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Abstract
Large organic deposits in the southwestern plain of Montreal have been converted to agricultural land for vegetable pro-

duction. In addition to the variable depth of the organic deposits, these soils commonly have an impermeable coprogenous
layer between the peat and the underlying mineral substratum. Estimations of the depth and thickness of these materials
are critical for soil management. Therefore, five drained and cultivated peatlands were studied to estimate their maximum
peat thickness (MPT)——a potential key soil property that can help identify management zones for their conservation. MPT can
be defined as the depth to the mineral layer (DML) minus the coprogenous layer thickness (CLT). The objective of this study
was to estimate DML, CLT, and MPT at a regional scale using environmental covariates derived from remote sensing. Three
machine-learning models (Cubist, Random Forest, and k-Nearest Neighbor) were compared to produce maps of DML and CLT,
which were combined to generate MPT at a spatial resolution of 10 m. The Cubist model performed the best for predicting
both features of interest, yielding Lin’s concordance correlation coefficients of 0.43 and 0.07 for DML and CLT, respectively,
using a spatial cross-validation procedure. Interpretation of the drivers of CLT was limited by the poor predictive power of the
final model. More precise data on MPT are needed to support soil conservation practices, and more CLT field observations are
required to obtain a higher prediction accuracy. Nonetheless, digital soil mapping using open-access geospatial data shows
promise for understanding and managing cultivated peatlands.

Key words: predictive digital soil mapping, machine learning, organic soils, peat thickness, coprogenous soil

1. Introduction
Canada accounts for about a quarter of the world’s peat-

land extent (Vepraskas and Craft 2015). Cultivated organic
soils cover only 4% of the Province of Quebec’s southern re-
gion; yet, they greatly contribute to food production and to
the economy of the province with exports to northeastern
USA (Groupe AGÉCO 2007; Parent and Gagné 2010). These
soils are prized for their vegetable production, but they are
affected by intense soil loss processes that are unique to
the evolution of peat materials. Soil loss occurs primarily by
subsidence, oxidation, and erosion after land conversion for
agriculture, and is enhanced by the drainage of peatlands
(Kroetsch et al. 2011; Vepraskas and Craft 2015). Over the past
decades, with an annual estimated soil loss of 2.5 cm (Ilnicki
2003; Esselami et al. 2014), degraded, shallower fields have
transitioned to less productive mineral soils, as if the min-
eral boundary had been moving toward the surface.

Furthermore, coprogenous material can also be found be-
tween the peat and mineral layers (Lamontagne et al. 2014)——
also reducing the thickness of the cultivable peaty layer.
When the material is found within the first 160 cm and

has a minimum thickness of 5 cm, it is referred to as a
“limnic” layer (SCWG 1998). This gelatinous, impervious ma-
terial is unsuitable for agricultural production and specific
to lacustrine organic deposits (Kroetsch et al. 2011). When
it dries, this material shrinks and does not rewet (SCWG
1998). In Poland, calcareous limnic deposits have been shown
to limit root growth (Ilnicki 2003). Limnic materials can be
of different types: coprogenous earth (sedimentary peat), di-
atomaceous earth, or marl (SCWG 1998). In the southwest-
ern plain of Montreal, coprogenous earth is most common
and sometimes found with a small layer of marl. The lat-
ter is effervescent due to the presence of shells and precip-
itated CaCO3, while the former can be a mineral (<17% or-
ganic carbon), or organic deposit (≥17% organic carbon) en-
riched by algae or aquatic life plants transformation prod-
ucts (SCWG 1998). Since pedological surveys have typically
focused on the spatial extent of peat and descriptions of soil
series, little is known about the depth to the mineral layer
(DML) and the coprogenous layer thickness (CLT). To miti-
gate the impacts of long-term soil loss, soil conservation ap-
proaches, such as the addition of biomass crop amendments
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(Dessureault-Rompre´ et al. 2020), the plantation of tree wind-
breaks, or water table management, are needed; however,
these approaches have a related cost and material require-
ments to be considered. Therefore, priority management
zones need to be defined to guide the application of regional
soil conservation plans. The effective peat thickness that can
be used for agriculture, hereinafter referred to as the “max-
imum peat thickness” (MPT), could be used to define these
priority management zones. In other words, the MPT can
be defined as the thickness of the peaty layer of an organic
soil, therefore, excluding coprogenous and mineral materi-
als. This definition would better reflect the real long-term
agricultural potential of a field than only mapping the DML
as other studies have done. It is necessary to understand the
spatial distribution of the MPT to better manage shallower
soils.

While pedological surveys and taxonomic map products
are available at a global scale, new mapping efforts are tar-
geting soil properties and soil functions (FAO 2020). Modern
digital soil mapping (DSM) techniques can provide such in-
formation by leveraging technological advances for predict-
ing a soil attribute or class using georeferenced field mea-
surements and a suite of environmental covariates obtained
via remote or proximal sensing (McBratney et al. 2003). In
peatland-related DSM studies, the thickness of the peat and
organic carbon content are the most frequently predicted fea-
tures (Minasny et al. 2019). To the best of our knowledge, pre-
dictive mapping of coprogenous materials has never been ex-
plored and the relevant covariates are unknown. Yet, the in-
formation that could be acquired through a predictive map
on a regional scale is crucial to estimating the MPT, and,
therefore, the delineation of priority management zones.
Manual probing over large areas is labor intensive and rela-
tively slow (Parry et al. 2014). A regional approach, relying on
a field calibration data set, could provide useful maps when
combined with a relevant set of covariates. Many combina-
tions of covariates are commonly used in regression and clas-
sification mapping of peatlands and could be investigated as
potential candidates for predicting the thickness of the co-
progenous layer. Peat thickness and its extent are often eval-
uated by combining a digital elevation model (DEM) and its
derivatives, airborne gamma radiometric data, electromag-
netic data, and satellite data (Rudiyanto et al. 2018; Gatis et
al. 2019; Minasny et al. 2019; Siemon et al. 2020). Most of
the covariates are the product of remote sensing techniques,
while ground penetrating radar, gamma radiometric data,
and soil electrical resistivity or conductivity can be obtained
with proximal sensing techniques (Rosa et al. 2009; Parry et
al. 2014; Comas et al. 2015; Beucher et al. 2020).

Hence, given the lack of data concerning the DML and CLT
for the study area and the abundance of covariates, the main
objective of this study was to integrate open-access, remote
sensing covariates and field data to predict the spatial distri-
bution of the MPT, including mineral and coprogenous mate-
rials’ depth. Here, the specific objectives of the study were (i)
to determine the covariates that most contribute to the pre-
diction of DML and CLT and (ii) to derive a map of MPT from
the mineral and coprogenous material predictions as a tool
to guide soil conservation practices.

