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ABSTRACT: In Norway, the Willow Ptarmigan (Lagopus lagopus lagopus) is experiencing population
declines and is nationally Red Listed as Near Threatened. Although disease has not generally been
regarded as an important factor behind population fluctuations for Willow Ptarmigan in Norway,
disease occurrence has been poorly investigated. Both louping-ill virus (LIV) and the closely related
tick-borne encephalitis virus are found along the southern part of the Norwegian coast. We assessed
whether and where Norwegian Willow Ptarmigan populations have been infected with LIV. We
expected to find infected individuals in populations in the southernmost part of the country. We did not
expect to find infected individuals in populations further north and at higher altitudes because of the
absence of the main vector, the sheep tick (Ixodes ricinus). We collected serum samples on Nobuto
filter paper and used a hemagglutination inhibition assay for antibodies against LIV. We collected data
at both local and country-wide levels. For local sampling, we collected and analyzed 87 hunter-collected
samples from one of the southernmost Willow Ptarmigan populations in Norway. Of these birds, only
three positives (3.4%) were found. For the country-wide sampling, we collected serum samples from
163 Willow Ptarmigan carcasses submitted from selected locations all over the country. Of these birds,
32% (53) were seropositive for LIV or a cross-reacting virus. Surprisingly, we found seropositive
individuals from locations across the whole country, including outside the known distribution of the
sheep tick. These results suggest that either LIV or a cross-reacting virus infects ptarmigan in large
parts of Norway, including at high altitudes and latitudes.

Key words: Lagopus lagopus, louping-ill virus, ptarmigan, serosurvey, tick-borne viruses.

INTRODUCTION

Louping-ill virus (LIV) is a tick-borne
flavivirus known to circulate among sheep
(Ovis aries), mountain hares (Lepus timidus),
and Red Grouse (Lagopus lagopus scoticus) in
the uplands of Great Britain and Ireland
(McGuire et al. 1998; Jeffries et al. 2014).
Historically, LIV has only been found on the
British Islands, but in recent decades the virus
has also been detected in Norway (Gao et al.
1993) and on the Danish island Bornholm in
the Baltic sea (Jensen et al. 2004). Addition-
ally, a virus with 94% homology to a British
LIV strain has caused louping-ill in sheep and
goats (Capra aegagrus hircus) in Spain
(Balseiro et al. 2012).

Louping-ill virus is closely related to tick-
borne encephalitis virus (TBEV), which is
present in foci over large parts of southern
Scandinavia, central and eastern Europe, and

Russia (Jeffries et al. 2014). Tick-borne
encephalitis virus has until recently been
assumed to be absent from the British Isles
(Mansfield et al. 2009; Jeffries et al. 2014), but
recent studies suggest that the virus is
maintained through enzootic cycles in some
forest habitats in England (Holding et al.
2019, 2020; Kreusch et al. 2019). Current
understanding of viral phenology suggests that
LIV and TBEV are the same viral species,
with LIV characterized as a sheep-adapted
type of TBEV, and that both viruses evolved
from a common caprine or ovine encephalitis
virus ancestor (Uzcátegui et al. 2012).

The only known tick vector for LIV is the
sheep tick (Ixodes ricinus), and the most
important hosts are sheep, mountain hares,
and Red Grouse (Gilbert 2016). Although
hares appear to act as healthy transmission
hosts (i.e., they are capable of transmitting the
virus without experiencing debilitating disease
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or long-term viremia), LIV infection can cause
severe disease in both sheep and grouse.
Furthermore, LIV has been regarded as a
major decisive factor for grouse chick survival
in tick-infested areas, as experimental infec-
tion is linked to high mortality (Reid 1975;
Reid et al. 1978; Gilbert et al. 2004).

Ticks can become infected by feeding on an
infected host (typically sheep or Red Grouse)
or by cofeeding, whereby an uninfected tick
becomes infected when feeding in close
proximity to another infected tick on the host,
typically mountain hares (Labuda et al. 1993;
Hudson et al. 1995; Jones et al. 1997). Hosts
become infected when bitten by an infected
tick. Red Grouse chicks can also become
infected by eating infected ticks (Gilbert et al.
2004).

