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Behavioural thermoregulation by Australian freshwater
turtles: interspecific differences and implications for
responses to climate change

Bruce C. Chessman

Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South
Wales, Sydney, NSW 2052, Australia. Email: brucechessman@gmail.com

Abstract. The abilities of freshwater turtles to control their body temperatures by behavioural means have
implications for activity, food ingestion and digestion, growth, reproduction and potential responses to climate change.
I compared various forms of basking in nature, and responses to aquatic and aerial photothermal gradients in the
laboratory, among three species of Australian chelid turtles: Chelodina expansa, C. longicollis and Emydura macquarii.
Proclivity for behavioural thermoregulation varied substantially among these species, being highest in C. longicollis
and lowest in C. expansa. However, C. expansa had a thermophilic response to feeding. For C. longicollis and
E. macquarii, behavioural thermoregulation may enhance colonisation of more southerly latitudes or higher elevations
as climatic warming proceeds. However, increasing air temperatures may pose a hazard to turtles dispersing or
sheltering terrestrially (for example, when water bodies dry during drought). C. longicollis appears the best placed of
the three species to avoid this hazard through its abilities to thermoregulate behaviourally and to aestivate in terrestrial
microenvironments that are buffered against temperature extremes.
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Introduction

The abilities of poikilothermic animals to control their body
temperatures by behavioural means have growing significance
as climate change alters their thermal environments (Kearney
et al. 2009; Gvoždík 2012; Woods et al. 2015). In the case of
reptiles, the potential for behavioural thermoregulation to
modulate responses to climate change has been explored for
several squamates (e.g. Aubret and Shine 2010; Buckley et al.
2015; Caldwell et al. 2017; Rubalcaba et al. 2019), but may
also be relevant to turtles (Butler 2019).

Freshwater turtle species vary in their abilities and
tendencies to alter their body temperatures by behavioural
means. Individuals of many species leave the water
periodically to bask in sunshine on logs or other objects, a
behaviour termed aerial or atmospheric basking (Moll and
Legler 1971; Ewert 1976). Hypothesised functions of
aerial basking include both thermoregulatory and non-
thermoregulatory benefits: elevation of body temperature to
speed food digestion and enhance the availability of energy for
growth and reproduction, vitamin D synthesis, drying of the
skin and shell to assist ecdysis, reduction of body burdens of
leeches, algae, fungi and bacteria, and resting in fast-flowing
streams (Cagle 1950; Neil and Allen 1954; Boyer 1965; Shealy
1976; Acierno et al. 2006; Carrière et al. 2008; Bulté and

Blouin-Demers 2010). Alternatively, turtles may float at the
surface of water bodies with vertical thermal stratification, a
behaviour known as aquatic basking (Moll and Legler 1971;
Obbard and Brooks 1979). Semiaquatic basking also occurs,
whereby a turtle rests on the bottom of shallow water or on a
submerged object, with its carapace exposed to air (Boyer
1965; Auth 1975). Any form of basking necessitates a trade-off
between its benefits and the associated sacrifice of foraging
time, which may limit basking frequency and duration (Bulté
and Blouin-Demers 2010; Clavijo-Baquet and Magnone
2017).

Several species of Australian chelid turtles have been
observed to bask, but opinions about the thermoregulatory
significance of this behaviour differ. Webb (1978) interpreted
aerial basking as serving a thermoregulatory purpose because
several behaviours of aerially basking captive chelids
suggested prevention of overheating of the extremities while
allowing the main body mass to warm to a desired temperature.
However, Manning and Grigg (1997) found that aerial basking
in a riverine population of Emydura signata resulted in only
occasional elevation of body temperatures above water
temperatures. These authors accordingly concluded that aerial
basking was not of thermoregulatory significance in their study
population, and suggested that the occasional elevated body
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temperatures that they observed could have been due to
accidental exposure to solar radiation or ‘behavioural fever’ –
a response to bacterial infection (Monagas and Gatten 1983).
Manning and Grigg (1997) also speculated that aerial
basking of E. signata might deliver non-thermoregulatory
benefits such as inhibiting algal or fungal growth and
promoting synthesis of vitamin D.