2. Methodology
Figure 1 shows the methodological framework for this

study.

2.1. Study area
The study area is comprised of five drained and culti-

vated peatlands in the southwest plain of Montreal, Que-
bec, covering approximately 90 km2 (45.1◦N to 45.3◦N lat-
itude and −73.3◦W to −73.7◦W longitude). Figure 2 shows
the study area and the spatial distribution of sampling
sites. Natural forests are still present but are likely affected
by agricultural drainage. Most of the soils are used for
horticulture, while a small proportion is used for produc-
ing bags of gardening soil. The five peatlands are part of
three separate watersheds (Lamontagne et al. 2014). The
elevation ranges between 45 and 70 m above mean sea
level; however, the agricultural fields are leveled across the
peatlands.

Fieldwork was carried out on 14 partnering research farms,
which were converted to agricultural use between 1950 and
2010. Most fields were classified as Humisols and Mesisols,
while a small area of recently converted fields was classi-
fied as Fibrisols (SCWG 1998). The organic materials found
in the southwest plain of Montreal were deposited in chan-
nels or in depressions. Basin bogs or shore swamps, the lat-
ter having shallower deposits, were the result of hundreds
of years of accumulation (Lamontagne et al. 2014). Peatlands
in this region are mainly composed of forest peat or herba-
ceous materials (LaSalle 1963; Grenon 1988). Limnic materi-
als are found throughout the study area but not in every peat-
land: the northwestern-most peatland appeared to be devoid
of limnic material, whereas the other peatlands had regions
with limnic layers.

2.2. Soil data
Two data sets were used to build the predictive models. The

first data set consisted of 255 sites that were sampled between
2019 and 2021 (shown as white dots in Fig. 2). The CLT and the
DML were obtained by manually extracting soil cores using a
Macauley corer (Eijkelkamp peat sampler) until the mineral
horizon was reached.

The second data set consisted of 4488 observations. Here,
4286 locations were manually probed (shown as grey dots
in Fig. 2) between 2010 and 2014, and were combined with
the first data set. Manual probing involved inserting a thin
metal rod in the soil and when a change of soil resistance
to the rod penetration was felt, the depth was recorded as
the DML. It should be noted that coprogenous materials did
not offer notable resistance when a rod was inserted into
the soil in comparison to the apparent change in density
when the probe reached the underlying mineral soil. Man-
ual probing was susceptible to measurement errors due to
buried wood pieces (Parry et al. 2014). Nonetheless, man-
ual probing could be done rapidly and required less en-
ergy to do manually than the Macauley sampling technique.
Furthermore, the sites were clustered in three of the five
peatlands. It was believed that the addition of this data set
to this study could contribute to the predictive power of
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Fig. 1. Methodological framework used in this study. Two prediction maps were produced, (1) for the depth to the mineral layer
(DML) and (2) for the coprogenous layer thickness (CLT). Then, they were subtracted to obtain the maximum peat thickness map
(MPT). Note that the number of covariates and observations in each model differ. VIF = Variance inflation factor, RFE = recursive
feature elimination, LOBOCV = leave-one-block-out cross-validation, and HOCV = hold-out cross-validation. Bottom left is a
schematic of an organic soil profile. Oh, m, f = Humic, mesic, or fibric peaty layer, Oco = Coprogenous earth layer, and
Cg = Mineral soil layer, according to the Canadian System of Soil Classification (SCWG 1998).

the models when generating DML predictions even though
manual probing might have been more prone to measure-
ment bias or error. Since some of the sampling locations
were close to each other, observations that fell into the
same raster cell were averaged. The summary statistics of
the two data sets are presented in Table 1 and were also
computed for both data sets for each individual peatland
(Table A1).

2.3. Environmental covariates
When generating a training data set to be fitted with a pre-

dictive model, the georeferenced soil observations are spa-
tially intersected with a suite of geospatial environmental
layers (i.e., covariates or predictors). The predictive models
are used to establish the relationships between the covariate
and soil properties to predict the spatial phenomenon of in-
terest. Here, we present the five categories of covariates used,
which were selected based on the SCORPAN model (i.e., soil,
climate, organisms, relief, parent material, time, and spatial
location) in McBratney et al. (2003) and a review of the digital
mapping of peatlands in Minasny et al. (2019). The

description and preprocessing details are provided for the fi-
nal selection of covariates.

2.3.1. Digital elevation model (DEM) data

A DEM is a common data set that can be used to de-
rive a suite of geomorphological and hydrological covariates
(McBratney et al. 2003; Minasny et al. 2019). Since organic
soils are formed in lowlands, depressions, and water satu-
rated conditions, the topographical covariates are expected
to be effective predictors of peat accumulation and the delin-
eation of peatlands. The DEMs were produced and distributed
by the Ministère des Forêts, de la Faune et des Parcs, where it
was downloaded from the Données Québec repository. Here,
the multiple DEM tiles were mosaicked. The DEM data were
derived from a LiDAR survey and made available at a 1 m spa-
tial resolution.

The DEM was preprocessed in five steps using the white-
box package in R (Wu 2020). Missing data were first filled-in;
following this, a feature preserving smoothing tool was used
to remove short-scale noise due to the use of the ultrafine
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Fig. 2. Study area and sampling sites categorized by the nature of the information collected. Overlaid is a square grid of 1.5 km
size used to spatially partition the data sets to allow spatial cross-validation. Numbers beside the basin limits are peatlands
identification numbers used in this study.

Table 1. Summary statistics of the coprogenous layer thick-
ness (CLT) and of the depth to the mineral layer (DML).

CLT DML

N 255 4488

Minimum (cm) 0 5

Maximum (cm) 206 392

Mean (cm) 34.16 136.23

Median (cm) 25.00 130.00

Standard deviation (cm) 37.22 70.97

Coefficient of variation (%) 108.83 52.11

Variance (cm2) 1385.62 5036.64

Skewness 1.26 0.46

Kurtosis 1.74 −0.42

resolution DEM data. Afterward, a mean filter with a 5 m ×
5 m window was used to further smooth the DEM and remove
artifacts. To reduce the computational demands and memory
requirements, the DEM was aggregated to a 10 m resolution.
This covariate became the reference to which all other co-
variates were resampled to match its extent and resolution.

Single cell pits were filled to remove local artifacts and to
produce a more continuous output. The Breach Depressions
Least Cost tool was used to prepare a DEM for deriving the
hydrological covariates (Lindsay 2016). This tool breaches and
then fills depressions in the DEM to ensure continuous flow
paths through depressions using a least cost pathway method
based on a breaching algorithm by Lindsay (2016).