The presence or prevalence of LIV in the
tick vector depends both on the density of
ticks and on the density of hosts that can
facilitate transmission of the virus from one
tick to another (Gilbert 2016). Although Red
Grouse are effective hosts for LIV, viral
infection can cause rapid and high mortality
(Reid 1975; Reid et al. 1978). Maintenance of
the virus life cycle is probably dependent on
the presence of other hosts such as sheep,
which experience a far lower mortality after
infection, as well as mountain hares, which
may not experience viremia after infection
(Hudson et al. 1995; Jones et al. 1997; Gilbert
2016). High density of sheep ticks is support-
ed by high densities of suitable hosts (Ytrehus
and Vikøren 2010). Survival, development,
and reproduction of sheep tick is dependent
on suitable microclimate (i.e., relatively warm
temperatures and high humidity) for a suffi-
ciently long period. Tick abundance decreases
with elevation, even after correcting for the
decline in maintenance host densities with
increasing elevation (Gilbert 2010).

Populations of Willow Ptarmigan (Lagopus
lagopus lagopus) and rock ptarmigan (Lago-
pus muta) in Norway are currently declining
(Lehikoinen et al. 2014; Eriksen et al. 2018),
and both species were listed as Near Threat-
ened in the National Red List for Species
(Henriksen and Hilmo 2015). The factors
underlying the declines are not fully under-

stood, but so far the effects of harvest
(Eriksen et al. 2018) and habitat change
(Henden et al. 2011), as well as the direct
and indirect effects of climate change in
causing alterations in the trophic interactions
between ptarmigan and their predators
(Kvasnes et al. 2014; Fuglei et al. 2020), have
received the most attention. The potential role
of disease and other health factors in the
population declines have not been investigat-
ed.

The distribution of the only known LIV
vector, the sheep tick, has been expanding in
Norway, with recent investigations reporting
the tick at an elevation .580 m in the
mountains of southern Norway and as far
north as 698N (Jore et al. 2011, 2014;
Andersen et al. 2019). Because sheep tick
distribution is partly determined by climatic
conditions, specifically mild and humid cli-
mates (Jore et al. 2011, 2014), ongoing climate
change is predicted to increase distribution
and thereby increase the probability of the
presence of tick-borne diseases. Consistent
with this prediction, an expansion of the
distribution of TBEV has been observed in
the Nordic countries (Jaenson et al. 2012;
Tonteri et al. 2016; Andersen et al. 2019).
From multifactorial models and predictions
(Randolph and Rogers 2000), TBEV will be
present along the southeastern coast of Nor-
way and will increase in range there, whereas
the more western, northern, and alpine parts
of the country will be protected by their
colder climates. This hypothesis has been
challenged recently by the findings of both
TBEV seropositive animals and ticks positive
for TBEV RNA in these parts of the country
(Ytrehus et al. 2013; Paulsen et al. 2015, 2019;
Soleng et al. 2018), indicating that TBEV is
focally present in large areas along the
northwestern and northern coastline of Nor-
way, at least up to 65.18N.

Although LIV infection has been detected
in sheep and wild cervids in Norway (Gao et
al. 1993; Ytrehus et al. 2013), its distribution is
not well delineated. In addition to an expand-
ing sheep tick distribution, the presence of
important transmission hosts (mountain hares
and sheep) and a climate and landscape
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resembling British and Irish moorlands (par-
ticularly along the coast), suggests a high
potential for the presence of LIV in Norwe-
gian Ptarmigan. If present, an effect on chick
survival similar to the reported high mortality
in Red Grouse chicks (Duncan et al. 1978;
Reid et al. 1978) could occur. Our study
aimed to determine whether and where in
Norway Willow Ptarmigan have been infected
by LIV. Serum samples were collected
through country-wide surveillance, as well as
by targeting one of the southernmost ptarmi-
gan populations close to the coastal areas
where TBEV and LIV circulate. We expected
to find a low seroprevalence of LIV in the
south, with few to no infected ptarmigan in
the higher latitudes and altitudes where
louping-ill has never been reported in sheep,
no screening studies indicate that the virus is
present, the sheep tick is absent or rare, and
climate predicts that cofeeding transmission is
unlikely to occur.