The capacity or incapacity of freshwater turtles to regulate
their body temperatures has growing significance as human
activities drive increases in average and extreme
environmental temperatures globally. In Australia, average
air temperatures have increased by ~1�C over the past century
(Kirono et al. 2017), and a larger increase is likely in the
present one (Grose et al. 2017). Correlative bioclimatic models
predict substantial shifts in the distributions of Australian
freshwater turtle species in response to projected climate
change (Ihlow et al. 2012; James et al. 2017; Graham et al.
2019), but such models do not incorporate mechanistic
considerations such as thermoregulatory ability, which may
modify responses to rising temperatures (Kearney et al. 2009).

Here, I analyse data obtained in 1972–78 as part of a Ph.
D. project at Monash University, Clayton, Victoria (Chessman
1978), and in minor follow-up studies in 1979–80, to assess the
capacity for behavioural thermoregulation of three Australian
species of chelid turtles (Chelodina expansa, C. longicollis and
Emydura macquarii), and the possible influence of recent
feeding. I analyse behaviour and body temperatures in
nature and in two types of photothermal gradients in the
laboratory. My aim is to shed further light on the capacity and
propensity of Australian freshwater turtles for behavioural
thermoregulation, its potential benefits, and the implications
for responses to projected climate change. Whereas
observations in natural environments can reveal the frequency
of basking and its relationships to biological and
environmental variables, experiments in artificial thermal
gradients can ensure that preferred body temperatures are
always attainable, in contrast to natural situations where such
temperatures may be unachievable (Angilletta et al. 2002).
Thus, field and laboratory studies can provide complementary
information to understand thermoregulation.

Materials and methods
Study species
Chelodina expansa Gray, 1857, the broad-shelled turtle, is a
long-necked species with a maximum carapace length of
~500 mm, distributed from south-eastern Queensland through
western New South Wales and northern Victoria to south-
eastern South Australia (Bower and Hodges 2014). It is
carnivorous (Legler 1978; Chessman 1983b), inhabits running
or standing water bodies that are permanent or near to
permanent water (Chessman 1988a; Ocock et al. 2018), and is
not known to aestivate.

Chelodina longicollis (Shaw, 1794), the eastern long-
necked turtle, has a maximum carapace length of ~280 mm,
and is naturally distributed from north Queensland to southern
Victoria and south-eastern South Australia (Kennett et al.
2009). It is carnivorous (Chessman 1984b; Georges et al.
1986), occupies diverse running and standing water bodies,

and is particularly adapted to temporary waters by a low rate of
evaporative water loss, ability to aestivate, and proclivity for
overland migration (Chessman 1984a, 1988a; Roe and
Georges 2007, 2008a).

Emydura macquarii (Gray, 1830), the Macquarie turtle, is a
polymorphic short-necked species (or species complex) with a
maximum carapace length of >400 mm (Georges et al. 2006);
it is widely distributed in eastern mainland Australia and
adjacent islands (Georges et al. 2018). It is omnivorous
(Chessman 1986; Spencer et al. 1998), inhabits running or
standing waters that are permanent or near to permanent water
(Chessman 1988a; Ocock et al. 2018), and is not known to
aestivate. Emydura krefftii and E. signata are considered
conspecific with E. macquarii by Georges and Thomson
(2010).

Thermoregulation in nature
Turtles engaged in apparent aerial, aquatic or semiaquatic
basking were observed in various parts of Victoria and
southern New South Wales between 1972 and 1980, mainly in
the Murray Valley between the Murray-Kulkyne Park (34.7�S,
142.5�E) and Torrumbarry (35.9�S, 144.5�E), and in the La
Trobe Valley in Gippsland (38.1–38.2�S, 146.5–146.8�E).
Some observations were opportunistic in the course of studies
of various aspects of turtle ecology and others were targeted
through visits to known basking sites.