After preprocessing, both the RSAGA (Brenning et al. 2018)
and whitebox packages were used to generate 70 covari-
ates. Some of these covariates included the difference and
deviation from mean elevation, topographic wetness index,
multiresolution valley bottom flatness (MRVBF), multiresolu-
tion ridge top flatness (MRRTF), catchment areas, hillshade,
slope, aspect, and curvature (Beven and Kirkby 1979; Gallant
and Dowling 2003; McBratney et al. 2003; Lindsay et al.
2015).

2.3.2. Aerial gamma ray spectroscopy data

Six raster layers were downloaded from Natural Resources
Canada’s GEOSCAN database (Natural Resources Canada
2019). The layers represented surface concentrations of
potassium (K, %), equivalent uranium (URA, ppm), equivalent
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thorium (THO, ppm), and ratios URA/THO (RUT), URA/K (RUK),
and THO/K (RTK). Radiometric data have proven to be use-
ful for differentiating mineral soils from organic soils given
their difference in parent material, porosity, and water con-
tent (Beamish 2013; Keaney et al. 2013). Water-filled, peat soil
attenuates bedrock geology radioactivity and can provide an
indication of the magnitude of the deposit. The six raster lay-
ers were resampled from a 250 m to 10 m spatial resolution
using a bilinear method to match the extent and resolution
of the other covariates.

2.3.3. Sentinel-2 L2-A data

Sentinel-2 is a constellation of two satellites with a com-
bined repeat cycle of 5 days over the same area. Common
indices and raw bands were tested as potential covariates.
Gholizadeh et al. (2018) obtained significant correlations (r
= −0.74 to −0.36) between bands 4, 5, 11, and 12 and soil
organic carbon; hence, raw bands could serve as discrimi-
nant covariates to delineate a peatland’s extent. L2-A level
of preprocessing generates a bottom-of-atmosphere corrected
reflectance raster for all 13 bands. This level of preprocess-
ing includes radiometric, geometric (including orthorectifi-
cation), and atmospheric corrections. The raster layers were
preprocessed by the European Space Agency and made avail-
able via the Copernicus Open Access Hub. All final raster lay-
ers were resampled to a 10 m spatial resolution using the bi-
linear method since the raw bands had a native resolution of
10, 20, or 60 m. Lastly, the raster layers were reprojected to
match the other covariates.

A multitemporal approach was adopted to capture mois-
ture gradients over the study area (Fathololoumi et al. 2021).
Therefore, median and standard deviation layers were pro-
duced for all raw bands and indices that were gathered for
the following dates: 31 March 2020, 20 April 2020, 25 April
2020, and 20 May 2020. These dates were selected because
they had neither snow nor crops covering the fields and,
hence, were more effective in differentiating between the or-
ganic and mineral soils, as well as forests. The dates were also
selected based on data availability and cloud cover over the
study area.

2.3.4. Landsat 8 OLI_TIRS C2 Level-2 data

Landsat 8 is a satellite with a 16-day repeat cycle over the
same area. C2 Level-2 data are referred to as “analysis ready”
data——being preprocessed by the USGS Earth Resources Ob-
servation and Science (EROS) Center and then made freely
available. After Level-2 processing, surface reflectance (bot-
tom of atmosphere) values were obtained. More information
on the Landsat missions and preprocessing can be found in
Young et al. (2017).

This satellite provides information on the Earth’s tempera-
ture and land surface. The data acquired from two thermal
infrared sensors (100 m spatial resolution) and nine spec-
tral bands (30 m spatial resolution with one at 15 m reso-
lution) are sensitive to different wavelength ranges. Similar
to the Sentinel-2 data, the Landsat 8 raw bands and indices

were resampled to a 10 m spatial resolution. A multitempo-
ral approach was also used to capture seasonal and moisture
gradients. Three series of satellite images were chosen based
on cloud percentage, the absence of snow and crops. Images
from 6 May 2015, 14 May 2018, and 30 May 2018 were used.
The median and standard deviation over the three dates were
used as covariates. The remote sensing indices were gener-
ated from both satellites, using their respective bands and
were summarized in Table 2. All indices were computed in
QGIS (QGIS.org, version 3.10).

2.3.5. Distance and directional covariates

The center of a peatland is often the point where peat
accumulation is at its maximum, whereas near the border
of the peatland, one can expect thinner deposits. Therefore,
project-specific distance layers made in QGIS with the Multi-
Distance Buffer plugin were included (Tveite 2018). The first
layer was produced by locating a peatland’s centroid, then
generating 10 m buffers around it until the peatland’s bor-
der was reached. The product was then rasterized to a 10 m
spatial resolution. The second layer was produced by gener-
ating 10 m inner buffers from the peatland’s border, which
was then rasterized. One might think the results would be
the same; however, the resulting covariates exhibit signifi-
cantly different patterns due to the shape of each peatland.
Aspect reflects the topographic shape and directionality but
is a circular measure and cannot be used directly as a co-
variate; therefore, we generated raster layers that reflected
the eastness and northness of the study area. In addition
to these covariates, Euclidean distance fields were generated
for the study area to provide spatial context (Behrens et al.
2018).

2.4. Variance inflation factor analysis
The 142 covariates produced were reduced using a step-

wise variance inflation factor (VIF) procedure implemented
with the vifstep function (Naimi et al. 2014) to reduce multi-
collinearity (O’Brien 2007). Since it required the use of stan-
dardized covariates, the covariates were scaled using the
raster package. The VIF approach takes each of the standard-
ized covariate and uses the remaining ones as independent
predictors in a multiple linear regression via ordinary least
squares. Then, the coefficient of determination of the covari-
ate acting as the dependent variable (Ri

2) is calculated. This
process is repeated for every covariate. In eq. 1, the VIF is
computed for every ith predictor, where a high proportion of
variance explained by a given combination of predictors will
result in a higher VIF score. The model then evaluates if one
or more covariates has a VIF score that exceeds a predeter-
mined threshold value. In our case, a score of 5 was selected
although 10 is also a common threshold (O’Brien 2007; James
et al. 2014; Bian et al. 2020). The covariate with the highest
VIF is removed, and the process is repeated until all remain-
ing covariates are below the threshold.

VIFi = 1
1 − R2

i
(1)
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Table 2. Bands and indices from Landsat 8 and Sentinel-2 satellites explored as potential covariates.