MATERIALS AND METHODS

Sample collection

Blood samples were collected from Willow
Ptarmigan harvested during the annual autumn
harvest following two data collection schemes,
local and countrywide, outlined in the upcoming
text. For both schemes, blood was sampled with
Nobuto filter paper strips (Advantec MFS,
Dublin, California, USA).

For the local sampling in autumn 2017, Willow
Ptarmigan were collected from Njardarheim, an
800-km2 state-owned property (approximately
598N, 78E, 500–1,400 m elevation) in southern
Norway. The mountain area was chosen because
it is heavily used as summer pasture for sheep
from farms along the nearby coast, which has a
high abundance of sheep tick (Jore et al. 2014),
clinical cases of TBEV infection in humans
(Skarpaas et al. 2004), and cases of LIV infection
in sheep (Ulvund et al. 1983; Ulvund 1987; Gao et
al. 1993; Stuen et al. 1996). It could hence be
expected that infected ticks would be transported
into the area each year. Through collaboration
with local wildlife managers, registered ptarmigan
hunters were contacted by email to explain the
purpose of the project and to ask them to register
online if they were willing to participate. Volun-
teers received sampling sets consisting of four
filter paper strips mounted in a cardboard holder
(Curry et al. 2014a, b), a protocol outlining the

blood collection procedure, and envelopes with
prepaid postage and address labels. The hunters
were instructed to examine the harvested Willow
Ptarmigan for hemorrhages to sample from. If no
such hemorrhages were found, the hunters were
told to incise the brachial vein. The filter paper
strips were to be dipped in visible blood until the
strips were saturated up to the indicated line. The
cardboard holder would then be marked with the
name and telephone number of the hunter, the
date and time of the bird’s death, and whether the
hunter regarded it to be a juvenile (,1 yr) or
adult bird on the basis of the appearance of the
primary flight feathers of the wings. The strips
were air-dried before being transferred to an
envelope and posted to the Norwegian Institute
for Nature Research, Trondheim, Norway. The
filter paper sets were stored at�80 C until elution
in May–June 2018.

For country-wide sampling, as part of the
Norwegian Monitoring Programme for Terrestrial
Ecosystems, appointed hunters submitted com-
plete Willow Ptarmigan carcasses harvested dur-
ing the hunting seasons of 2014–16. Each hunter
was requested to submit six adult birds from their
hunting area, thus providing samples from 33
selected locations throughout the country (Fig. 1
and see Supplementary Material Table S1).
Carcasses were stored at�20 C until postmortem
examination in March–April 2017, when three
filter paper strips mounted in a cardboard holder
were used to sample blood from the large veins
entering the heart. If it was not possible to fill the

FIGURE 1. Overview of sample locations in the
Norway-wide sampling of Willow Ptarmigan (Lagopus
lagopus lagopus), and seroprevalence of louping-ill
virus in the different locations. Note that sample sizes
are relatively small within locations (range, 1–13).
Seroprevalence is here defined as proportion of
positive samples out of the total number of samples
(i.e., treating equivocal samples as negative). The size
of the dot represents the sample size for the location.
Local sampling in Njardarheim in 2017 is not shown in
this map.
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filter paper strips completely from the heart
vessels, blood was also sampled from the cut
lungs. The strips were air dried at room
temperature then stored at �80 C until elution
in May–June 2018.