Basking turtles were often too wary to be captured but some
basking fully or partly out of the water were caught by
approaching them rapidly from cover and enclosing them in a
hand net. Some turtles floating in the warm surface layer of
water bodies with vertical thermal stratification were captured
by wading slowly into the water and extending a small net,
attached to a 3–5-m-long handle, beneath them. Because
turtles were generally observed for only a brief time before
capture, the duration of prior basking was unknown and they
were likely caught at various stages of the basking process.

Body temperatures of captured turtles were mostly
determined with a Yellow Springs model 46 TUC
telethermometer fitted with a 402 series probe, which was
inserted through the cloacal vent for a distanceof ~40–70%of the
turtle’s carapace length. In a few cases, rectal temperatures
were taken with a small-diameter mercury thermometer. Air,
water-surface and water-bottom temperatures coincident with
basking observations were measured with the telethermometer
or a standard mercury thermometer.

Thermoregulation in the laboratory
Turtles for experiments in laboratory photothermal gradients
were obtained from the Murray Valley, ranged in mass from
100 to 3300 g, and included juveniles, adult males and non-
gravid adult females. Prior to experiments, which took place in
February–September (first series) or throughout the year
(second series), they were housed for several months in plastic
tubs of tap water (24 � 2�C), with artificial lighting for 12 h
per day (0700–1900 hours), and fed chopped meat with
vitamin and calcium supplements, worms and fish. In order to
test the hypothesis that basking is promoted by feeding as a
means of enhancing digestion, they were tested in both series
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in two nutritional states: with no feeding in the week before
testing (hereafter, fasted) and immediately after feeding to
satiation (hereafter, fed).

Experiments were done during the daylight portion of the
cycle to which the turtles had been acclimated. For the first
series, a vertical photothermal gradient in water was
established by suspending three or four 250-W heat lamps
above a cylindrical tank of tap water 0.58 m wide and 0.87 m
deep. Room temperature and lamp height were manipulated to
establish thermal gradients from cooler bottom to warmer
surface water of ~26–33�C or ~29–36�C. However, stirring of
the water by turtle movement resulted in some deviation from
these temperatures. A vertical wooden ladder with rungs 0.1 m
apart, attached to one internal face of the tank, enabled turtles
to rest at various depths, but they were not able to exit the
water. Turtles (five C. expansa, seven C. longicollis and 16
E. macquarii) were placed individually in the tank, allowed 1 h
or more to adjust to their new environment, and then removed
at intervals of ~1 h (occasionally ~2–3 h) for measurement of
body temperature by telethermometer as in the field. Individual
turtles were tested on multiple occasions with 1–4
measurements per session. The telethermometer was also used
to measure surface (50-mm depth) and bottom water
temperatures in the tank at the same times as turtle body
temperatures.

For the second series, a horizontal photothermal gradient in
air was established in a rectangular chamber 2.6 m long, 0.8 m
wide and 0.8 m deep, with a floor of asbestos sheeting. Three
250-W heat lamps were suspended at equal intervals along the
central axis of the chamber at successive heights of 0.2, 0.4 and
0.6 m, and room temperature was not controlled. Turtles
(seven C. expansa, eight C. longicollis and 14 E. macquarii)
were placed in the chamber individually or in small groups
(2–6 turtles), on multiple occasions, and deep-body
temperatures were determined at intervals as for the first series,
with 1–6 measurements per turtle per session. The air
temperature at the coldest point in the chamber was measured
with a mercury thermometer at the same time as measurements
of turtle body temperatures.

