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Abstract: Analysis of functional diversity, based on plant traits and community structure, provides a promising ap-
proach for exploration of the adaptive strategies of plants and the relationship between plant traits and ecosystem 
functioning. However, it is unclear how the number of plant traits included influences functional diversity, and 
whether or not there are quantitatively dependent traits. This information is fundamental to the correct use of func-
tional diversity metrics. Here, we measured 34 traits of 366 plant species in nine forests from the tropical to boreal 
zones in China. These traits were used to calculate seven functional diversity metrics: functional richness (func-
tional attribute diversity (FAD), modified FAD (MFAD), convex hull hypervolume (FRic)), functional evenness (FEve), 
and functional divergence (functional divergence (FDiv), functional dispersion (FDis), quadratic entropy (RaoQ)). 
Functional richness metrics increased with an increase in trait number, whereas the relationships between the trait 
divergence indexes (FDiv and FDis) and trait number were inconsistent. Four of the seven functional diversity in-
dexes (FAD, MFAD, FRic, and RaoQ) were comparable with those in previous studies, showing predictable trends 
with a change in trait number. We verified our hypothesis that the number of traits strongly influences functional 
diversity. The relationships between these predictable functional diversity metrics and the number of traits facilitated 
the development of a standard protocol to enhance comparability across different studies. These findings can 
support integration of functional diversity index data from different studies at the site to the regional scale, and they 
focus attention on the influence of quantitative selection of traits on functional diversity analysis. 
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1  Introduction 

Functional traits are core plant properties, and are closely 
related to the colonization, survival, growth, and mortality 
of plants (Cornelissen et al., 2003). In particular, these traits 
allow plants to optimize productivity (Craven et al., 2018; 
Xu et al., 2018b; Kordbacheh et al., 2019; Mahaut et al., 
2020). Recently, scientists have demonstrated that commu-
nity traits on per land area using community-weighted  

means (He et al., 2019a), scaled up from the organ or spe-
cies level, could be used to interpret certain ecosystem pro-
cesses and functions at larger spatial scales (He et al., 
2019a). To date, trait-based approaches have been used to 
explore various ecological issues from the species or com-
munity level to the ecosystem level (Faucon et al., 2017; 
Greenwood et al., 2017; Ma et al., 2018). 

There are trade-offs or synergies that exist among traits 
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(Cornelissen et al., 2003; de Deyn et al., 2008; Reich, 2014; 
Li et al., 2015; He et al., 2019b), and studing multiple traits 
has hence become important. The classic leaf economic 
spectrum demonstrates the trade-off strategy of plant re-
sources (Wright et al., 2004). The adaptation of a single trait 
to an environmental change may not be important as the 
adaptive evolution of the specific trait may lag behind envi-
ronmental change, and the adaptation rather manifested as a 
coordinated adaptation of multiple traits. Plants adapt to the 
environment by adjusting multiple traits, with the complex 
relationships between these traits crucial for maintaining the 
ecosystem structure and function (Fontana et al., 2016). 
Furthermore, there is consensus that species diversity influ-
ences ecosystem functioning, as well as the diversity of 
functional traits within communities (Leps et al., 2006). The 
combination of functional diversity, community structure, 
and plant traits could help us explore how multiple traits 
determine ecosystem processes and functioning (Fontana et 
al., 2016). 

Various indices have been proposed to measure plant 
functional diversity (Pérez-Harguindeguy et al., 2013). In 
general, functional diversity can be subdivided into func-
tional richness, evenness, and divergence (Table 1). Func-
tional richness indices can quantify the size of the niche 
space utilized by these measured traits per volume of multi-
dimensional space. Functional evenness can describe the 
distribution of the trait space occupied by species traits. It 
refers to whether the distance between the traits of any two 
nearest species is equal in the trait space. The functional 
divergence describes the formation of species clusters in the 
character space, where higher dispersion indicates that the 
species clusters are distributed at the edge of the character 
space (Mason and Mouillot, 2005; Laliberte and Legendre, 
2010; Schleuter et al., 2010) (The detailed formula is pro-
vided in the supplementary file). Through the research of 
functional diversity, certain diversity indexes have been 
developed, including functional attribute diversity (FAD) 
(Walker et al., 2005), convex hull hypervolume (FRic) 
(Laliberte and Legendre, 2010), functional evenness (FEve) 
(Laliberte and Legendre, 2010), functional divergence 
(FDiv) (Mason and Mouillot, 2005; Laliberte and Legendre, 
2010; Schleuter et al., 2010), and quadratic entropy (RaoQ) 
(Botta-Dukát, 2005). 