Serologic analysis

Filter paper strips were thawed at room
temperature and processed according to Curry
et al. (2014a, b). For each sample, the absorbent
part of three fully filled filter paper strips were
each cut in five to six pieces inside a 2.0-mL
Eppendorf tube (Eppendorf AG, Hamburg,
Germany). Between samples, the scissors used
for cutting were washed with soap and tap water,
disinfected in 10% household bleach (Klorint,
Lilleborg AS, Oslo, Norway, 4% sodium hypo-
chlorite) for at least 10 min, rinsed in distilled
water, put into 98% ethanol for 2–5 min, and air
dried to remove ethanol residues completely. If
strips were not completely filled with blood and
more than three strips were available, blood-
absorbed parts were cut from the fourth strip to
compensate for the part not filled, to approximate
the size of three filled strips. In cases where the
total amount of blood-filled filter paper constitut-
ed less than three completely filled strips, all the
blood-absorbed portions and some unabsorbed
portion of the strips were cut to approximate the
size of three strips. Filter strips were rated as
having good, fair, or suboptimal quality, based on
the color and proportion of filled filter paper.
Good strips were uniformly dark, fair strips had
lighter color or were not completely filled, and
suboptimal strips had lighter color, were only
partly filled, or both.

A stock solution containing Dulbeccos’s phos-
phate-buffered saline with calcium chloride and
magnesium chloride (Biowest, Nuaillé, France)
and an antibiotic (penicillin-streptomycin) solution
(Biowest, final concentrations of 100 U/mL and
100 lg/mL, respectively) were prepared and stored
at 4 C for a maximum of 24 hr (Curry et al. 2014a,
b). A total of 1.2 mL Dulbeccos’s phosphate-
buffered saline–antibiotic solution (0.4 mL/strip)
was added to each Eppendorf tube. The tubes
were finger-flicked to ensure that all parts of the
strips were in contact with the fluid and incubated
at 4 C for 16 hr. After incubation, the supernatant
(~750–800 lL) was transferred to a new 1.5-mL
Eppendorf tube and prepared for storage by
centrifuging for 10 s at 20.817 3 G. This eluate
was stored at�80 C for 1–2 mo until transportation
by express mail on ice blocks to the Moredun
Research Institute (Midlothian, Scotland).

The presence of antibodies to LIV was
evaluated by a hemagglutination inhibition (HI)
assay as described previously (Clarke and Casals
1958; Grist et al. 1966). Briefly, goose erythro-

cytes were collected in Alsever’s solution (Clarke
and Casals 1958; Grist 1966), and used to titrate
the eluted samples in the presence of constant-
titer virus antigen in a microtiter plate. This assay
format has been validated at Moredun Research
Institute in routine diagnostic use for many
species, including birds (Ytrehus et al. 2013).
Nonspecific inhibitors and goose erythrocyte
agglutinins were removed by kaolin and by goose
erythrocyte absorption (Reid et al. 1978). Positive
and negative controls (ovine sera of known LIV
serostatus) were included in each test batch to
confirm assay performance. The first dilution was
1:10 and the endpoint titer was 1:640. Samples
with a titer .1:20 were considered positive, and
titers above 1:640 would have been reported as
.1:640. Samples with a titer of 1:10 were
considered equivocal, and titers of ,10 were
considered negative. To assess to what extent
seroprevalence (i.e., the proportion of samples
considered positive out of the total number of
analyzed samples, treating equivocal samples as
negative) was related to longitude in the national
surveillance data set, we used a binomial mixed
effects model, with location identification fitted as
a random intercept, implemented in the R
statistical language (R Development Core Team
2020) add-on library lme4 (Bates et al. 2015) by
the glmer function.