Statistical analysis
Linear mixed models with restricted maximum-likelihood
estimation were used to relate turtle body temperatures to
environmental temperature (random effect), species and
nutritional status (fixed effects), and interactions of these
predictors. Separate analyses were conducted for aerial
basking in the field, aquatic basking in the field, and the two
series of laboratory experiments. Relationships to air, water
surface and water bottom temperatures were also analysed
separately, because these temperatures were highly correlated
with one another. No analysis was done for semiaquatic
basking in the field because sample sizes were low, and
information on nutritional status was available only for the
experiments. Turtle identity, nested within species, was
included in the models for the experiments because multiple
measurements were made on the same individuals. Linear
regressions were also calculated for relationships between
body and environmental temperatures. All tests were

performed with XLSTAT 2020.1 (Addinsoft 2020), and F and
P values were based on Type III tests.

Results

Thermoregulation in nature

No basking was observed for C. expansa, but apparent aerial,
aquatic and semiaquatic basking were observed for both
C. longicollis and E. macquarii. Although lotic waters were
studied extensively, 91% of aerial and 100% of aquatic and
semiaquatic basking observations were in lentic waters,
especially oxbow lakes and farmponds in theLaTrobeValley for
C. longicollis and Lake Boga in the Murray Valley for
E. macquarii. Basking was observed at all times of year except
mid-winter (Table 1), and all three forms of basking were
associated with maximum body temperatures in the range
32–34�C (Table 1).

Body temperature during aerial basking was significantly
related to simultaneous air and water surface temperatures, and
there was a significant difference between species and a
significant interaction between species and water surface
temperature (Table 2). InC. longicollis, body temperature during
aerial basking was essentially independent of water surface
temperature, whereas in E. macquarii the two had a strong
positive correlation (Fig. 1). Body temperature during aquatic
basking was significantly related to both water surface and
water bottom temperatures, being below or about equal to the
former and above or about equal to the latter, and there was no
significant difference between species (Table 2; Fig. 2).
Semiaquatic basking produced body temperatures similar to
simultaneous water surface temperatures and above
simultaneous water bottom temperatures.

Thermoregulation in the laboratory

Experiments with C. expansa in the vertical photothermal
gradient in water were discontinued after initial testing
because this species seldom left the bottom of the tank.
However, C. longicollis and E. macquarii frequently swam or
rested in the tank’s upper or middle parts, achieving body
temperatures that were often well above water bottom
temperatures and sometimes about equal to water surface
temperatures (Figs 3 and 4). Body temperatures of these
species were significantly related to surface and bottom water
temperatures, and there was a significant difference between
species (Table 2), with body temperatures of E. macquarii

Table 1. Ranges of body temperatures of turtles captured while
engaged in apparent aerial, aquatic and semiaquatic basking in nature

Basking
type

Species Period observed Body temperature
range (�C)

Aerial C. longicollis August–May 18.6–27.3 (n = 10)
E. macquarii September–June 12.8–34.2 (n = 39)

Aquatic C. longicollis September–May 17.8–32.2 (n = 34)
E. macquarii October–June 12.6–29.6 (n = 37)

Semiaquatic C. longicollis November 24.0 (n = 1)
E. macquarii October–June 12.0–33.2 (n = 11)
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tending to be more elevated above water bottom temperatures
than those of C. longicollis (Fig. 4). The main effect of
nutritional status was not significant but there were significant
interactions between species and nutritional status
(Table 2), due to a slight tendency for C. longicollis to
have higher body temperatures when fed than when fasted, and
for E. macquarii to have higher body temperatures when fasted
than when fed (Figs 3 and 4). Slopes of regressions of body on
environmental temperatures were always substantially <1,
especially for C. longicollis (Figs 3 and 4).

