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ARTICLE

Factors affecting the use of weather station data in
predicting surface soil moisture for agricultural applications
Umesh Acharya, Aaron Lee M. Daigh, and Peter G. Oduor

Abstract: Weather stations often provide key information related to soil moisture; temperature and evaporation
are used by farmers to decide farm operations of nearby agricultural fields. However, the site conditions at the
weather stations where data are recorded may not be similar with these nearby fields. The objective of this study
was to determine the level of discrepancies in surface soil moisture between weather stations and nearby agricul-
tural fields based on (i) the soil texture, crop residue cover, crop type, growth stages and (ii) temporal dependency
of soil moisture to recent rainfall and evaporation rates. Soil moisture from 25 weather stations in the North
Dakota Agricultural Weather Network (NDAWN) and 75 nearby fields were measured biweekly during the 2019
growing season in Red River Valley. Field characteristics including soil texture, crop residue cover, crop type,
and growth stages along with rainfall and PET were collected during the study period. The regression analysis
between surface soil moisture at weather station and nearby field showed higher values for corn at V10 stage
(r2 = 0.92) and for wheat at flowering stage (r2 = 0.68) and opposite was observed with soybean. We found the
regression coefficient of soil moisture with 4-d cumulative rainfall slightly increased to 0.51 with an increase in
percent residue cover resulting in a decreased root mean square error (RMSE) to 0.063 m3·m−3. In general, we
observed that surface soil moisture at weather stations could reasonably predict moisture in nearby agricultural
fields considering crop type, soil type, weather, and distance from weather station.

Key words: rainfall, potential evapotranspiration, Red River Valley of the North, temporal relationship,
residue cover.

Résumé : Les stations météorologiques procurent souvent des informations essentielles sur la teneur en eau du
sol, la température et l’évaporation que les agriculteurs utilisent pour décider des mesures à appliquer aux cul-
tures voisines. Toutefois, il se pourrait que les conditions à l’endroit où la station enregistre les données
diffèrent de celles qu’on observe au champ. Les auteurs voulaient préciser l’importance de l’écart entre la teneur
en eau dans le sol de surface établie par les stations météorologiques et celle mesurée dans les cultures à
proximité d’après (i) la texture du sol, la couche de résidus culturaux, la nature de la culture et le stade de crois-
sance et (ii) la dépendance temporelle entre la teneur en eau du sol et les précipitations récentes, de même que
le taux d’évaporation. À cette fin, ils ont recueilli les données sur la teneur en eau du sol des 25 stations
météorologiques du North Dakota Agricultural Weather Network (NDAWN) et ont mesuré ce paramètre dans
75 champs voisins, toutes les deux semaines durant la période végétative de 2019, dans la vallée de la rivière
Rouge. Au nombre des paramètres agronomiques établis pendant la période à l’étude figuraient la texture du
sol, la couche de déchets culturaux, la nature de la culture et le stade de croissance ainsi que l’importance des
précipitations et l’évapotranspiration potentielle. L’analyse de régression de la teneur en eau dans le sol de surface
établie par la station météorologique et de celle mesurée dans le champ voisin révèle des valeurs supérieures pour
le maïs au stade V10 (r2 = 0,92) et pour le blé au stade de la floraison (r2 = 0,68), avec la situation inverse pour le soja.
Le coefficient de régression de la teneur en eau du sol après quatre jours cumulatifs de pluie augmente légèrement
pour passer à 0,51, la couche plus importante de résidus en pour cent entraînant une diminution de l’écart-type,
qui s’établit à 0,063 m3·m−3. En général, les auteurs estiment que la teneur en eau dans le sol de surface relevée
aux stations météorologiques pourrait raisonnablement prédire celle dans les cultures voisines,
selon la nature de ces dernières, le type de sol, les conditions météorologiques et l’éloignement de la station.
[Traduit par la Rédaction]
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Mots-clés : précipitations, évapotranspiration potentielle, nord de la vallée de la rivière Rouge, relation temporelle,
couche de résidus.