Functional diversity can be used to accurately assess and 
predict ecosystem functioning, because multiple traits col-
lectively accomplish this (Kearney and Porter, 2006). Simi-
larly, functional evenness and functional divergence are 
used to elucidate the variation in functional and adaptive 
mechanisms (Komac et al., 2015). Functional diversity has 
received extensive attention recently; and research on the 
relationships between functional diversity and ecosystem 
function has rapidly increased (Ross et al., 2017). However, 
dispute remains over how to scientifically calculate and use 

these metrics. In practice, researchers tend to select certain 
traits based on their own objectives or the availability of 
data, leading to inconsistent results across studies that make 
comparisons among studies difficult (Petchey and Gaston, 
2002; Wright et al., 2006; Pasari et al., 2013). Knowledge 
about how to use a wide variety of plant traits is crucial be-
cause different traits will generate different results (Petchey 
and Gaston, 2006). Therefore, development of a uniform 
protocol is needed that could be used consistently, or that 
could enhance comparability across different studies. To 
accomplish this, it is necessary to identify how the number 
of selected traits influences functional diversity indexes 
from the site to the regional scale, and whether these influ-
ences are consistent across the different functional diversity 
metrics. 

To explore these issues, we measured 34 traits of 366 
plant species from nine forest communities along the 
North-South Transect of Eastern China (NSTEC), extending 
from the tropical to the boreal zones. Morphological, chloro-
phyll, stomatal, and anatomical leaf traits were measured, in 
addition to multiple element content, and other traits (Fig. 1). 
The main objectives of this study were to: 1) demonstrate 
the predictability of the functional diversity metrics by al-
tering the numbers of selected traits, and 2) develop a uni-
form protocol for metrics that predict functional diversity 
consistently from the site to the regional scale for use in 
future studies. 

The conceptual framework of functional diversity holds 
promise as a way to explore relationships in natural com-
munities. Specifically, these functional diversity are pre-
dictable (invariably, regularly, or irregularly) under different 
scenarios of trait number, diversity in importance of differ-
ent traits, and differences in species diversity. Development 
of a functional diversity protocol is needed to promote the 
applicability of these metrics. 

2  Materials and methods 

2.1  Study sites 

Nine typical forest communities were selected for field 
sampling along the NSTEC (Fig. 2), which is the 15th stan-
dard transect of the International Geosphere-Biosphere Pro-
gram (Zhang and Yang, 1995; Wang et al., 2016). To mini-
mize the effects of human disturbance, we set up these sam-
pling plots in national nature reserves. From south to north, 
the forests sampled were: tropical, south-subtropical ever-
green broad-leaved, subtropical evergreen broad-leaved, and 
north-subtropical evergreen deciduous broad-leaved mixed 
forests. The study area covered almost all the main types of 
forest vegetation in the Northern Hemisphere (He et al., 2018). 
Across the study sites, the annual average temperature and pre-
cipitation ranged from –4.4 to 20.9 °C and 481.6 to 2449.0 mm, 
respectively, with the precipitation mainly concentrating in 
summer, from June to August (Xu et al., 2018a). 
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Fig. 1  The opportunities and challenges associated with functional diversity  
 

 

Fig. 2  The spatial distribution of nine forest communities from the boreal to the tropical zone in China 
Note: A total of 34 functional traits and 366 species were sampled across the nine forest sites (orange circles). 
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2.2  Field sampling and measurement of traits 