In the horizontal photothermal gradient in air, minimum air
temperatures ranged from 6.4 to 29.5�C. The highest body
temperature was 34.4�C and only four of 562 body
temperatures exceeded 32.0�C, even though turtles could
probably have achieved higher temperatures by basking
beneath the lowest lamp for extended periods. C. longicollis
and E. macquarii sometimes assumed an apparent basking
posture under one of the lamps, but this behaviour was never
observed in C. expansa. The main effects of minimum air
temperature, species and nutritional status on body
temperature were all significant, as was the interaction
between species and nutritional status (Table 2). All three
species achieved body temperatures well above minimum air
temperatures when the latter was low, but similar to or slightly
below minimum air temperatures when the latter was high
(Fig. 5). The notable difference among the species was that fed
C. expansa achieved higher body temperatures than fasted
C. expansa when minimum air temperature was low, whereas
for the other two species the relationship between body
temperature and minimum air temperature was independent of
nutritional status (Fig. 5). Slopes of regressions of body on

environmental temperatures were always appreciably
<1 (Fig. 5).

Discussion

All three species considered in this study showed some
capacity to buffer their body temperatures against ambient
temperature variation in environments that enabled them to do
so. This capacity was demonstrated by slopes substantially <1
for regressions of body on environmental temperature both in
nature and in the laboratory, particularly for C. longicollis
(Figs 1–5). For example, in the vertical photothermal gradient
in water in the laboratory, mean body temperatures of
C. longicollis and E. macquarii were quite stable as surface
and bottom water temperatures varied over a range of ~8�C
(Figs 3 and 4). The turtles could have achieved this stability
only by tending to select shallower water when ambient
temperatures across the gradient were lower and deeper water
when ambient temperatures across the gradient were higher.

The high thermoregulatory ability of C. longicollis may
relate to its proclivity for terrestrial dispersal (Roe and
Georges 2007, 2008a), because terrestrial activity exposes
turtles to a greater range of environmental temperatures than
those experienced in the water, including potentially lethal
temperatures. However, terrestrial activity of C. longicollis
often coincides with rainfall (Roe and Georges 2008b; Santori
et al. 2018), which likely reduces risks of both overheating and
dehydration.

C. expansa was never observed to bask, either aerially or
aquatically. Unlike the other two species, C. expansa is an
ambush predator (Legler 1978; Chessman 1983b), and this

Table2. Main effects and interactions for linear mixed models of relationships of turtle body temperature to environmental temperature, species
and nutritional status

Significant results (P < 0.05) are shown in bold font

Data Environmental
temperature
included

Main effect:
environmental
temperature

Main
effect:
species

Main
effect:
status

Interaction:
environmental
temperature
� species

Interaction:
environmental
temperature
� status

Interaction:
species � status

Field: aerial
basking

Air F1,41 = 28.7 F1,41 = 1.4 F1,41 = 1.9
P < 0.001 P = 0.243 P = 0.180

Water surface F1,38 = 80.2 F1,38 = 5.5 F1,38 = 6.7
P < 0.001 P = 0.024 P = 0.014

Field: aquatic
basking

Water surface F1,56 = 176.9 F1,56 = 0.6 F1,56 = 1.1
P < 0.001 P = 0.451 P = 0.289

Water bottom F1,55 = 37.3 F1,55 = 3.6 F1,55 = 2.8
P < 0.001 P = 0.063 P = 0.102

Laboratory:
vertical
photothermal
gradient in
water

Water surface F1,172 = 23.0 F1,172 = 1.1 F1,172 = 0.3 F1,172 <0.1 F1,172 = 0.24 F1,172 = 8.7
P < 0.001 P = 0.298 P = 0.584 P = 0.974 P = 0.626 P = 0.004

Water bottom F1,170 = 22.2 F1,170 = 7.5 F1,170 = 1.3 F1,170 = 0.1 F1,170 <0.1 F1,170 = 11.7
P < 0.001 P = 0.007 P = 0.254 P = 0.787 P = 0.914 P = 0.001

Laboratory:
horizontal
photothermal
gradient in air

Minimum air F1,529 = 289.6 F2,529 = 3.2 F1,529 = 12.1 F2,529 = 0.5 F1,529 = 3.8 F2,529 = 6.0
P < 0.001 P = 0.042 P = 0.001 P = 0.606 P = 0.052 P = 0.003
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feeding mode may require it to spend large amounts of time
resting on the bottom of water bodies, or even buried in
sediment with only the head exposed, waiting for prey to
approach. Such a necessity could preclude devoting time to
basking, which can be rare in other aquatic turtles that are
ambush feeders, such as North American chelydrids (Ewert
1976; Brown et al. 1990; Brown and Brooks 1991; Harrel et al.
1996).