Introduction
Soil moisture is an important variable in hydrology

and climate studies due to its strong influence on water
infiltration, runoff, evaporation, erosion, and heat and
gas fluxes (Verstraeten et al. 2007; Amani et al. 2017).
Similarly, soil moisture plays a key role in farm activities
such as crop selection and the timing of tilling, planting,
applying fertilizers, and harvesting (Helms et al. 1996;
Hamman et al. 2002). However, the heterogeneity of
soil moisture within and across spatial scales creates
difficulties for both research efforts and land manage-
ment decisions. The most accurate methods for
representing soil moisture are point measurements
(e.g., gravimetric sampling, in situ electromagnetic
sensors). These methods are limited in terms of spatial
extent and are time consuming and labor intensive
(Brocca et al. 2007; LaGuardia and Niemeyer 2008).
Other methods with larger spatial extents include proxi-
mal and remote sensing technologies as well as hydrologic
simulations to model soil moisture on the landscape
(Babaeian et al. 2019). In contrast to point measurements,
the larger spatial extents innately result in lower resolu-
tion and a loss of information in landscapes with complex
physical attributes (e.g., topography, parent materials),
land management (e.g., crop rotations and diversity),
and thus require adequate point-scale validation.
Therefore, an efficient and reliable means to represent
soil moisture in and across landscapes are highly desired
by both the research and agricultural communities.

Researchers and farmers commonly use data from
nearby weather stations to inform them on a location’s
soil moisture (if available), atmospheric conditions, and
potential evapotranspiration (PET). The key assumption
for using these weather station data is that they
adequately represent the actual conditions of nearby
fields for some task of interest, even though these fields
may differ in physical (e.g., soil texture, slope) and crop
(e.g., type, previous year’s plant residues, growth stage)
attributes (Dalton et al. 2011; Rosenbaum et al. 2012). In
the United States, there are 122 weather stations managed
by National Weather Services to provide weather related
products in addition to state-managed mesonets (NWS
2020; NDAWN 2020). The North Dakota Agricultural
Weather Network (NDAWN) is an example of a state-
managed mesonet, which provides up to 32 measured
weather and soil parameters from 117 weather stations in
North Dakota (83 stations), Minnesota (28 stations), and
Montana (6 stations) (NDAWN 2020). Similar state-level
mesonets are also deployed in Kansas and Oklahoma
(Kansas Mesonet 2020; Oklahoma Mesonet 2020).

In agricultural fields with annual grain crops, soil
moisture is likely more dynamic over time than when
under perennial cover. For instance, the amount, type,

and management (e.g., tillage) of crop residues left from
previous growing season influence soil moisture
evaporation and retention of soil moisture over time in
the top soil (Dabney 1998; Gwak and Kim 2017). In addi-
tion, the live vegetation type and plant canopy cover
modify the root-zone microclimate and affect evapotran-
spiration rates, while root morphologies and age
strongly affect infiltration rates and patterns and water
uptake into the plant (Fernandez-Illescas et al. 2001).
Therefore, the dynamics of live vegetation strongly
affects soil moisture (Thompson et al. 2010; Daigh et al.
2014). Soil moisture measurement at weather stations is
typically taken under a mowed perennial grass (i.e., turf),
which starkly differs from the characteristics of nearby
cropped fields (Patrignani and Ochsner 2018). Moreover,
if neighboring fields differ in soil texture, then soil
moisture spatial variability and its dynamics over time
will be impacted accordingly (Vereecken et al. 2007; Pan
and Peters-Lidard 2008; Ivanov et al. 2010; Vivoni et al.
2010). Using linear correlation and empirical orthogonal
function analysis, Gwak and Kim (2017) reported that soil
particle size distributions were a more dominating fac-
tor than vegetation in the soil moistures distribution.
At larger scales, Dong and Ochsner (2018) reported that
the variation of soil particle size distributions across
the landscape also controls soil moisture more than rain-
fall distributions during storm events.

The spatial extrapolation of measured soil and atmos-
pheric conditions at weather stations is a major concern
for representing nearby fields. However, most agricul-
tural management decisions are also made based on
inferences of what the conditions in those nearby fields
will be in the following days or weeks. Weather forecasts
of rainfall are likely the most obvious parameter to use
for making such inferences. Rainfall history has a large
impact on soil moisture and is a main determinant in
farm activities (Western et al. 2002). Entekhabi and
Rodriguez-Iturbe (1994) reported rainfall as the primary
factor in controlling the state and subsequent evolution
of soil moisture. Similarly, Pan et al. (2003) observed soil
moisture to be a function of the time-weighted average
of previous cumulative rainfall over a period of 14 d.
However, evapotranspiration, air and soil temperatures,
and wind speeds are also some of the more widely used
weather data from stations to make inferences on near-
future soil moisture conditions (Western et al. 2002).
The variety of factors influencing soil moisture variabil-
ity in space and time (e.g., soil physical properties,
topography, microclimate, groundwater, evapotranspi-
ration) presents a barrier for farmers and agricultural
consultants to infer the representativeness of
weather station data readily and efficiently to nearby
fields (Famiglietti et al. 1998; Western et al. 2002;
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Vereecken et al. 2007; Rosenbaum et al. 2012; McMillan
and Srinivasan 2015).