RESULTS

For local sampling, we received filter paper
samples from 88 individual Willow Ptarmigan
shot by 19 hunters in Njardarheim in 2017.
One sample was damaged during handling and
therefore could not be included, resulting in 87
samples available for analysis. Of these sam-
ples, 42 were from birds classified (by the
hunters) as juveniles, 25 from birds classified
as adults, and 20 samples from birds where age
was not classified. Of the 87 filter paper sets, 32
were of good, 27 of fair, and 28 of suboptimal
quality with regards to saturation and color.
Three (3.4%) of the 87 analyzed serum
samples from Njardarheim were seropositive
for LIV: one juvenile, one adult female, and
one adult male. The titers were low, at 1:80,
1:40, and 1:20, respectively. The quality of the
filter strips from these individuals were eval-
uated as good, good, and fair, respectively.

In the country-wide sampling, we collected
163 samples, all of good quality, from Willow
Ptarmigan carcasses sent from throughout
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Norway. Of these samples, 53 (33%) were
classified as seropositive for LIV, although
showing low titers (1:20–1:80); 36 (22%) were
classified as equivocal, having titers of 1:10;
and 74 (45%) were classified as negative. One
additional sample was excluded from the
laboratory analysis because of the presence
of agglutination in the control well (red blood
cells and serum only). Positive and equivocal
samples were detected in birds throughout
the country (Fig. 1 and see Supplementary
Table S1), including locations north of 698N
and from inland and high-altitude areas in
southern Norway (e.g., Røros, Tolga, and
Lierne in Supplementary Table S1), which
are outside the range of the sheep tick
according to the most recent tick distribution
investigation (Jore et al. 2011). Study sites
with the lowest proportion of positive birds
were located in northern parts of the country,
with a clear pattern of lower seroprevalence at
higher latitudes (binomial mixed effects model
with location identification as random effect;
slope¼�0.65 [SE 0.21], P¼0.002 [Fig. 2]).

DISCUSSION

The finding of three LIV-seropositive Wil-
low Ptarmigan with low titers in the local
sampling from Njardarheim in the southern-
most mountains of Norway is not surprising.

Louping-ill virus is regarded to be present
along the southern coast of Norway, and the
mountain areas are used as summer pastures
for thousands of sheep from these coastal
areas. Some of these sheep presumably carry
infected I. ricinus ticks when they are moved
up to the mountains in the spring, and some
fed ticks that have fallen from sheep could
potentially be ingested by ptarmigan chicks,
which have been shown to be infected in this
manner (Gilbert et al. 2004; Gilbert 2016).
The low seroprevalence suggests, however,
that permanent, LIV-infected populations of
sheep tick are not established in the environ-
ments used by Willow Ptarmigan in these
areas, despite the recent increases of sheep
tick abundance and range (Jore et al. 2011,
2014). The lower proportion of seropositive
birds among juveniles (2.4%) compared with
adults (8.0%) could simply be sampling error
caused by low sample sizes and few positive
birds overall. Alternative explanations are that
the difference could be caused by the longer
period of risk of exposure for the adults, or
that a higher case fatality rate (Reid et al.
1978) among chicks compared with adults
contributes to this difference.

The finding of LIV-seropositive birds in
localities throughout Norway (up to 70.48N)
was surprising. Many of these study sites are
at higher altitudes or higher latitudes, where
the sheep tick is not supposed to be able to
maintain populations (Jore et al. 2011; Kjær et
al. 2019) and where sheep are not transported
from sheep tick–infested areas on a regular
basis. Even when taking into account that the
distribution of the sheep tick has expanded
northwards and further inland during the past
decades (Jore et al. 2011) and that several
studies have indicated presence of TBEV in
areas previously believed to be climatically
unsuitable for TBEV virus transmission (Ytre-
hus et al. 2013; Soleng et al. 2018; Paulsen et
al. 2019), it seems implausible that LIV (or
TBEV) is circulating at all the locations at the
high altitudes and latitudes described in the
current study.