Field sampling was carried out from the end of July to the 
beginning of August 2013. We set up four representative 
plots of 30 m × 40 m in each forest type to collect mature 
leaves of common tree species within and around the plots. 
The specific sampling method involved selection of healthy, 
disease-free, mature trees of different species. Thereafter, 
four branches at different levels and orientations, specifi-
cally from four different directions in the upper, southeast, 
and northwest of the canopy, were collected from each tree 
using high-pruning shears or artificial tree-climbing meth-
ods. A mixture of leaf samples was obtained from the cut 
branches, placed in plastic bags, and transported to a labo-
ratory for processing. One tree in each plot represented one 
replicate; consequently, four trees were considered as repli-
cates per site (Li et al., 2018).  
2.2.1  Selection of metrics for plant traits 
We measured 34 plant traits of 366 species in the nine forest 
communities, using a consistent method for recording spe-
cific traits across all forest types (cold-temperate to tropical) 
(He et al., 2020; Table S1 and Fig. S2). 
2.2.2  Measurement of leaf morphological traits 
Six to ten healthy, intact leaves were flattened out and 
scanned using a Cano Scan LiDE 110 (Japan), before de-
termining their area using ImageJ software (Nanes, 2015). 
The leaves were dried to a constant weight in an oven and 
were weighed to calculate the specific leaf area based on the 
leaf area and dry weight (Wang et al., 2016). 
2.2.3  Measurement of C and N content 
An elemental analyzer method (vario MAX CN Elemental 
Analyzer, Elementar, Germany) was used to determine foliar N 
content. The leaves were first cleaned to remove soil and other 
impurities and then dried. The N content in 0.3–0.5 mg of the 
dried samples was determined (Zhao et al., 2014). 
2.2.4  Measurement of chlorophyll traits 
Fresh leaf samples (0.1 g) were cut into pieces and, together, 
with 10 mL of 95% ethanol, were homogenized in a mortar. 
An additional 5 mL of 95% ethanol was added to the ho-
mogenate, which was then filtered, and the filtrate diluted to 
50 mL with ethanol. The chlorophyll-ethanol solution was 

injected into a cuvette with a light path of 1 cm. Pure etha-
nol was injected into another cuvette of the same specifica-
tion to serve as a control. The chlorophyll content was cal-
culated according to Lambert Beer’s law (Li et al., 2018). 
2.2.5  Measurement of stomatal traits 
From the samples, five to ten leaves were cut into 1 cm x 
0.5 cm sections along the main vein and fixed in FAA solu-
tion (75% alcohol : formalin : glacial acetic acid : glycerol = 
90 : 5 : 5 : 5) (Field sampling was completed). These sec-
tions were dried, pasted to the sample stage, and observed 
using a scanning electron microscope (Hitachi s-3400 II, Hi-
tachi, Japan). Three small blocks were randomly selected from 
the sample stage for observation. Two photographs were taken 
in each of the blocks, resulting in six replicate images for each 
species. The number of stomata in each image was counted and 
the area of each image was determined to calculate stomatal 
density. Five pores in each image were randomly selected to 
determine the average stomatal pore width, and length, and 
stomatal area (Liu et al., 2018). 
2.2.6  Measurement of anatomical traits 
Samples were removed from the FAA fixative and perma-
nent cross-section slides were made using paraffin section-
ing, with a total of three replicate sections per species. Ana-
tomical data was acquired using scanning electron micros-
copy (Liu et al., 2019).  

2.3  Selection of metrics for functional diversity 

Functional diversity is used to reflect the overall difference 
or diversity of traits in plant communities. At the beginning 
of the formation of the functional diversity, the functional 
diversity index should generally meet the following criteria: 
1) multiple traits must be processed simultaneously, 2) spe-
cies traits and species richness influence the functional di-
versity of the community, and 3) increasing or decreasing 
the number of new species or traits affects functional diver-
sity (Villéger et al., 2008). These criteria reinforce the fact 
that functional diversity requires consideration of both the 
number of species and traits. Although many types of func-
tional diversity exist, we selected three kinds of diversity 
corresponding to the three components of functional diver-
sity: functional richness, functional evenness, and functional 
divergence (Table 1). 