Therefore, it is important to determine discrepancies
in soil moisture between local weather stations and
nearby agricultural fields. Moreover, identifying correla-
tions of any discrepancies to differences in soil type, res-
idue cover, or crop type and growth stage can then guide
the development of simple quantitative relationships to
extend weather station data to inform on-farm manage-
ment decisions. Such discrepancies are intuitively
expected. However, little to no evidence is currently
reported in the literature. To our knowledge, the litera-
ture lacks any such evaluations for the upper interior
plains of North America. Thus, our objectives are as
follows: (i) determine the level of discrepancies in soil
moisture between weather stations in the Red River
Valley of the North (RRVN) and nearby agricultural
fields; (ii) identify correlations of any discrepancies based
on soil texture, crop type, residue cover, and crop
growth stage; and (iii) determine the duration of tempo-
ral dependency of these soil moistures to recent rainfall
and evapotranspiration rates.

Material and Methods
Study area, weather station network, and data collection

The study area was located in North Dakota and
Minnesota within the RRVN. The Red River of North
extends 885 km northward from its source near
Breckenridge, Minnesota in the United States to Lake
Winnipeg in Canada. The segment of river in the
United States (634 km) forms most of the border
between Minnesota and North Dakota. The Red River
Valley is a glaciolacustrine lake bed formed by the
ancient Lake Agassiz, which existed for about 4000 yr.
The topography is minimal with a gradient of only
1:5000 (1 m per 5 km). The dominant soil orders in
RRVN are Mollisols and Vertisols, whereas soil texture
ranges from loamy sand to clay. The large range in tex-
tures can be attributed to variations in the lake deposits
and formation of braided streams as the ancient lake
drained to the north in around 8000 yr ago. The parent
material is poorly drained and consists of gray, slicken-
sided, flat clays of Brenna/Argusville formations, which
are overlain by the tan-buff, laminated silty clays of the
Sherack Formation. Shales within the parent materials
commonly result in the shallow perched water tables
being saline or saline-sodic. The major crops grown in
this region are corn (Zea mays L.), soybean (Glycine max
(L.) Merr.), wheat (Triticum aestivum L.), barley (Hordeum
vulgare L.), sugar beet (Beta vulgaris) along with canola
(Brassica napus), sunflower (Helianthus annuus L.), potato
(Solanum tuberosum L.), dry beans (Phaseolus vulgaris), and
oats (Avena sativa L.). Summers are long and warm,
whereas winters are frigid, snowy, windy, and partly
cloudy year-round. The average annual air temperature
is 4 °C, typically varies from −16 °C to 29 °C and rarely
below −27 °C or above 32 °C, whereas 30-yr mean annual

rainfall is 60 cm and snowfall is 317 cm (NOAA/
NCEI 2020).

The NDAWN was used for the study. NDAWN reports
32 weather parameters (e.g., air temperature, rainfall,
wind direction, soil moisture) at 117 weather stations,
which includes stations in North Dakota (N = 83),
Minnesota (N = 28), and Montana (N = 6). A subset of these
stations (i.e., those located in the RRVN) were selected
for this study. This included a total of 25 stations, where
15 stations were located across 8 counties in North
Dakota and 10 stations were located across 7 counties in
Minnesota (Fig. 1).

Weather station data and measurements in nearby
agricultural fields of the study area were collected
during the cropping season from June to September in
2019. Three nearby agriculture fields (corn, soybean,
wheat, sugarbeet, potato, dry bean, canola) within the

Fig. 1. Map showing counties of North Dakota and
Minnesota and weather stations under study area around
Red River Valley. Black dots in map represent weather
stations and words that are italicized and underlined
represent counties. The counties outlines of North Dakota
and Minnesota were retrieved from North Dakota
Geographic Information System (www.gis.nd.gov). Figure
created in ArcGIS (Environmental System Research
Institute-ESRI).
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range of 30 m to 2 km were selected around each
weather station (N = 75 fields). From each field, three
different composite soil samples were randomly selected
to determine soil moisture content. Soil samples were
collected in 16 d intervals from the field and weather
station between June and September 2019 (Table 1).