Bands and indices Landsat Sentinel Equation Source

Brightness Index x x ((Red)2 + (NIR)2)0.5 Escadafal 1994

Normalized Difference Vegetation
Index (NDVI)

x x (NIR − Red)/(NIR + Red) Rouse et al. 1974

Soil Color Index x x 3 × NIR + Red − Green − 3 × Blue Poggio and Gimona 2017

Soil Moisture Index x x NIR/Blue Poggio and Gimona 2017

Bare soil index x ((Red + SWIR) −
(NIR + Blue))/((Red + SWIR) + (NIR + Blue))

Rikimaru et al. 2002

Combined Spectral Response Index x (Blue + Green)/(Red + NIR) × NDVI Taghizadeh-Mehrjardi et al. 2021

Normalized Difference Moisture Index x (Red − NIR)/(Red + NIR) Gao 1996

Salinity Index x Green/Red Khan et al. 2005

Raw bands 2–7 x

Normalized Difference Salinity Index x (Red − NIR)/(Red + NIR) Khan et al. 2005

Soil Adjusted Vegetation Index x (NIR − Red)/(NIR + Red + L) × (1 + L) Huete 1988

Transformed Vegetation Index x ((NIR − Red)/(NIR + Red) + 0.5)0.5 Nellis and Briggs 1992

Raw bands 2–8, 8A, 9, 11, and 12 x

Note: L = 0.5 (medium density of vegetation) was used in the Soil Adjusted Vegetation Index equation.

2.5. Modeling approaches
Three commonly used machine learning algorithms in

DSM were compared for predicting CLT and DML (Minasny
et al. 2019; Rudiyanto et al. 2018): Cubist, Random Forest
(RF), and k-Nearest Neighbor (kNN). Although this section will
briefly summarize each model, details concerning the learn-
ers are provided in Heung et al. (2016), where the models were
reviewed and compared. All the modeling was carried out us-
ing the R statistical software (R Core Team 2020) and the caret
package, which included all the tested models (Kuhn 2020).
Final maps were generated in QGIS at a 10 m spatial resolu-
tion.

2.5.1. Cubist

Cubist is a rule-based model that produces a regression tree
based on the M5 model (Quinlan 1992), and was subsequently
adapted by Kuhn and Johnson (2013) in R. At each node of the
tree, the data set is split based on a set of rules using the value
of one or many covariates, and form groups that minimize
the within-node variability. The terminal nodes (i.e., leaves)
of the resulting tree consist of multivariate linear models,
which are applied to the covariates to make predictions. The
hybridization of piecewise linear models and the hierarchical
tree models allow Cubist to capture both linear and nonlin-
ear relationships between predictors and the response vari-
ables (Malone et al. 2017). This model has two hyperparam-
eters to be tuned when training the model (Kuhn and John-
son 2013). Overpredictions and underpredictions can be ac-
counted for with a boosting technique using the committees
hyperparameter. It specifies the number of similar trees to be
sequentially produced and aggregated to optimize the set of
rules. This process is explained in greater details in Kuhn and
Johnson (2013). The second hyperparameter is the number
of neighbors to be considered in a nearest-neighbor search
through the training data set to find the closest observation
to the predicted value (Quinlan 1993). This final step is useful

for adjusting the value at the predicted location based on the
average of its nearest neighbors.

2.5.2. Random Forest

Based on ensemble theory (Zhang and Ma 2012), RF is a non-
parametric, decision-tree model, where a set of uncorrelated
trees are combined (Breiman 2001). Multiple trees are gener-
ated with the use of bagging, where each tree is built on a ran-
dom bootstrap sample of the original data set (with replace-
ment). Using the bootstrap sample, a series of node-splitting
rules are generated with respect to the covariates with the ob-
jective of maximizing the within-node homogeneity and the
between node heterogeneity. In the caret package, mtry is the
main tuning parameter and is used to control the number of
randomly selected covariate at each node, where the values
of mtry range from 1 to m number of predictors. Higher values
of mtry results in a higher likelihood of correlation between
the trees; however, it lowers the prediction variance at the
same time (Hastie et al. 2009). The trees from the forest are
then aggregated to obtain an average prediction for each new
observation (Genuer and Poggi 2020). Predictions can be re-
garded as more effective than those from single tree-learners
due to RF’s ability to mitigate bias (Kuhn and Johnson 2013).

2.5.3. K-Nearest Neighbors

kNN is a distance-based learner with one hyperparameter,
k, which represents the number of neighbors of the unob-
served location to be used for the prediction (Hastie et al.
2009). The rationale behind this learner is that observations
that have similar properties (i.e., covariates values) will tend
to have a similar value for the response variable of interest.
Therefore, kNN predictions are made using k observations
from training data that have similar values to those of the
predicted site in the covariates multivariate feature space.
To find neighbors of the predicted value, a distance metric
must be used (i.e., Euclidean distance) to assess the closeness
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between observations. In a regression context, the k closest
training data will be averaged, but if k = 1, the predicted
value will be assigned the value of the nearest training obser-
vation. Since the covariates had different value ranges, they
were standardized to ensure nonbiased calculation of the dis-
tance metrics (Hastie et al. 2009).

2.6. Model tuning and validation

2.6.1. Spatial cross-validation

As stated in a review of peat mapping studies (Minasny et al.
2019), 64 % of the 90 reviewed studies did not perform valida-
tion, which may result in overfitting and overoptimistic mod-
els’ performance metrics. Therefore, each of the machine
learners were trained to find the optimal hyperparameters
for DML and CLT models. Considering recent papers that had
overoptimistic performances of machine learners in DSM ap-
plications, spatial cross-validation was used to evaluate these
models (Pohjankukka et al. 2017; Meyer et al. 2018; Schratz
et al. 2019; Ploton et al. 2020). This approach has proven to
be more effective at measuring internal error and controlling
for spatial autocorrelation in the data set. When the data are
clustered, the model is more likely to correctly predict nearby
observations during the training and validation process and,
therefore, estimates of model performance can be biased.

Both data sets had clustered observations over the study
area. To allow a fair assessment of model performance, leave-
one-block-out cross-validation (LOBOCV) was used (Roberts et
al. 2017). This form of spatial cross-validation is similar to
leave-one-out cross-validation, where one observation from a
data set is partitioned out during model training and is used
as a test observation. During LOBOCV, one spatial block is put
aside as a validation set. The model is trained using all obser-
vations except for those from the testing block. The model
is then applied to this unseen data and error measures are
derived. The process is repeated by changing each validation
block for a new one at each fold. The number of folds is equal
to the number of blocks, respectively, 45 (CLT) and 44 (DML)
for this study. To compare LOBOCV with the conventional
k-fold cross-validation approach, the model performance of
both final models at the testing stage was also evaluated with
a 10-fold cross-validation with 10 repeats.

The CLT data set was used without modification in LOBOCV
because of its low number of observations (N = 255),
whereas the higher number of observations in the DML data
set (N = 4488) made partitioning possible. The traditional
method to split a data set for training and testing purposes
involves a 70%–30% split, respectively, with the use of ran-
dom sampling. Since the DML data were highly clustered, ran-
dom sampling could not divide observations evenly in train-
ing and testing data sets for peatlands with less data. Thus,
conditioned Latin hypercube sampling on the X and Y coordi-
nates (Minasny and McBratney 2006) was preferred over ran-
dom sampling. Before merging the two data sets (255 + 4286),
they were split based on their spatial coordinates to ensure a
similar spatial coverage of the study area between the train-
ing and test partitions. The LOBOCV was performed to tune
the model with 70% of the data, and to compute internal

performance assessment, the test data set (i.e., the remaining
30% yet unseen by the model) was used in a hold-out cross-
validation procedure.