 

 

Table 1  The protocol of the functional diversity index 

Functional diversity Specific indexes Description Predictable Fitted equation 

Functional Attribute Diversity (FAD) The sum of the distances of species in trait space Yes Y=513.356x0.5224† 

Modified FAD (MFAD) Modified FAD, includes species diversity Yes Y=12.4681x0.5224 Functional richness 

Convex hull hypervolume (FRic) Convex hull hypervolume Yes Y=0.6849x+5.3610

Functional evenness Functional Evenness (FEve) Distribution rule of trait space occupied by traits No  

Functional Divergence (FDiv) Dispersion of functional traits No  

Functional Dispersion (FDis) Dispersion of functional traits No  Functional divergence 

Rao’s Quadratic entropy (RaoQ) Both trait richness and trait dispersion Yes Y=0.7969x–0.2641

Note: † These prediction equations were reduced on all data of the nine forest communities from the tropical to the boreal zone. Detail information for each 
forest is presented in the supplementary files. 
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Functional richness is mainly used to quantify how much 
niche space is occupied by all species in the community 
(Laliberte and Legendre, 2010). Low trait richness indicates 
that the available niche in the community is occupied, 
meaning that some of the resources in the community are 
not utilized, resulting in lower productivity. In this study, we 
used the following functional richness indexes: functional 
attribute diversity (FAD), modified functional attribute di-
versity (MFAD) (Schmera et al., 2009), and convex hull 
hypervolume (FRic) (Villéger et al., 2008).  

The evenness of traits (FEve) is the distribution law of 
the mean value of species traits in the trait space. This index 
quantifies the degree of trait uniformity. Low trait evenness 
indicates that some resources are over-utilized, whereas other 
resources are rarely utilized or have not yet been utilized. 

Trait dispersion can be used to describe the degree of 
convergence of traits in the functional space. High func-
tional dispersion indicates that the species group is distrib-
uted at the edge of the trait space. This metrics can be used 
to indicate the degree to which community resources differ 
as well as the degree of competition. We selected the fol-
lowing three trait dispersion indexes for used in our study: 
functional divergence (FDiv), functional dispersion (FDis), 
and Rao’s Quadratic entropy (RaoQ). 

2.4  Statistical analysis 

The seven functional diversity metrics mentioned above 
(specific index in Table 1) were calculated using R language 
and FDiversiry software (Casanoves et al., 2011). Based on 
the well-matched trait and species data collected, we devel-

oped a calculation scheme to explore our objectives. The 
importance of different traits was attenuated by random se-
lection and repeated simulation. At the same time, the 
multi-site simulated sampling ensured consistency of spe-
cies diversity. In this way, we could focus more on the effect 
of trait number on functional diversity. In practice, the pro-
cedure was as follows: 1) according to the calculated metric 
of functional diversity, corresponding data were consistently 
compiled; 2) different sampling scenarios were simulated 
and specific trait indicators were extracted from the data 
table; 3) R language was used to randomly select trait indi-
cators according to a specific number, and these metrics 
were calculated; and 4) the selected number of plant traits 
was increased one at a time from 3 to 34, with these traits 
being randomly selected 100 times, and the average was 
calculated as the result of each cycle. 

3  Results and discussion 

Altering the number of traits had different effects on the 
metrics of functional diversity. The specific indexes FAD, 
MFAD, FRic, and RaoQ were predictable using the equa-
tions indicated in Fig. 3 and Table 1. Theoretically, the niche 
space of functional richness quantification depends on the 
traits of species (Fig. 3). The more functional traits included, 
the larger the niche space that can be quantified (Mason et 
al., 2005). Therefore, the trait richness metrics could be 
measured and used to predict the total resource or niche 
space of different communities (de la Riva et al., 2018; 
Solefack et al., 2018)( Figs. S1–S4). Using a different num-
ber of traits to calculate functional diversity should yield  

 

 

Fig. 3  Relationship between functional diversity metrics and trait number  
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different results. 
Four of the seven functional diversity metrics included in 

this study were predictable, namely functional attribute di-
versity (FAD), modified FAD (MFAD), convex hull hyper-
volume (FRic), and Rao’s quadratic entropy (RaoQ). When 
the number of traits increased from 3 to 34, 100 random 
combinations were calculated on average (The supplemen-
tary files provide these equations for the different regions). 