Determination of soil moisture

Soil moisture was measured using the gravimetric
method for each location and sample date (N = 985).
Soil samples were collected from all weather stations
and nearby field to determine soil moisture. GPS coordi-
nates for each station and sampling location were also
recorded. From each field, three spots were randomly
selected to determine soil moisture content. From each
spot, three soil cores were collected using Uhland core
sampler at 0–6 cm depth and mixed to get composite soil
sample. Soil was sampled using core sampler with
dimension (6 cm × 8 cm), the field-wet weight of the soil
was recorded, and then oven dried at 105 °C for 48 h. The
weight of dry soil was again recorded and gravimetric
water content was determined as the mass of water lost
due to drying. The soil’s volumetric water content
(VWC) was calculated by multiplying gravimetric water
content with the soil bulk density (Reynolds 1970).

Crop type and growth stages

The major crops grown in RRVN are corn, soybean,
wheat, barley, sugar beet along with canola, sunflower,
potato, dry beans, and oats. For this study, the selected
fields nearby the weather stations were planted with soy-
bean (N = 24), wheat (N = 18), corn (N = 16), sugar beet
(N = 6), dry beans (N = 5), oats (N = 2), barley (N = 1), potato
(N = 1), canola (N = 1), and alfalfa (N = 1). Soil samples
taken after crops were planted and germinated. Growth
stages for each crop were recorded every 16 d through-
out the growing period until harvest. The growth stages
for each crop were determined using standards devel-
oped by the United States Department of Agriculture
(USDA 2020). These coincided with the dates for soil

sampling, and soil moisture values determined for each
growth stage.

Antecedent site characteristics: Crop residue cover and
soil texture

Crop residue cover was determined along eight trans-
ects per sample site using the rope method (i.e., residue
presence at 100 points along 15 m oriented 45° to plant
rows) (Daigh et al. 2019). Crop residue was then pooled
into three categories:<10%, 20%–30% and 50%–60% crop
residue cover. Crop residue was measured at the start of
the growing season for this study. Soil texture was deter-
mined for each site (i.e., weather stations and nearby
fields) using the pipette method described by Gee and
Bauder (1986). All the weather stations in this study area
have grasses covered around them with different bulk
density of soil.

Rainfall and PET

Rainfall at the NDAWN stations was measured hourly
at a 1 m height above the soil surface using TE525 tipping
bucket rain gauges (Texas Electronics TR-525I, Dallas,
Texas). Each bucket tip measures 0.254 mm of rainfall.
The PET estimates of the maximum daily crop water loss
when water is readily available. PET is calculated from
solar radiation, dew point temperature, wind speed,
and air temperature using the Penman (1948) equation
and is based on alfalfa, which is called reference ET.
Rainfall and PET (mm) for the preceding 10 d before soil
sampling were downloaded from each weather station
(https://ndawn.ndsu.nodak.edu/) and used to calculate
cumulative values. Rainfall and PET recorded at each
weather station also represent the values for nearby field
in this study.

Statistical analysis

Linear and non-linear regression was performed and
Pearson correlation coefficients determined to describe
the relationships between soil moisture at the weather
stations (independent variable) and the nearby cropped
fields (dependent variable) using Proc Reg in SAS
software version 9.4 (SAS 2017). The analysis was
repeated by pooling the data for each factor (i.e., crop
type, crop growth stage, crop residue cover, soil texture,
distance from weather station, and their interactions)
separately. The recent cumulative rainfall and PET
history at the weather station were compared with the
current soil moisture using non-linear regression using
Proc Reg in SAS software version 9.4 (SAS 2017). The
analysis was repeated by pooling the data for each factor
(i.e., crop type, crop growth stage, crop residue cover,
soil texture, distance from weather station, and their
interactions) separately. The regression parameters
(slopes and intercept), correlation coefficients, and root
mean square error (RMSE) are reported and discussed
below.

Table 1. Soil sampling date with corresponding
weather station for soil moisture determination for year
2019.

