) in N. gibbsii (Reed 1951; Sánchez-Villagra 
et al. 2004), the reduced teres tubercle, and the widened 
minor sulcus. The enlargement of the teres tubercle is an 
important character of talpids evolution (Gambaryan et al. 
2003; Piras et al. 2012). This humeral region allows the in-
sertion of the muscles Teres major and Latissimus dorsi, two 
of the main muscles involved during burrowing (Gorman 
and Stone 1990; Gambaryan et al. 2003; Piras et al. 2012). A 
larger teres tubercle would allow the insertion of larger and 
more powerful digging muscles. N. gibbsii and R. polonica 
are separated along the PC2 and the humeral shape changes 
associated with this axis are in good agreement with our 
qualitative observations about the humeral morphological 
differences between these two taxa. Moreover, N. gibbsii 
and R. polonica are significantly different under pairwise 
permutational MANOVA. These evidences suggest that N. 
gibbsii is better adapted to digging than R. polonica and 
in a more derived evolutionary state. Nevertheless, R. po-
lonica shows some derived features on teeth such as the 
reduced precingulid of m1 and more reduced protoconules 
(Storch and Qiu 1983; Popov 2004), not equally advanced 
in N. gibbsii. Rzebik-Kowalska (2014) noted that, in R. 
polonica, the protoconules are absent and vestigial only 
in one specimen. Moreover, the upper and lower teeth of 
R. polonica are wider than those of N. gibbsii and more 
similar to those of Quyania (Rzebik-Kowalska 2014). All 
of these evidences well support a new generic allocation. 
The UPGMA (Fig. 5A) shows close similarities with the 
phylogenetic hypothesis (Fig. 5B) proposed by Storch 
and Qiu (1983). We follow them in considering Q. chowi 
as the probable ancestor to N. gibbsii, R. polonica, and 
R. skoczeni. According to Storch and Qiu (1983) Q. chowi 
can be considered the ancestor of the neurotrichine lineage. 
N. gibbsii could represent a derived form that colonized 
North America during the Early Pliocene, while one or two 
colonization events towards Eastern Europe could have 
occurred. A colonization event could have involved the 
ancestor of Quyania europaea during the Early Pliocene. 
Another colonization wave from Asia, that involved the 
Urotrichini, during the Miocene–Pliocene boundary, is tes-
tified by the presence of Urotrichus sp. (Maramena local-
ity; see Doukas et al. 1995). In this scenario it is possible 
to hypothesize Rzebikia gen. nov. being derived from the 
European Q. europaea. This represents the most parsimo-
nious explanation, although we note that Rzebikia gen. nov. 
is more similar to Quyania chowi (Storch and Qiu 1983; 
Popov 2004). If we consider Rzebikia gen. nov. directly 
derived from Q. chowi we should hypothesize a subse-
quent colonization event during the late Early Pliocene. 
Q. europaea is clearly distinct from Rzebikia gen. nov. 
by its slender humerus and relative smaller size (Rzebik-
Kowalska 2014), suggesting a different digging capability 
and ecological adaptation. Rzebikia skoczeni and Rzebikia 
polonica are both larger than Q. europaea (Skoczeń 1993; 
Rzebik-Kowalska 2014). R. skoczeni has been found in the 
MN15 locality of Węże 2 only (see SOM 3), where no 

other neurotrichine moles are present. R. polonica first 
appearence is in the MN16 Rębielice Królewskie 1A lo-
cality (see SOM 3). This species could be descended from 
R. skoczeni anagenetically by an increase in size. However, 
due to the scarcity of the R. skoczeni fossil record it is 
not possible to test this hypothesis. R. polonica have been 
found in sympatry with Q. europaea (MN16, Rębielice 
Królewskie 1A and MN17, Kadzielnia localities). Size dif-
ferences have been documented for sympatric species be-
longing to genera Talpa and Mogera (Abe 1996; Loy et 
al. 1996; Loy and Capanna 1998; Cleef-Roders and Hoek 
Ostende 2001; Yokohata 2005; Bego et al. 2008; Loy 2008), 
this phenomenon has been documented also in the extinct 
genus Geotrypus (Hoek Ostende 2001). Moreover, we found 
a significant size difference between Urotrichus talpoides 
and Dymecodon pilirostris which has been reported to live 
in sympatry in Honshu and Shikoku regions (Abe 1967). 
Following this evidence, the size displacement between 
the species of Rzebikia and Quyania europaea could have 
occurred in response to eco-evolutionary constraints, such 
as inter-specific competition and the ability to exploit low 
productive habitats. Size character displacement between 
pairs of ecologically close and geographically overlapping 
species is a common pattern in mammals (Simberloff and 
Boecklen 1981; Dayan and Simberloff 1998) and could rep-
resent a rapid response to strong inter-specific competition 
in talpids (Loy and Capanna 1998; Loy et al. 2001).

Dymecodon pilirostris

Neurotrichus gibbsii

Rzebikia polonica

Quyania chowi

Urotrichus dolichochir

Urotrichus talpoides

UPGMA on Shape

Recent

Villany ani

Ruscinian

Turolian

Vallesian

Astaracian
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Fig. 5. A. UPGMA calculated on the Euclidean distance matrix computed on 
the shape variables. B. Phylogenetic hypothesis of Storch and Qiu (1983).
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Finally, recent contributions highlighted that humeral 
morphology possesses a taxonomic value at the genus level 
and in some cases at the species level as well (Hoek Ostende 
1997; Ziegler 2003; Klietmann et al. 2014). In the present 
paper the highly significant values reported by pairwise 
permutational MANOVA confirm the chance to consider 
the humerus as a diagnostic element. Moreover, our results 
suggest that the landmark based shape analysis is useful in 
supporting systematics in palaeontological investigations 
where only skeletal elements are avilable.
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