The three metrics of trait richness and RaoQ increased 
with the number of selected traits. Specifically, FRic 
showed a linear increasing trend, and FAD and MFAD were 
well fitted as power functions (Table 1 and Fig. 3). Fur-
thermore, RaoQ was linearly correlated with the number of 
selected traits, similar to FRic. A plausible explanation for 
these results is that the calculated equation (Eqs.1–16) con-
tained information on both functional richness and trait dis-
persion; however functional richness was dominant. Fur-
thermore, the general equations used to determine FAD, 
MFAD, FRic, and RaoQ were similar across the forest 
communities sampled (from the tropical to the boreal zone); 
however, some data sets differed among these functional 
richness metrics (Tables S2–S5).  

Some of the functional diversity metrics could not be 
predicted, including FEve, FDiv, and FDis. The R2 of FEve 
fitting curve is not predictable and ranged from 0.033 to 
0.808. The metrics FDiv and FDis were similar, with R2 
values ranging from 0.3792 to 0.9546. Laliberté and Legen-
dre (2010) improved FDiv to achieve FDis. The similarity 
of the FDis and FDiv results in this study may be due to the 
fact that the distribution of the center of gravity was offset 
through calculating the mean value of FDis and FDiv multi-
ple times, therefore making the difference between them 
smaller. Altering the number of traits resulted in irregularly 
or even consistent change in these metrics, making it diffi-
cult to identify any clear trends (Figs. S5–S7). The indexes 
FEve, FDiv, and FDis have been commonly used as indica-
tors for quantifying the range of traits and the degree of dis-
tribution rules (Kraft and Ackerly, 2010). Our results indi-
cated that the three functional diversity range and distribu-
tion metrics were more variable than the functional richness 
metrics. Consequently, we suggest that the three range and 
distribution indexes should be used cautiously, especially 
avoiding reliance on experience or extrapolation of the un-
known from the known, because the number of traits had an 
unpredictable effect on them. Therefore, our findings show 
that the selection of traits or number of traits is very impor-
tant when using these metrics. 

Determination of functional diversity provides a promis-
ing approach for explaining variation in community or eco-
system function, including productivity, nutrient acquisition, 
flexibility, and resilience (Cornwell et al., 2006; Sonkoly  
et al., 2019), and can also reflect the adaptation of the 
community to anthropic disturbances (Biswas et al., 2019). 
Consequently, the metrics of functional diversity have been 

widely used across multiple fields of ecology (Petchey et al., 
2004). However, our results showed that only one compo-
nent of functional diversity (mainly functional richness) was 
predictable, indicating the necessity to further consider the 
theoretical basis for applying functional diversity. In prac-
tice, scientists generally cannot evaluate the repeatability or 
comparability of different studies, due to differences in the 
number of selected traits. Theoretically, it is speculated that 
the basis of calculated functional diversity is similar to spe-
cies diversity (Petchey and Gaston, 2002), and the theoreti-
cal basis of the latter is the theory of niche complementarity. 
The differentiation of different species is actually the dif-
ferentiation of traits. The basis of functional diversity is a 
variety of plant traits and their adaptation and response to 
environmental changes. Plant traits more directly reflect the 
resource acquisition of species and the complementation of 
a niche (Mason et al., 2005; Poos et al., 2009). Therefore, 
using functional diversity to directly measure all aspects of 
the spatial distribution of traits in a niche could be used to 
test these theoretical mechanisms. However, the methods 
used to calculate functional diversity cannot be overlooked, 
because of the difference in the relative importance of spe-
cific traits. For example, Fig. 3 shows that, as used in this 
study, the three metrics of trait richness (FAD, MFAD, and 
FRic) and RaoQ were predictable and similar in different 
regions. Consequently, these functions should be used as a 
protocol for guiding future studies or should be incorporated 
into different studies. 

The number of traits is a non-negligible factor for the 
study functional diversity; however, there is no implementa-
tion standard that can be referenced at present. Consequently, 
small numbers of traits (three or four) have been used to 
calculate functional diversity in previous studies (Mensah et 
al., 2016; Staples et al., 2019). Researchers should design 
experimental protocols for their own experimental purposes 
more rigorously and scientifically. Some researchers may 
consider functional redundancy and abandon the use of lar-
ger number of functional traits in their analyses (Correia   
et al., 2018; Lozanovska et al., 2018; Kearsley et al., 2019). 
Thus, it is important to determine which functional traits 
perform the more important roles in the community, along 
with identifying the importance of the traits (Garcia et al., 
2015). In natural communities, functional redundancy must 
exist, and could facilitate the stability and anti-interference 
ability of the community (Pillar et al., 2013). In this study, 
the predictive equations of the three trait richness metrics 
(FAD, MFAD, and FRic) and RaoQ increased non-linearly 
with the number of traits. This may be related to functional 
redundancy between traits, and requires further study. Fur-
thermore, researchers are encouraged to select more traits to 
explore ecosystem processes and functions, to reduce poten-
tial errors, and facilitate comparisons across studies in the 
future. 