Weather station Date sampled

Campbell, Mooreton, Wahpeton 6/27, 7/13, 7/29, 8/14
Leonard, Sabin, Fargo, Ulen,
Prosper, Galesburg, Perely,
Hillsboro, Ada, Waukon,
Mayville, Finley, Eldred, Grand
Forks, Forest River, Inkster,
Warren, Grafton, St. Thomas,
Kennedy, Cavalier, Humboldt

6/18, 7/20, 8/5, 8/21

Grafton, St. Thomas, Kennedy,
Cavalier, Humboldt

7/27
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Results
VWC discrepancies between crop field and weather
station

Soil moisture ranged from 0.028 to 0.523 m3·m−3

across the study area of the RRVN and sampling time
frame (May to September 2019). VWC at weather stations
and nearby agricultural fields were linearly correlated,
with the weather station VWC explaining 50% (r2 = 0.50,
N = 675, slope = 0.7, RMSE = 0.0654 m3·m−3) of the vari-
ance for the nearby fields (Fig. 2). Distances up to 2 km
from the weather station moderately affected this rela-
tionship (see Supplementary Table S11). The correlation
coefficient was higher (r2 = 0.55, N = 215) for fields nearer
(0–100 m) as compared with fields farther (1200–2000 m)
from weather stations (r2 = 0.40, N = 42).

VWC discrepancy due to crop type and their growth stage
Discrepancies associated with crop types and growth

stage were apparent between VWC at the weather
stations and nearby fields (Fig. 3, Supplementary
Table S21). Fields planted to dry beans (r2 = 0.69, N = 33,
RMSE = 0.041 m3·m−3) had the highest correlation, fol-
lowed by wheat (r2 = 0.56, N = 159, RMSE = 0.06 m3·m−3)
and corn (r2 = 0.46, N = 156, RMSE = 0.068 m3·m−3),
whereas, the lowest correlations were in sunflower
(r2 = 0.41, N = 9, RMSE = 0.061 m3·m−3) and barley
(r2 = 0.18, N = 9, RMSE = 0.052 m3·m−3), which also had
the lowest sample size. Moreover, the slope of all the lin-
ear regression equations was less than 1 (i.e., corn = 0.81;
wheat = 0.72; sugarbeet = 0.70; soybean = 0.69; alfalfa =
0.45) (Supplementary Table S11).

Regression coefficients increased with corn growth
stage [V10 stage (r2 = 0.92), V11 stage (r2 = 0.99)] until the
silking reproductive phase and then declined [tasseling
(r2 = 0.59), grain filling (r2 = 0.78)]. Wheat expressed a sim-
ilar trend [tillering (r2 = 0.17); flowering (r2 = 0.68); hard
dough (r2 = 0.590) and after harvest (r2 = 0.24)], whereas
correlations in soybean continued to increase [V1 stage
(r2 = 0.11); V2 stage (r2 = 0.15); flowering (r2 = 0.51); podding
(r2 = 0.70)].

VWC discrepancy due to residue cover and soil texture
Crop residue cover and soil texture had a moderate

influence on the disparity between the weather stations
and nearby fields. Crop fields with the lowest amount
of crop residue cover (<10%) had the highest correlation
(r2 = 0.63, N = 275, RMSE = 0.058 m3·m−3) with the VWC
of weather station as compared with higher residue-
covered fields [20%–30% residue (r2 = 0.44, N = 198,
RMSE = 0.066 m3·m−3); 50%–60% residue (r2 = 0.46,
N = 198, RMSE = 0.067 m3·m−3)] (Fig. 4). Soils with a rela-
tively high clay content, such as clay (r2 = 0.63, N = 48,
RMSE = 0.061 m3·m−3), clay loam (r2 = 0.57, N = 69,
RMSE = 0.063 m3·m−3), silty clay loam (r2 = 0.52, N = 117,
RMSE = 0.054 m3·m−3), and silty clay (r2 = 0.46, N = 153,
RMSE = 0.073), had higher correlation coefficients as
compared with soils with a high sand content (Fig. 6).

Temporal dependency of soil moisture in crop fields to
recent rainfall and PET rates

Soil moisture expressed a non-linear (cubical) relation-
ship with past cumulative rainfall and PET (5 d) mea-
sured from the weather station. The highest correlation
(r2 = 0.49) was observed between soil moisture and a 4 d
cumulative rainfall that was improved significantly from
a 1 d cumulative rainfall (r2 = 0.16). Similarly, the highest
correlation (r2 = 0.29) was observed between soil mois-
ture and a 4 d cumulative PET (Supplementary Table S31).