To identify the suitable size for each spatial block unit,
the range from the theoretical variograms for the DML and
CLT were calculated using the approach described in Oliver
and Webster (2014). The experimental and theoretical var-
iograms were computed using the gstat package (Pebesma
2004; Gräler et al. 2016). Weighted least residual sum of
squares and visual assessment of the variogram fit were used
to select the best model (Oliver and Webster 2014). If all mod-
els had an adequate fit via visual assessment, the one with the
lowest weighted sum of squared errors was selected. Four out-
liers were identified in the DML data set; however, they cor-
responded to deep peat deposits and were kept in the model.
Four outliers were identified in the CLT and the data were
skewed (Table 1). Since outliers were not mistakes nor did
they belong to another population, they were kept in the
model and a square root transformation was applied (Oliver
and Webster 2014). This transformation was more effective
at reducing skewness than a logarithmic transformation. No
outliers remained after transformation. The grid was then ap-
plied to the area and can be seen in Fig. 2. The same grid
was applied to both features prediction under the assump-
tion that CLT and DML would have shared similar autocorre-
lation if CLT data set had more observations.

2.6.2. Model performance

Two accuracy metrics were used to select the best hyperpa-
rameters based on accuracy and precision: root mean square
of error (RMSE, eq. 2) and Lin’s concordance correlation coef-
ficient (CCC, eq. 3):

RMSE =
√∑N

i=1

(Oi − Pi )
2

N
(2)

where O is the observed value and P the corresponding pre-
dicted value and N is the total number of observations. CCC
was calculated as follows:

CCC = 2sop

(ō − p̄)2 + s2
o + s2

p

(3)

where sop is the covariance between predicted and observed
values, s2 are their corresponding variance, ō is the mean of
observed values, and p̄ is the mean of predicted values.

CCC can vary between −1 and 1, while a value near 0 indi-
cates a lack of concordance between two variables. This index
is similar to R2, because it measures agreement between two
variables but with the notable difference that it corrects for
systematic bias if the relationship departs from the 1:1 line
(Lawrence and Lin 1989). CCC can never be higher than the
absolute value of the Pearson correlation coefficient in the
presence of a bias. The CCC and RMSE statistics were obtained
using the onsoilsurvey package in R (Saurette 2021).
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2.7. Model simplification and variable
importance analysis

Recursive feature elimination (RFE) was performed with
the rfe function in the caret package (Kuhn 2020) to further
reduce the number of covariates for training the final mod-
els. This model simplification procedure was needed to aid
in interpreting soil–environmental relationships and improv-
ing generalizability. Briefly, RFE incorporates resampling to
measure model performance with a reduced selection of co-
variates. It is a backward feature selection method (i.e., the
model initially includes all predictors), whereby the predic-
tors are iteratively removed to simplify the model, and in
some cases, improve its performance. To fit the RFE models,
the caretFuncs function was used with 5-fold cross-validation
repeated five times. This allowed the computation of RMSE
(see eq. 2) that was used as the metric to determine the best
model. The most notable difference between VIF and RFE is
that VIF is carried out independently of the response vari-
able to address multicollinearity, whereas the RFE reduces
covariates as a function of the model performance in pre-
dicting the response variable to remove irrelevant predictors.
In other words, the VIF was performed once, but RFE was
performed six times (i.e., two response variables with three
machine learners). To assess the contribution of the remain-
ing selection of covariates, relative variable importance plots
were made for both final models using the VarImp function
in the caret package.

2.8. Prediction uncertainty
Many peat mapping studies do not include local estimates

of the prediction uncertainty (Minasny et al. 2019). To pro-
duce a prediction uncertainty map, a bootstrapping approach
was adapted from Malone et al. (2017). Here, 100 realiza-
tions were produced for both CLT and DML final models. Each
raster was generated by randomly sampling with replace-
ment the original data set with an equal number of obser-
vations. Afterward, the 0.05 and 0.95 quantiles for each cell
were obtained to generate the lower and upper bound of the
90% confidence interval of the predicted property.

Since the MPT map was the result of the difference between
the DML and CLT maps, propagation of error had to be con-
sidered to adequately capture uncertainty. As such, the mean,
variance, and covariance of bootstrap predictions were cal-
culated, assuming a normal distribution of the statistics for
each cell. Equation 4 describes how the standard deviation
value was calculated for each cell of the final map, using the
bootstrap-produced maps:

σMPT =
√

σ 2
M + σ 2

C − 2σMC(4)

where σMPT is the standard deviation of the MPT for a sin-
gle cell, σ 2

M is the variance of the mineral predictions, and σ 2
C

is the variance of the coprogenous predictions for 100 boot-
straps. It is assumed that both variables were dependent (i.e.,
correlated); therefore, a term corresponding to the covari-
ance between the features was added to the generic equation
(Ku 1966). Based on Malone et al. (2017), the mean square
error estimate from the validation data was added to the

bootstrapping variance σ 2
M and σ 2

C to account for systematic
and random errors in the models. Here, σ MC is the covariance,
as defined by eq. 5:

σMC =
∑N

i=1

(
Mi − M̄

) (
Ci − C̄

)
N − 1

(5)

where Mi and Ci are the values of the ith cell of one bootstrap
raster, and M̄ and C̄ are the mean values of the 100 rasters for
that cell, respectively, for mineral and coprogenous maps.

Finally, to obtain the upper bound (95th percentile) and
lower bound (5th percentile) of the 90% prediction interval,
the corresponding z-value of 1.645 was multiplied to the stan-
dard deviation of the MPT. It was then subtracted and added
to the predicted MPT value of a given cell (eq. 6).

Prediction limits = XMPT ± 1.645 × σMPT(6)

where XMPT is the mean MPT of a given cell obtained from the
bootstrapped maps.

3. Results

3.1. Variance inflation factor and recursive
feature elimination analyses

The VIF procedure reduced the number of covariates from
142 to 59, while the RFE procedure further reduced the num-
ber of covariates for the DML and CLT models to numbers be-
tween 5 and 25 covariates. Table 3 lists the final selection of
covariates for all models. Only two Landsat 8 covariates and
four Sentinel-2 covariates were retained in the final selection,
while a larger number of DEM derivatives were retained. The
distance and gamma radiometric layers were also retained in
the final selection. Both selected kNN models show the low-
est number of covariates after the RFE procedure.potassium
(K, %), equivalent uranium (URA, ppm), equivalent thorium
(THO, ppm), and ratios URA/THO (RUT), URA/K (RUK), and
THO/K (RTK).