Using a database of consistently measured traits of plant 
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species found in a range of forest types, we explored the 
predictability of functional diversity with respect to trait 
richness, trait evenness, and trait divergence. Our results 
demonstrated that only the three trait richness metrics and 
RaoQ were predictable, in relation to the influence of the 
number of traits on functional diversity. The relationship 
between each of the three functional richness metrics and 
number of traits, as well as the relationship between entropy 
and trait number, are expected to provide standard protocols 
to enable incorporation of different studies from the site to 
the regional scale in future. However, at present, uniform 
standards on what number of traits influences other func-
tional diversity indexes do not exist, nor is there information 
about how this is achieved. More research is required to 
improve both the theory of, and methodology used to calcu-
late functional diversity, even though the conceptual 
framework of functional diversity is promising. 
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功能多样性的预测准度受所选择的植物性状数量制约 

张自浩 1, 侯继华 1, 何念鹏 2,3,4 

1. 北京林业大学生态与自然保护区学院, 北京 100083；  

2. 中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101； 

3. 中国科学院大学资源与环境学院, 北京 100049；  

4. 东北师范大学教育部植被生态重点实验室, 长春 130024 

 

摘  要：植物功能多样性（Functional diversity）是将植物功能性状与群落结构相结合而推导的整合参数，为人们揭示植物

适应策略、植物性状间关系以及植物性状与功能间关系等提供了一种可选择的新技术手段。然而，至今人们还不清楚功能多样性

参数与所选取性状数量的关系，即它是否存在性状数量的依赖性? 这些信息对正确使用功能多样性参数至关重要。本文利用中国

东部森林样带 9 个典型森林生态系统的规范化测定的 366 个乔木物种和 34 种功能性状，对 7 个广泛使用的功能多样性参数的数

量依赖性进行了检验，它们分别是功能丰富度参数（functional attribute diversity, FAD; modified FAD, MFAD; convex hull hyper-

volume, FRic)、功能均匀度参数（functional evenness, FEve)、功能离散度参数（functional divergence, FDiv; functional dispersion, FDis; 

quadratic entropy, RaoQ)。分析结果表明：功能丰富度参数均随着所选择性状数量增加而增加，但功能离散度的各个参数对性状数

量变化表现出不一致趋势。整体而言，虽然 FAD、MFAD、FRic、RaoQ 随着性状数量变化而变化，但它们是可预测的，可比较

的。实验结果证明所选择的性状数量强烈地影响功能多样性参数，大部分参数随着性状数量变化是可预测的，证实了功能性状参

数是具有重要潜力的技术手段（特定地点研究和不同研究间的比较），因此在使用过程中需要高度重视性状数量选择的影响。 

 
关键词：性状；功能多样性；丰富度；均匀度；离散度；稳定性；可预测性 
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Appendix Ⅰ 
 

 

Fig. S1  The relationship between convex hull hypervolume (FRic) and the selected number of traits in different typical forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 

 

 

 

 

Fig. S2  The relationship between quadratic entropy (RaoQ) and the number of traits in different typical forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 
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Fig. S3  The relationships between functional Attribute Diversity (FAD)and the number of traits in different typical forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 

 

 
 

Fig. S4  The relationships between modified Functional Attribute Diversity (MFAD) and the number of traits in different typical 
forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 
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Fig. S5  The relationships between functional evenness (FEve) and the number of traits in different typical forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 

 

 

 
 

Fig. S6  The relationship between functional divergence (FDiv) and the number of traits in different typical forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 
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Fig. S7  The relationship between functional dispersion (FDis) and the number of traits in different typical forests  
Note: HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DongLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing. 
 