The non-linear relationship between soil moisture
with 4 d cumulative rainfall had various weak to
strong influences by crop residue cover, crop type, dis-
tance from weather station and soil texture (Fig. 6;
Supplementary Table S41). The regression coefficient of
soil moisture with 4 d cumulative rainfall slightly
increased with an increase in the crop residue cover per-
centage (<10, 20–30, 50%–60%) from 0.48 to 0.51, and
RMSE decreased from 0.068 to 0.063 m3·m−3. The highest
correlation coefficient between soil moisture and a 4 d
cumulative rainfall was observed with alfalfa (r2 = 0.93),
followed by oats (r2 = 0.86), sugarbeet (r2 = 0.71), dry
beans (r2 = 0.65), wheat (r2 = 0.56), corn (r2 = 0.48) and low-
est in soybean (r2 = 0.45). The non-linear relationship
between soil moisture and 4 d cumulative rainfall shows
crop fields near to weather station (100–200 m) had
higher correlation coefficient (r2 = 0.65), whereas fields
further away (1200–2000 m) had a lower coefficient

Fig. 2. Linear relationship between volumetric water
content (VWC) of crop fields with nearby weather stations
in the Red River Valley during 2019. RMSE, root mean square
error. [Color online.]

1Supplementary data are available with the article at https://doi.org/10.1139/CJSS-2021-0034.
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(r2 = 0.25). A strong non-linear relationship was observed
between soil moisture and 4 d cumulative rainfall for
soils having high clay content [clay (r2 = 0.75), silty clay
loam (r2 = 0.65), and clay loam (r2 = 0.52)], whereas a weak
relationship was observed with soils having high sand
content.

Similarly, the highest correlation coefficient of soil
moisture with 4 d cumulative PET (r2 = 0.37) was
observed with 20%–30% crop residue cover followed by
the 50%–60% (r2 = 0.31) and lowest observed with <10%.
The RMSE was also lowest with 20–30% crop residue
cover (0.071 m3·m−3) followed by 50%–60% (0.076 m3·m−3)
and <10% (0.083 m3·m−3) (Supplementary Table S51).

For different types of crops, similar trends were
evident between soil moisture and a 4 d PET as with 4 d
cumulative rainfall. In contrast to cumulative rainfall,
the opposite was observed between soil moisture
and 4 d cumulative PET, where farther crop fields
(800–1200 m) had higher correlation coefficients
(r2 = 0.57) and the nearest fields (0–100 m) had a lower
coefficient (r2 = 0.33).

Similarly, correlation between soil moisture and 4 d
cumulative PET for soils was higher with high clay con-
tent [clay (r2 = 0.59), clay loam (r2 = 0.59), and silty clay
(r2 = 0.51)] as compared with soils having high sand con-
tent [loamy sand (r2 = 0.09)] as with cumulative rainfall.

Fig. 3. Linear relationship between volumetric water content (VWC) of crop fields with nearby weather stations under different
crop types. RMSE, root mean square error. [Color online.]

424 Can. J. Soil Sci. Vol. 102, 2022

Published by Canadian Science Publishing

Downloaded From: https://complete.bioone.org/journals/Canadian-Journal-of-Soil-Science on 23 Jul 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Discussion
In general, we observed that soil moisture at weather

stations could reasonably predict moisture in nearby
agricultural fields (Fig. 2) considering crop, soil, rainfall,
PET, and distance from weather station. This corrobo-
rates findings by Famiglietti et al. (1998) regarding corre-
lations between topographical attributes, soil
properties, and soil moisture measured along distances
of 200 m. Therefore, the discrepancies in soil moisture
observed in the present study are likely due to spatial
heterogeneities of soil characteristics (Hu et al. 1997),

vegetation characteristics (Qiu et al. 2001), and land
management practices (Daigh et al. 2018).

As expected, the analysis showed that the moisture
prediction weakens with an increase in distance from
the weather stations. This is likely due to change in soil
moisture spatial patterns caused by the field variations
in the landscape as well as other autocorrelated factors
(soil texture, vegetation, rainfall, evapotranspiration)
that influence local hydrologic processes (Bardossy and
Lehmann 1998; Famiglietti et al. 1998; Western et al.
1999, Brocca et al. 2007). The large spatial and temporal
variability of the study area might have resulted in the
lower prediction value, which can be improved by
considering those factors in a prediction model
(McMillan and Srinivasan 2015). The changes in the
spatial pattern of soil moisture were studied by Hawley
et al. (1983) in the flat areas of Central Italy under differ-
ent soil wetness conditions, Cunningham et al. (1978) in
a 10 yr long revegetating study in Australia, and Dunin
and Reyenga (1978) in an evaporation study of subhumid
grassland of Australia. The Red River Valley has diverse
crop rotations that include canola, sunflower, lentil
along with soybean, corn, wheat, and oats (O’Brien
et al. 2020). This diversity of crops made it difficult to
predict soil moisture of nearby field using weather sta-
tion because of their nature of growth and canopy cover
(Wright et al. 2017).