The effect of nutritional status varied among the three
species and between the two experimental series. Previous
research has also shown that the effect of nutritional status on
basking behaviour, environmental temperature selection and
body temperatures of turtles varies among both species and
experimental conditions (Table 3). It may seem surprising that
the effect of feeding was most evident in C. expansa, given its
apparent reluctance to bask. However, the principal distinction
was that when air temperature was low, fasted C. expansa
tended to have lower body temperatures than fed C. expansa

and both fed and fasted individuals of the other two species
(Fig. 5). Thus a combination of fasting and low
ambient temperature apparently reduced the thermophily of
C. expansa, possibly by inducing a degree of dormancy given
that this species appears to be the least cold adapted of the
three (Chessman 1988b).

The observation that fasted individuals of C. longicollis and
E. macquarii often selected warm and irradiated
microenvironments when offered the opportunity to do so
suggests that basking in those species may serve purposes
other than enhancing food digestion, at least in part. For
example, aerial basking, and perhaps even aquatic basking at
the surface, might be explained by a requirement for periodic
exposure to solar radiation to promote synthesis of vitamin
D. This function could account for aerial basking of freshwater
turtles often being an occasional activity (Manning and Grigg
1997; Singh 2018) that may occur especially on the first
sunny day after a period of cloudy weather (Moll and Legler
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Fig. 1. Relationships of body temperatures of C. longicollis and E. macquarii to simultaneous air and water surface
temperatures during apparent aerial basking in nature. Solid lines and equations are for linear regression and dashed lines
represent equality of body and environmental temperatures.
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1971; Auth 1975), or upon being released after a stay in
captivity without basking opportunities (Shealy 1976).

In some cases, aerial basking by freshwater turtles may be
motivated by ill health. For example, Dodd (1988) found that
20 of 32 aerially basking Sternotherus depressus that were
examined for disease had advanced symptoms, and Ibáñez
et al. (2014) reported that male Mauremys leprosa that spent
more time aerially basking tended to have lower white blood
cell counts and a higher frequency of infection with
Hepatozoon spp. Leech removal has been suggested as an
advantage of aerial basking (McAuliffe 1977), and detachment
of leeches and harvesting by birds from aerially basking turtles
have been reported (Vogt 1980; Selman and Qualls 2008,
2009). However, Readel et al. (2008) questioned this benefit
because leeches can be very tolerant of desiccation. Chessman
(1987) found that E. macquarii captured during aerial basking
at Lake Boga had a higher incidence of obvious ailments

(e.g. ulcers, lesions and eye infections) and parasitism by
leeches than non-basking conspecifics. However, the
difference was statistically significant only for a burden of
more than five leeches.

C. expansa, C. longicollis and E. macquarii all appeared to
consistently avoid raising body temperatures above ~34�C, a
maximum close to that found for E. signata by Manning and
Grigg (1997), and one that leaves a narrow safety margin to
thresholds for thermal stress. The onset of uncoordinated
movements has been observed at head and posterior body
temperatures of ~38–39�C and ~31–36�C respectively in
C. longicollis, and ~37–38�C and ~36–40�C respectively in
E. macquarii (Webb and Johnson 1972). Heat-inducedmuscular
spasms have been found to commence at head temperatures of
~42–44�C in C. longicollis and body temperatures of ~39�C in
C. expansa, ~39–42�C in C. longicollis and ~40�C in Emydura
krefftii (Burbidge 1967; Webb and Johnson 1972; Webb and
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Witten 1973). However, the physiological performance of
ectotherms typically peaks close to their upper thermal
tolerances (Kearney et al. 2009), and aerially basking aquatic
cryptodires may leave an even slimmer safety margin, with
reported body temperatures as high as 41.5�C (Rowe and
Dalgarn 2009).