 
Appendix Ⅱ 
 
 
Table S1  The list of these selected traits and their abbreviations 

Category Traits Unit Abbreviation Category Traits Unit Abbreviation

Leaf area cm2 LA Stomatal pore length μm PL 

Leaf dry weight g LDW Stomatal pore width μm PW 

Leaf water content % LWC Stomatal area mm2 SA 

Specific leaf area mm2 mg–1 SLA Stomatal length μm SL 

 
 
 
Morphological traits 

Leaf thickness mm LT Stomatal density            pores per mm2       SD 

Leaf carbon content % LCC 

 
 
 
Stomatal traits 

Stomatal area fraction % P 

Leaf nitrogen content % N upper epidermal cells width μm UEW 

Ratio of C:N NA C/N Palisade tissue thickness (PT) μm PT 

Leaf Ferrum content mg g–1 Fe Sponge tissue thickness (ST) μm ST 

Leaf Kalium content mg g–1 K Ratio of PT:ST NA PT/ST 

Leaf Magnesium content mg g–1 Mg lower epidermal cells width μm LEW 

Leaf Phosphorus content mg g–1 P 

 
 
 
 
Anatomical traits

vessels width μm VW 

 
 
 
 
 
Stoichiometric 

Ratio of C:P  NA C/P Soluble sugar content (SSC) mg g–1 SSC 

Leaf Chlorophyll a content mg g–1 Chl a Starch content (SC) mg g–1 SC 

Leaf Chlorophyll b content mg g–1 Chl b Non–structure carbohydrate mg g–1 NSC 

Total chlorophyll content mg g–1 Chl Ratio of SSC:SC NA SSC/SC 

 
 
Chlorophyll traits 

Ratio of Chla: Chlb NA Chl a/b 

 
 
 
Other traits 

Leaf calorific value kJ cm–2 LCV 
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Table S2  The predictive equations of trait richness index (FRic) prediction equations at different sites (mean ±SE) 

Area Site† Fitted equation (y = kx + b) k    R2 

HZ y = 0.038x + 0.8043 0.038±0 a‡ 0.954 

LS y = 0.8472x + 4.5882 0.8472±0.0587 b 0.996 Temperate zone 

CB y = 0.7285x + 4.8064 0.7285±0.2366 b 0.9959 

DL y = 0.2274x + 2.8132 0.2274±0.0925 a 0.9986 

TY y = 0.253x + 2.0453 0.253±0.0956 a 0.9918 Subtropics 

SN y = 1.5507x + 7.3856 1.5507±0.1718 c 0.9956 

JL y = 1.2865x + 8.2721 1.2865±0.2096 c 0.9989 

DH y = 0.8329x + 8.2909 0.8329±0.5388 b 0.9902 Tropic 

JF y = 0.7927x + 12.1820 0.7927±0.1592 b 0.9849 

Note: † HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DangLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing.  
‡ There is no significant difference between data with the same alphabet in each column (P < 0.01). 
 
Table S3  The predictive equations of quadratic entropy (RaoQ) at different sites (mean ±SE) 

Area Site† Fitted equation (y = kx + b) k R2 

HZ y = 0.5036x + 0.2167 0.5036±0 ab‡ 0.9996 

LS y = 1.1944x – 0.8658 1.1944±0.1098 f 0.9997 Temperate zone 

CB y = 1.141x – 0.8301 1.141±0.2149 f 0.9997 

DL y = 0.4314x – 0.0682 0.4314±0.0366 a 0.9998 

TY y = 0.9301x – 0.7576 0.9301±0.0862 e 0.9997 Subtropics 

SN y = 0.8623x + 0.2462 0.8623±0.1035 de 0.9998 

JL y = 0.6646x – 0.1202 0.6646±0.1134 bc 0.9999 

DH y = 0.699x – 0.0952 0.699±0.0609 cd 0.9999 Tropic 

JF y = 0.7051x + 0.0154 0.7051±0.0433 cd 0.9999 

Note: † HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DangLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing.  
‡ There is no significant difference between data with the same alphabet in each column (P < 0.01). 

 
Table S4  The predictive equations of functional attribute diversity (FAD) at different sites (mean ± SE). 