3.2. Leave-one-block-out cross-validation
A spherical model was used to fit the CLT data, while an ex-

ponential model was used to fit the DML data to evaluate spa-
tial autocorrelation (Fig. 3). The range for the CLT was 4733 m
and for the DML was 957 m. The range provides the maxi-
mum distance at which two measurements of the same prop-
erty are related. The results indicated the presence of auto-
correlation among both features that needed to be captured
during model tuning. One should note that for the exponen-
tial model, it was the effective range (i.e., lag corresponding
to 95 % of the sill) that was defined.

To account for spatial autocorrelation during the cross-
validation procedure, the ranges obtained above were used
to generate spatial clusters of sites. The study area was di-
vided in squares using a grid of 1000, 1500, and 2000 m
for comparison. For each model, LOBOCV was performed.
This approach was compared to a non-spatial 10-fold cross-
validation. The latter returned overoptimistic values of
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Table 3. Final selection of covariates for the six models after stepwise variance inflation factor and recursive feature selection. DEM = digital elevation model; kNN
= k-Nearest Neighbor; RF = Random Forest.

Depth to the mineral layer Coprogenous layer thickness

Covariate name Description Provider
SCORPAN

factor Cubist RF KNN Cubist RF KNN

RTK Ratio of equivalent thorium to potassium from airborne gamma ray
spectrometry

Natural Resources Canada P x x x x

RUT Ratio of equivalent uranium to equivalent thorium from airborne
gamma ray spectrometry

Natural Resources Canada P x x x x

THO Surface concentration of equivalent thorium (ppm) Natural Resources Canada P x x x x x x

URA Surface concentration of equivalent uranium (ppm) Natural Resources Canada P x x x

Buffer Distance layer of 10 m buffers generated from each peatland’s
boundaries

This study N x x x x x

Center Distance layer of 10 m buffers generated from each peatland’s center This study N x x x x x

DIST_MID Euclidean distance to the middle of the study area Derived from DEM N x x x x x x

DIST_Y Euclidean distance to the northern-most coordinates of the study
area

Derived from DEM N x x x x x

ElevPercent219 Elevation percentile from a 2190 m filter kernel Derived from DEM R x x

LB2_med Multitemporal median of Landsat’s band 2 over 3 dates USGS Earth Explorer O x x x x x

LB7_sd Multitemporal standard deviation of Landsat’s band 7 over 3 dates USGS Earth Explorer S x x

MaxDiffMean2187 Maximum difference from mean elevation for a maximum search
neighbourhood radius of 21 870 m

Derived from DEM R x x x x x

MaxDiffMeanScale2187 Scaled maximum difference from mean elevation for a maximum
search neighbourhood radius of 21 870 m

Derived from DEM R x x x

MaxDiffMeanScale656 Scaled maximum difference from mean elevation for a maximum
search neighbourhood radius of 6560 m

Derived from DEM R x x

MaxElevDevScale2187 Scaled maximum elevation deviation for a maximum search
neighbourhood radius of 21 870 m

Derived from DEM R x x x x x

MaxElevDevScale656 Scaled maximum elevation deviation for a maximum search
neighbourhood radius of 6560 m

Derived from DEM R x x x

MRRTF Multiresolution index of the ridge top flatness Derived from DEM R x x x x x

MRVBF Multiresolution index of valley bottom flatness Derived from DEM R x x x x x x

MSP Mid-slope position Derived from DEM R x x x x x

RSP Relative slope position Derived from DEM R x x x

SB12_med Multitemporal median of Sentinel-2 band 12 Copernicus Open Access
Hub

S x x

SSAVI_med Multitemporal median of the soil adjusted vegetation index using
Sentinel-2 images

Copernicus Open Access
Hub

S x x

SSoil_color_sd Multitemporal median of the soil colour index using Sentinel-2
images

Copernicus Open Access
Hub

S x x x

SSoil_moist_med Multitemporal median of the soil moisture over 4 dates using
Sentinel-2 images

Copernicus Open Access
Hub

S x x x x

SLength Slope length Derived from DEM R x

SlopeH Slope height Derived from DEM R x x x x

VDepth Valley depth Derived from DEM R x x x

Total: 20 22 5 25 19 12
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Fig. 3. Experimental variograms (dots) of the two predicted features and their best fit model (line). (A) Variogram of the co-
progenous layer thickness using 255 square-root-transformed observations. (B) Variogram of the depth to the mineral layer
using 4488 observations. The lag was 100 m for both variograms.

concordance and RMSE compared to LOBOCV (data not
shown), reinforcing the need of a spatial cross-validation ap-
proach. It was also determined that a distance of 1500 m pro-
duced better results according to the accuracy metrics from
the cross-validation procedure and was used to form spatial
blocks. The spatial blocks are shown in Fig. 2.

3.3. Accuracy assessment and model selection
Internal validation results of the three machine learners

are summarized in Table 4. Models were compared based on
their CCC and RMSE obtained after LOBOCV for the CLT and
after hold-out cross-validation for DML. It was clear that CLT
models underperformed compared to DML models; CLT mod-
els had lower RMSE, but far lower CCC compared to DML
models. The Cubist model had the best performance for CLT
predictions, with a CCC = 0.07 and RMSE = 30 cm. For the
DML predictions, model performance of the Cubist model
(CCC = 0.43 and RMSE 48 cm) was similar to the RF model
(CCC = 0.40 and RMSE = 44 cm). The difference between
the observed and predicted range also led to the selection
of the Cubist model as the final DML model. The range of
predicted values by Cubist were closer than RFs to the ac-
tual range of observed values, although Cubist overpredicted
slightly.

Furthermore, a plot of observed and predicted values was
generated for both final models (Fig. 4). DML predictions
seemed to follow the 1:1 line; however, a shift in the trend
was observed for values above 200 cm (Fig. 4A). Concerning
the CLT, the datapoints did not follow the 1:1 trendline. More-
over, many sites without a coprogenous layer (observed =
0 cm) had a predicted CLT up to 120 cm (Fig. 4B).

3.4. CLT and the DML predictions and
uncertainty estimates

The final CLT map and its 90% confidence interval bounds
were produced (Fig. 5). According to Fig. 5B, thicker layers
of coprogenous soil were predicted in the two lower peat-

lands and tended to be thicker towards the center of those
peatlands. This trend was consistent with field observations.
Nevertheless, no uniform gradient was found, indicating
localized accumulation sites across the peatlands. Further-
more, while the peatland in the northwest was reportedly
exempt of coprogenous material according to our field sam-
pling survey, the Cubist model predicted a CLT between 0 and
55 cm. The prediction uncertainty maps derived from the
bootstrapping technique showed a 90% confidence interval
range of 11–304 cm.