We propose five alternative explanations for
these results: 1) false positive results, 2) cross-
reactivity with other, unknown flaviviruses, 3)

FIGURE 2. Proportion of Willow Ptarmigan (Lago-
pus lagopus lagopus) seropositive for louping-ill virus
in the Norway-wide sampling relative to latitude in
geographic degrees. The size of the circles is
proportional to the number of samples in each
location. The proportion of seropositive birds gener-
ally is higher in the southern than in the northern
locations. Results from local sampling in Njardarheim
in 2017 are not included.
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ptarmigan infected with LIV during migration
to areas within the range of the sheep tick, 4)
sheep tick and LIV found in unrecognized
microfoci also at high altitudes and latitudes,
5) alternative vectors transmitting LIV.

Most studies that compare filter paper
methods with blood sample collection and
centrifugation for serum or plasma separation
conclude that they perform as well as or
slightly inferior to the latter (Curry et al. 2011,
2014a, b; Smit et al. 2014). In a recent study of
West Nile virus in Ruffed Grouse (Bonasa
umbellus), Nemeth et al. (2017) concluded
that there was complete agreement between
the results from analyses of filter paper
samples and ordinary serum samples, but that
titers were lower when using the filter paper
method. Consequently, we do not expect that
the use of filter paper as a sample collection
medium should increase the proportion of
false positives, but rather that titer would be
underestimated. The modified HI test for
antibody to LIV used in this study has been
used at the Moredun Research Institute for
decades and is validated for routine diagnostic
use on Red Grouse serum, with no interfer-
ence from hemolysis in the samples (M.R.
pers. comm.). There is no reason to expect any
difference between the subspecies Red
Grouse and Willow Ptarmigan in this regard.

The difference in prevalence of positive
individuals from the birds sampled as fresh
carcasses (local sampling) and the birds
sampled postmortem after a period of storage
at�20 C (country-wide sampling) is puzzling.
The quality of the hunter-collected filter
paper strips was highly variable compared
with the standardized samples taken at
postmortem examination. Some of the filter
paper strips from the local sampling may not
have been thoroughly air-dried before they
were shipped to the laboratory, but this
should rather have caused false positive test
results (M.R. pers. comm.). We do not know
whether, for example, microbial growth in a
moist filter paper can affect serology, but we
do not disregard this possibility. Sampling
from frozen carcasses instead of fresh blood
could also affect the results. When Sacks et al.
(2002) compared results of an enzyme-linked

immunosorbent assay for heartworm (Dirofi-
laria immitis) used on serum samples collect-
ed with filter paper immediately after death
with samples collected postmortem from
frozen and thawed carcasses of the same
animals, they did not find any difference in
discriminatory power, but did find higher
enzyme-linked immunosorbent assay values in
samples collected postmortem from nonin-
fected individuals, indicating more nonspecif-
ic binding with test antibodies. We are not
aware of reports describing similar effects on
HI tests, but we cannot disregard the
possibility that freezing and thawing increased
the number of false positives in samples
collected from carcasses. However, 42 of the
77 (62.7%) individuals with an age deter-
mined that were collected in the local
sampling were juveniles, whereas all the birds
in the country-wide sampling were adults. As
discussed earlier, a difference in seropreva-
lence between juveniles and adults is plausi-
ble, suggesting that the difference between
the two sample populations may at least be
attributed partially to their different age
composition.

Cross-reactivity between LIV and TBEV
can occur (Mansfield et al. 2011; Klaus et al.
2014), and cross-reactivity may also occur with
other closely related flaviviruses. The exis-
tence of other flaviviruses in wildlife in
Norway has been suggested by Traavik
(1979) and Traavik et al. (1984), who hypoth-
esized that flaviviruses transmitted by mos-
quitos could explain seroreactivity against
TBEV outside the known range of sheep tick.
A candidate could be West Nile virus, a
mosquito-borne flavivirus that can cause fatal
infections in bird species within the same
subfamily (Tetraoninae) as ptarmigan (Clark
et al. 2006; Nemeth et al. 2017). West Nile
virus was regarded as not present in Norway
in 2017 or during previous transmission
seasons (European Centre for Disease Pre-
vention and Control 2017). However, two
mosquito-borne flaviviruses (Ilomantsi and
Lammi viruses) have recently been isolated
in Finland (Huhtamo et al. 2009, 2014),
suggesting a potential for unknown flavivirus-
es in Norway.
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Ptarmigan visiting areas with TBEV- or
LIV-infected sheep tick, or both, before
returning back to the localities where they
were shot could explain incidental seropositive
birds. Willow Ptarmigan show high philopatry
in most areas in Norway, although dispersal
from natal areas to breeding grounds can
occur (Rørvik et al. 1998; Brøseth et al. 2005).
Hence, the exposure of ptarmigan to LIV or
TBEV in areas with sheep tick is expected to
be limited. Therefore, it seems unlikely that
this could cause high prevalence in areas very
far away from the known distribution of sheep
tick.