Area Site† Fitted equation (y = Axk) k R2 

HZ y = 4.1931x0.5024 0.5024±0 a‡ 0.9999 

LS y = 62.034x0.5281 0.5281±0.0075 bc 0.9995 Temperate zone 

CB y = 94.622x0.5366 0.5366±0.0063 c 0.9997 

DL y = 43.469x0.5172 0.5172±0.0023 b 0.9997 

TY y = 28.148x0.5326 0.5326±0.0163 b 0.9992 Subtropics 

SN y = 535.82x0.5195 0.5195±0.0050 b 0.9998 

JL y = 1199x0.5251 0.5251±0.0020 bc 0.9997 

DH y = 345.39x0.5232 0.5232±0.0018 bc 0.9999 Tropic 

JF y = 3141.7x0.5339 0.5339±0.0015 c 0.9996 

Note: † HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DangLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing.  
‡ There is no significant difference between data with the same alphabet in each column (P < 0.01). 

 
Table S5  The predictive equations of modified functional attribute diversity (MFAD) at different sites (mean ±SE) 

Area Site† Fitted equation (y = Axk) k R2 

HZ y = 1.3977x0.5024 0.5024±0 a‡  0.9999 

LS y = 5.894x0.5281 0.5281±0.0075 bc 0.9995 Temperate zone 

CB y = 7.8935x0.5315 0.5315±0.0063 c 0.9998 

DL y = 4.9451x0.5168 0.5168±0.0023 b 0.9997 

TY y = 3.426x0.5284 0.5284±0.0163 b 0.9993 Subtropics 

SN y = 17.892x0.5199 0.5199±0.0050 b 0.9998 

JL y = 26.969x0.5251 0.5251±0.0020 bc 0.9997 

DH y = 14.092x0.5233 0.5233±0.0018 bc 0.9999 Tropic 

JF y = 43.226x0.5338 0.5338±0.0015 c 0.9996 

Note: † HZ, HuZhong; LS, LiangShui; CB, ChangBai; DL, DangLing; TY, TaiYue; SN, ShenNong; JL, JiuLian; DH, DingHu; JF, JianFengLing.  
‡ There is no significant difference between data with the same alphabet in each column (P < 0.01). 
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Appendix Ⅲ 
 

 

The formula of trait diversity index 
 

1. FAD is commonly calculated as Eq. 1 and Eq. 2: 
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where T is the number of traits, and xti and xtj are the values 
of species i and species j for trait t, respectively. EDij is the 
Euclidean distance between species i and species j, and S is 
the number of species. 

2. MFAD is a multidimensional trait richness index de-
rived from the development of the FAD index, which con-
siders the impact of species diversity (Eq. 3).  
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3. FRic is calculated by the area or volume of the small-
est polygon generated within the multidimensional convex 
hull volume formed by multiple traits (Villeger et al. 2008). 
This is a complex calculation that can be done in both 
Qhull software (http://www.Pricklysoft.org/software/ raithull. 
html) and R languages (http: //www.ecolag. univmontp2. 
fr/index. php? option = com _ content & task = view & 
id=219 & Itemid=125). 

4. The evenness of traits (FEve) is the distribution law of 
the mean value of species traits in the trait space (Eqs.4–6).  
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where S is the number of species, PEWb is the local 
weighted average uniformity, EWb is the weighted average 
uniformity, wi is the relative abundance of species i, and dij 
is the Euclidean distance between species i and species j. 

5. FDiv was calculated as follows: 
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where S is the number of species, xik is the value of 
species i trait k, gk is the center of trait k, T is the number 
of traits, dGi is the average distance between species i 
and the center of gravity, and d is the dispersion degree 
with multiple degrees as the weight, wi is the relative 

abundance of species i; dG is the mean of idG . 

6. FDis is a new index from FDiv’s further improve-
ment. 
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where aj is the relative abundance of species j and xij is the 
ith trait of species j. zj is the weighted distance from species 
j to center c. Where aj is the relative abundance of species j 
and xij is the ith trait of species j. zj is the weighted distance 
from species j to center c. 

7. Rao defines a quadratic entropy equation that can be 
used to quantify the diversity and variability within a sys-
tem. 
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where S is the number of species, xij is the t-characteristic 
of species i, pi is the relative abundance of species i, and dij 
is the distance of species i and j in the trait space. 
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