Average air and water temperatures in south-eastern
Australia are projected to increase by ~2�C by the late 21st
century (van Vliet et al. 2013; Olson et al. 2016). Such
environmental warming could present both opportunities and
threats to freshwater turtles: enhanced activity, feeding and
growth when in the water, subject to availability of aquatic
habitat and food, but increased risk of overheating and
dehydration when on land (Chessman 2018). The current
results suggest that, of the three species studied, C. longicollis
will have the greatest capacity to behaviourally exploit the
opportunities and avoid the threats, and C. expansa the least.
For the latter, the response to warming is likely to be passive,

with some range expansion where its distribution is limited by
its apparently low level of adaptation to cold conditions
(Chessman 1988b). For C. longicollis and E. macquarii, aerial
or aquatic basking may enhance the potential to colonise more
southerly latitudes or higher elevations, including where
translocation by humans overcomes biogeographic barriers to
dispersal, as in the introduction of C. longicollis to northern
Tasmania (Fearn 2013). Aerial basking may also be of some
advantage in rivers affected by releases of cold, hypolimnetic
water from dams, although Singh (2018) inferred little such
benefit for E. macquarii in the Murray River downstream of
the Hume Dam. Even if the motivation for basking of
C. longicollis and E. macquarii is primarily non-
thermoregulatory, aquatic basking has the effect of
intermittently raising body temperatures above bottom water
temperatures, and aerial basking of raising body temperatures
above surface water temperatures. Consequently, both forms
of basking are likely to amplify food ingestion and digestion to
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some degree, because both of these processes are enhanced at
higher body temperatures in various freshwater turtle species
(Kepenis and McManus 1974; Parmenter 1981; Avery et al.
1993; Spencer et al. 1998; Mitchell et al. 2012).

Increases in water temperatures are unlikely to be sufficient
to threaten C. expansa, C. longicollis and E. macquarii at the
warmer and more arid extremes of their ranges (Chessman
2018). However, given their critical thermal maxima of only
~40�C, higher air temperatures may be hazardous to turtles
dispersing or sheltering terrestrially, for example as a result of
water bodies drying under projected increases in the frequency
and intensity of drought (Dai 2013; Feng et al. 2019).
C. longicollis appears best placed to avoid this risk through its
ability to thermoregulate behaviourally as well as its capacity
for aestivation.

C. longicollis cannot swallow food out of water (author’s
obs.), and the duration of its aestivation in terrestrial
environments could be limited by either starvation (Roe et al.

2008) or dehydration (Chessman 1978, 1984a). Chessman
(1978) estimated that without access to water, a C. longicollis
with a mass of 1 kg and could withstand evaporative water loss
for a period of only 40 days at 34�C and 25% relative humidity,
but 200 days at 8�C and 60% relative humidity, the lowest
temperature and highest humidity considered. Roe and
Georges (2007, 2008a) documented terrestrial aestivation of
C. longicollis for apparently continuous periods of up to
480 days, although the turtles were monitored only monthly
from April to August. These observations do not conflict with
Chessman’s (1978) predictions because temperature and
humidity adjacent to the aestivating turtles were not reported,
and they probably had intermittent opportunities to drink
pooled rainwater (Roe et al. 2008). Since both metabolism
and evaporative water loss of C. longicollis are positively
related to temperature (Chessman 1984a, 2018), its apparent
ability to select cooler microenvironments for aestivation
(Chessman 1983a; Beck 1991), and the availability of such
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microenvironments, could substantially affect its survival of
prolonged drought.
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