Crop type and their growth stages showed weak to
strong relationships in the soil moisture prediction from
the weather stations (Fig. 3). Crops with dense, closed
leaf canopies at their peak vegetative growth stage
showed higher regression coefficients compared with
thin, open leaf canopies. This is consistent with studies
showing that cropping system and crop growth stage in-
fluence soil water storage (Daigh et al. 2014) and impact
soil hydrology (McIsaac et al. 2010; Kravchenko et al.
2011; Steele et al. 2012). The type of crop and their growth
stage influences small-scale soil moisture variability due
to the pattern of (i) throughfall imposed by the canopy
(Zheng et al. 2019), (ii) shading the soil surface and
affecting rate of evaporative drying (Todd et al. 1991),
(iii) moderating or inducing turbulence airflows and
corresponding evapotranspiration rates (Katul et al.
2012), and (iv) affecting soil Ksat through root distribu-
tions and their activity with extracting soil moisture for
plant transpiration (Schymanski et al. 2008). The degree
to which these factors affect the soil moisture depends
upon plant species, density, and season (Reynolds
1970b; Famiglietti et al. 1998; Lull and Reinhart 1995).
These results are in accordance with Hawley et al.
(1983), Francis et al. (1986), Ozkan and Gokbulak (2017)
who found significant difference in soil moisture con-
tent due to difference in vegetation cover. For instance,
row crop systems tend to have lower water storage
capacities than natural or restored perennial systems
(Brye et al. 2000; Qi et al. 2011; Mitchell et al. 2012),
which is linked with soil moisture contents. Similarly,

Fig. 4. Linear relationship between volumetric water
content (VWC) of crop field with weather stations at
different residue percentage (<10%, 20%–30%, 50%–60%).
RMSE, root mean square error. [Color online.]
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Fig. 5. Linear relationship between volumetric water content (VWC) of crop field with weather station at different type of soil
texture in the study area. RMSE, root mean square error. [Color online.]
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Fig. 6. Non-linear relationship between volumetric water content (VWC) of crop field (N = 675) with cumulative rainfall for past
5 d (D1, D2, D3, D4, and D5) for the study area. RMSE, root mean square error. [Color online.]
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Gomez-Plaza et al. (2000) argued vegetated areas and veg-
etation cover improves soil structure and capacity of
water retention into the soil compared with drier with
low vegetation cover in southeastern Spain. The vegeta-
tion and land use could have significant effects on the
temporal and spatial dynamics of soil moisture (Qiu et al.
2001; Fu et al. 2003; Jun et al. 2010). However, Zhao et al.
(2010) postulated that correlation analysis showed that
soil properties were important factors controlling tem-
poral stability of soil moisture spatial patterns for any
cropping practices or vegetation cover in a semi-arid
region.

Soil physical properties (bulk density, Ksat, soil
texture) are well-known parameters that significantly
affect soil moisture. The regression analysis for soil
moisture prediction showed higher r2 values for soils
with higher clay percentage as compared with sand per-
centage. Variation in soil texture, organic matter and
macro porosity affect the water retention of soils,
thereby causes the soil moisture variation (Crave and
Gascuel-Odoux 1997; Famiglietti et al. 1998; Dong and
Ochsner 2018). Similar to our findings, English et al.
(2005) found sand-rich soil throughout the soil profile
increases gravimetric water and soil water potential
compared with clay-rich soils. Soil texture influences soil
moisture through its direct effects on pore spaces gov-
erning evaporation and drainage rates, which are two
main factors for controlling soil drying (Dexter 2004;
Pan and Peters-Lidard 2008). Roy et al. (2018) have com-
pared soil water release curves for three soils in the Red
River Valley and found the difference in water content
between two fitted curves for Fargo silty clay was higher
(5%) due to shrinkage and swelling that Glyndon silty
loam and Hecla sandy loam soils (<2%). This characteris-
tic of Fargo clay soil has higher correlations. The irriga-
tion cycle study conducted by Li et al. (2014) showed soil
moisture content was significantly and consistently
correlated with soil texture and bulk density. Similarly,
both principal component analysis and multiple linear
regression identified soil texture as the primary physical
process controlling variability in soil moisture content of
an agriculture field (Manns et al. 2014). Gao et al. (2011) in
their study in Loess plateau, China, reported strong cor-
relation between soil texture and surface soil moisture
in gullies. Gao et al. (2011) also reported clay and silt con-
tent were both positively correlated with soil moisture
during and regression values decrease with rainfall
events. In the study of eleven textural classes,
Vereecken et al. (2007) found that standard deviation of
soil moisture peaked between 0.17 and 0.23 m3·m−3 for
most textual classes such as, silt loam to clay loam soils.
In contrast, they found standard deviation increases
with increase in soil moisture for sandy loam and loamy
sand soils.