The existence of small populations of sheep
tick with LIV in climatically suitable micro-
habitats throughout Norway could explain the
pattern of seroconversion observed in this
study. Ticks infected with TBEV have been
found recently in the UK in areas where no
LIV is present in livestock, and this finding
seems to represent microfoci of virus persis-
tence (Holding et al. 2020). However, the
recent mapping efforts (Jore et al. 2011;
Hvidsten et al. 2014) and the geographically
limited distribution of tick-borne diseases
among people and domestic animals indicate
that it is unlikely that microfoci of sheep tick
and virus persistence are as common and
widespread as indicated in our study (Jore et
al. 2011; Paulsen et al. 2015). Ticks infected
with LIV could be transported to ptarmigan
areas with other birds, as occurs with TBEV
(Waldenström et al. 2007; Hasle 2013), and
thereafter ingested by ptarmigan chicks. It
seems unlikely that this would occur to the
extent needed to create the patterns found in
this study.

Another possibility is that vectors other
than sheep tick transmit LIV—for example,
other ixodid ticks present in Norway, such as
Ixodes trianguliceps, Ixodes hexagonus, or
Ixodes uriae (Jore et al. 2011). Still, it seems
unlikely that ptarmigan should have frequent
contact with these tick species, which are
nidicolous and found in or around the nests or
hiding places of rodents and shrews, hedge-
hogs (Erinaceus europaeus) and mustelids,
and seabirds.

Infectious diseases have not been regarded
as important contributors to population fluc-
tuations in Norwegian ptarmigan populations,
but Holmstad et al. (2005a, b, 2006, 2008)
describe the presence and effect of several
parasite species. No high mortality or disease
outbreaks in ptarmigan have been reported in
Norway during the last century. Given the low
population densities of Norwegian ptarmigan
and the rugged and remote landscapes the
birds live in, it may be that even high disease-
related mortality would be difficult to detect
or to differentiate from other causes of
mortality. The widespread seroconversion to
LIV or a cross-reacting virus do, however,
warrant more detailed monitoring and studies
into the potential effects of flaviviruses on
Willow Ptarmigan population dynamics in
Scandinavia. Climate warming, increased
bush encroachment in alpine areas, and
increased population densities of deer have
facilitated increased sheep tick distribution
and density (Jore et al. 2014), which may
increase distributional overlap between the
tick and Willow Ptarmigan, potentially in-
creasing exposure of the ptarmigan to LIV in
the coming decades.

This study is a typical illustration of the
many impediments of wildlife disease re-
search when it comes to sample acquisition
and to the performance and validity of
diagnostic tests on samples of variable quality
(Stallknecht 2007). The results should hence
be interpreted with some caution. The study
may indicate that Norwegian ptarmigan in
many parts of the country are at risk of
infection with LIV or with serologically cross-
reacting flaviviruses. Further research should
focus on molecular detection of flaviviruses in
potential vectors, such as mosquitos and
ixodid ticks. Further monitoring and research
into the ecology of the virus and potential
effect on the ptarmigan population is also
warranted. Studies of flaviviruses in wild birds
might be important not only in the context of
wildlife management, but also in a public
health context, especially when exploring the
potential for recombination between flavivi-
ruses (Norberg et al. 2013; Bertrand et al.
2016).
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