Concerning the predicted DML final map (Fig. 6B), the spa-
tial pattern of the thickness of organic material deposits
shared similarities with the final CLT map. Yet, high DML val-
ues did not always correspond to high CLT values. Further-
more, higher DML values were not exclusively found near
the center of each peatland (i.e., the southwest and the cen-
ter peatlands). Spatial artifacts can be seen, mainly around
forested areas, and are related to the covariates used in the
models. The southeast peatland was the shallowest on av-
erage, with a higher concentration of low DML predictions.
Compared to CLT predictions, the DML 90% confidence inter-
val width was narrower (i.e., 2–190 cm).

3.5. Variable importance analysis
The relative variable importance plots for both final Cubist

models are shown in Fig. 7. These plots show covariate impor-
tance in all condition and (or) linear model included in the
Cubist tree. They provide information concerning the num-
ber of times that a covariate was used in the final model’s tree
(Kuhn 2020). The contribution of each variable was evaluated
with model specific metrics since the final models were both
Cubist. For the CLT, MRRTF (100 %) contributed the most to
the final model, followed by DIST_MID (86 %), MRVBF (81 %),
MSP (69%), and MaxElevDevScale2187 (64 %) for the top 5 co-
variates. Following that, a gradual decline in variable impor-
tance can be seen. Dist_MID (100 %) was the most important
covariate in the final DML model, followed by THO (86 %),
MRRTF (65 %), DIST_Y (62 %), and Center (49%) for the top 5
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Table 4. Tuning and leave-one-block-out cross validation results for the coprogenous layer thickness (CLT) and hold-out cross
validation for the depth to the mineral layer (DML) models. Standard deviation of the concordance and of the root mean square
of error (RMSE) are in parentheses. RMSE, observed, and predicted ranges are in centimeter. kNN = k-Nearest Neighbor; RF =
Random Forest.

N Feature Model Hyperparameter Concordance RMSE Observed range Predicted range

255 CLT Cubist
Committees = 10

0.07 (0.24) 30 (32) [0, 206] [0, 216]

Neighbors = 1

kNN k = 3 0.01 (0.11) 34 (26) [0, 151]

RF mtry = 8 0.08 (0.18) 30 (26) [0, 138]

4488 DML Cubist
Committees = 50

0.43 (0.32) 48 (33) [5, 392] [5, 417]

Neighbors = 5

kNN k = 4 0.18 (0.26) 62 (31) [11, 346]

RF mtry = 7 0.40 (0.23) 44 (22) [13, 336]

Fig. 4. Plots of the correlation between observed and predicted values for the Cubist model (A) after hold-out cross-validation
for the depth to the mineral layer (N = 1346), and (B) after leave-one-block-out cross-validation for the coprogenous layer
thickness (N = 255). A perfect fit is represented by the red 1:1 line.

covariates. A sharp decline in relative importance was ob-
served for the other covariates.

3.6. Predictions of maximum peat thickness
and uncertainty estimates

The MPT map at a regional scale was derived by subtract-
ing the CLT map from the DML map to reflect the real thick-
ness of the potentially arable peaty layer (Fig. 8B). MPT ranged
from −79 to 367 cm and approximately 0.27% (or 32.05 ha)
of the MPT map are cells with a negative MPT. The lower
MPT prediction limit ranged between −167 and 271 cm (Fig.
8A), while the upper prediction limit ranged between 9 and
464 cm (Fig. 8C). With the bootstrapping technique and the

propagation of error, uncertainty tended to be relatively high
and variable across the study area (Fig. 8D). Indeed, the 90%
prediction interval varied between 130 and 231 cm.

4. Discussion

4.1. Interpreting model performance
The use of regional, open access covariates has proven use-

ful for predicting DML; however, an underperformance of
the CLT models was observed in this study. This was likely
due to size and spatial distribution differences between the
data sets for the two predicted soil properties. Table A1 fur-
ther highlights differences found across each peatland with
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Fig. 5. Maps of the predicted coprogenous layer thickness (cm) across the study area using the Cubist model and 90% prediction
limits derived using bootstrapping (N = 100). (A) Lower prediction limit (i.e., 5th percentile), (B) prediction, (C) upper prediction
limit (i.e., 95th percentile), and (D) prediction interval width.

Fig. 6. Maps of the predicted depth to the mineral layer (cm) across the study area using the Cubist model and 90% prediction
limits derived using bootstrapping (N = 100). (A) Lower prediction limit (i.e., 5th percentile), (B) prediction, (C) upper prediction
limit (i.e., 95th percentile), and (D) prediction interval width.
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Fig. 7. Relative importance of each covariate (%) on the final Cubist model (A) of the depth to the mineral layer and (B) of the
coprogenous layer thickness. Refer to Table 3 for a description of covariates’ abbreviations.

Fig. 8. Maximum peat thickness map obtained by subtracting the coprogenous layer thickness to the depth to the mineral layer
and 90% prediction limits derived using bootstrapping (N = 100). (A) Lower prediction limit (i.e., 5th percentile), (B) prediction,
(C) upper prediction limit (i.e., 95th percentile), and (D) prediction interval width.

regards to the descriptive statistics of both predicted features.
Here, the number of observations, the range, and the coef-
ficient of variation of each peatland may have affected the
model performance. For the sake of simplicity, a single model
was trained for the entire study area, although the CLT and
DML spatial gradients differed between peatlands. The DML
model was able to moderately generalize across all peatlands
(CCC = 0.43 and RMSE = 48 cm), which was not the case for

the CLT model (CCC = 0.07 and RMSE = 30 cm). The high
coefficient of variation of the CLT (109%, Table 1) indicated
high heterogeneity in the data set, compared to that of the
DML (52%). This can be explained by the fact that CLT could
be considered as a zero-inflated variable with a wide range of
values. A large proportion of the data set was composed of
sites without a coprogenous layer, as seen in Fig. 4b. Further-
more, data clustering and poor spatial coverage of the study
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area’s extent could have limited the model performance in ar-
eas with a lower sampling density, especially when consider-
ing variable importance which showed that spatial distance-
based predictors were relatively important.