Residue cover was also correlated with soil moisture
prediction. We observed high r2 values in areas with
low residue cover (<10%) and lower r2 values in areas

with high residue cover. Residue cover on the soil
surface not only limits soil erosion due to water and air
but also changes soil moisture spatial patterns within
fields (Dabney 1998; Daigh et al. 2019). Studies have
shown that the reduction of soil evaporation due to
residue cover maintains higher soil moisture contents
at field level over time (Dabney 1998; Unger and Vigil
1998). Partial residue covers in the field contribute to a
slower, but still positive effect on soil moisture recharge
as compared with completely covered soils; this
difference in water recharge at different residue covers
affects the prediction of soil moisture at field level
(Patrignani and Ochsner 2018). Farmers are gradually
shifting toward the minimum tillage to zero tillage with
government subsidies and concern to improve the soil
health condition (Acharya et al. 2019). This changes the
representation of soil moisture from nearby agricultural
field to weather station.

As previously discussed, many of the plant and soil
characteristics in fields not only induce spatial variabil-
ity but also influence soil moisture over time. We
observed that a 4 d cumulative rainfall and PET had the
highest non-linear regression coefficient and lowest
RMSE as compared with other cumulative periods.
Several studies have established similar relationships
between soil moisture with the rainfall at larger spatial
scales than the RRVN (Yoo et al. 1998; Entin et al. 2000;
Cosh et al. 2004; Brocca et al. 2007; Ziadat and Taimeh
2013). With the application of satellite data, Brocca et al.
(2013) also established that 4 d cumulative rainfall can
effectively predict soil moisture with correlation value
close to 0.8, which is similar to this finding.
Additionally, Brocca et al. (2007) reported that higher
correlation coefficients for soil moisture as the anteced-
ent precipitation increased, which were in accordance
with Western et al. (1999) and Gomez-Plaza et al. (2001).
Rainfall, as well as incoming solar radiation, is a key fac-
tor affecting soil moisture at point scale measurements
(Vivoni et al. 2010). Entekhabi and Rodriguez-Iturbe
(1994) and Pan et al. (2003) in their extensive studies on
predicting surface soil moisture from rainfall observed
that time-weighted averages of previous cumulative rain-
fall over a given period resulted in high correlation coef-
ficients with soil moisture.

Conclusion
The results shown in this study offer evidence that soil

moisture can be reasonably represented by using
information obtained at nearby weather stations despite
large differences in soil and crop characteristics. The
correlation between the soil moisture at weather sta-
tions and nearby agricultural fields is affected by crop
type and their growth stages, crop residue, soil texture,
and distance from the weather station. In Red River
Valley, crops with thick canopy cover showed higher cor-
relations compared with sparse crop canopies. Similar
associations were observed when crop growth stages
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were at peak vegetative and reproductive stages.
However, higher correlations were observed with lower
crop residue cover of the soil surface and vice versa.
The correlation between soil moisture at weather
stations and nearby fields decreases as the distance from
weather stations increases. Rainfall and evapotranspira-
tion measured at weather stations can be used to
estimate soil moisture in these nearby agricultural
fields. The 4 d cumulative rainfall and PET showed
higher correlations with field soil moisture as compared
with other durations. This shows that rainfall and pre-
cipitation data can be effectively used in the prediction
on soil moisture in the nearby fields despite discrepan-
cies in soil and crop characteristics. This study showed
promising results on estimation of soil moisture on
agricultural fields using nearby weather station data
when considering key field variables. However, the level
of effect of each of the variables on the soil moisture
prediction using soil moisture of weather station needs
further exploration. The use of different multivariate or
machine learning algorithms to model and evaluate the
influence of variables also needs further exploration.
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