Nonetheless, our prediction errors were comparable to
other studies. Rudiyanto et al. (2018) tested 14 machine-
learning models to map the peat thickness in Indonesian
peatlands, where DML was predicted with a RMSE ranging
from 1.8 to 2.8 m at a regional scale (50 000 ha), while Gatis
et al. (2019) obtained a RMSE of 0.31 m for a 40 600 ha
study area. These RMSE values were of the same magnitude
as the RMSE values observed in this study (Table 4). More-
over, Rudiyanto et al. (2018) had better results with Cubist
and RF models compared to the other tested models. Con-
sidering the number of observations (1779 and 159) and the
peat depth range (0–7 and 0–12 m) in Gatis et al. (2019) and
Rudiyanto et al. (2018), respectively, our CLT and DML mod-
els showed similar model performances when treated sepa-
rately. Since both studies reported R2 and we used CCC, we
cannot make direct comparisons, but both studies clearly out-
performed ours. This may be due to the use of spatial cross-
validation instead of standard cross-validation. As recently
described in Wadoux et al. (2021), spatial cross-validation of
autocorrelated data are not always the best solution to ob-
taining a representative assessment of the bias of a model.
Standard cross-validation might yield better results without
being overoptimistic. This could partially explain why the
CCC obtained with LOBOCV for the CLT model was as low as
0.07, but standard cross-validation yielded a CCC = 0.65, and
RMSE = 51.6 cm. The DML model had a higher CCC = 0.95
and a lower RMSE = 21.6 cm using standard cross-validation
than when using LOBOCV. The latter cross-validation tech-
nique was preferred due to its more conservative estimates
of model performance and to account for spatial autocorre-
lation of the data.

4.2. Variable importance analysis
The most important DML predictors aligned with other

studies, while the interpretation of CLT predictors was lim-
ited by the model performance. Results from Rudiyanto et
al. (2018) showed that MRVBF was ranked as the fourth
most important covariate among those tested. This supports
the importance of this DEM-derived covariate on the pre-
diction of deposited materials. Some soil-forming factors af-
fect limnic and organic deposits differently depending on
the scale at which phenomenon are studied (Behrens et al.
2018). As stated by Gallant and Dowling (2003), MRRTF and
MRVBF can be important predictors for hydrologic and ge-
omorphic processes that are related to valley, depressions,
and slopes, like sedimentary soil deposits (i.e., coprogenous
material and subsequently peat deposits). Multiresolution co-
variates can provide this information to the model to al-
low a better understanding of the magnitude of the de-
posits. This was likely why so many topographic and scale-
related covariates were retained in the final models of this
study.

The Euclidean distance to the center of the study area
(DIST_MID), the Euclidean distance to the north of the study

area (DIST_Y) and the distance to the center of a given peat-
land (Center) were also important predictors, meaning higher
deposits are generally found near the center and thinner de-
posits near the peatland border, but also that there is a gen-
eral gradient from a peatland to another. Furthermore, we ex-
pected that gamma radiometric covariates would contribute
to delineating the peat extent and predicting peat thickness
(Minasny et al. 2019). Indeed, the most important gamma-
radiometric covariate was ranked as the second most impor-
tant variable (Fig. 7A) in the DML model. The same authors
also suggested that multi-temporal satellite covariate might
provide useful information on peat thickness. In this study,
most of the Landsat 8 and Sentinel-2 predictors were highly
correlated, possibly due to a short period from when the im-
agery was acquired. Moreover, many Landsat and Sentinel co-
variates were not retained from RFE, possibly due to their low
effectiveness as predictors. While the multi-temporal median
of the soil moisture index from Sentinel-2 had a variable im-
portance of 35%, little can be interpreted from this due to
the low accuracy of the CLT model. A weak relationship be-
tween CLT and the suite of covariates could suggest that the
model failed to capture the variability of CLT at a regional
scale. Other sampling surveys should be made at a smaller
spatial extent (i.e., individual farm) and the potential bene-
fits of proximal soil sensing tools for producing more rele-
vant covariates should be evaluated.

The study area encompassed four pedological surveys for
which digital maps were freely available online. Legacy soil
data were considered at first due to their popular use in DSM
but were not included as covariates due to temporal incoher-
ence between the surveys (1950, 2000, 2001, and 2014). The
evolution of organic soils over time can lead to substantial
biases and render maps less useful, even though they can be
updated with modern techniques (Kempen et al. 2009). Oth-
erwise, this covariate could have been useful to predict areas
with coprogenous soil and to delineate peat extent.

4.3. Predictions of maximum peat thickness
and uncertainty estimates

The results suggested a potential limited use of the MPT
map produced at a regional scale for soil management pur-
poses at the field-scale given the high uncertainty of the com-
bined CLT and DML predictions. Artifacts in the DML and CLT
maps created sharp transitions between neighbouring cells
that were not observed in nature and may require further
field verifications. These issues may affect interpretation of
the final MPT map for fields near the artifacts and the prop-
agation of error may occur when combining maps with such
artifacts. These errors may limit the use of such mapping
products for precision agriculture and conservation projects.
Moreover, the accuracy was not sufficient to predict at which
depth tile drainage could be installed or if soil conservation
MPT thresholds for management are reached (for details, see
Deragon et al. 2022).

Negative values were observed in a small portion of the fi-
nal map. This was due to a predicted coprogenous layer be-
ing thicker than the predicted depth to the mineral layer. As
previously stated, higher imprecision in the CML model may
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have been linked to a poor coverage of the study area; fur-
thermore, a weak relationship between covariates and the
predicted feature could be responsible for model uncertainty.
Peatlands differed quite significantly on their average MPT.
For instance, the southeast peatland showed the lowest av-
erage MPT compared to the other ones. This has major im-
plications from a soil conservation perspective, because de-
graded and shallow soils are not uniformly distributed nor
confined to a peatlands’ border. Therefore, farmers from dif-
ferent peatlands are not affected equally by the shallowness
of their soil and will have to use different soil conservation
measures accordingly to their situation.

Many sources of uncertainty were present in this study
(Heuvelink 2017). Two methods of sampling with a different
precision were combined. In addition, the data set from 2010
was mainly clustered in two peatlands. Since model tuning
inevitably fits the model on a majority of points coming from
those peatlands, the final model might not be as effective in
predicting the features found in the other three peatlands if
their formation and evolution differs significantly (i.e., botan-
ical origin, soil management, groundwater level variations
based on differences related to the watershed and elevation,
average number of years since conversion to agriculture, etc.).
Preprocessing of the original data to produce the covariates
may have introduced error in the model as well (i.e., resam-
pling, projecting, and smoothing raster layers). As stated in
Samuel-Rosa et al. (2015), the number and the location of cal-
ibration points matter; furthermore, the covariates are only
approximations of the real-world soil-forming conditions and
thereby inherently prone to errors. These errors are compli-
cated if not impossible to quantify and are propagated at each
new step of the workflow. A better sampling design would
have been needed from the start to cover the full feature
space of DML and CLT of the study area, and a better spatial
distribution of observation points. Unfortunately, little was
known about the DML and CLT in three of the peatlands prior
to the start of the study. Therefore, the MPT map should be
used with caution, as one decision tool among others to man-
age organic soil conservation. Yet, not considering coproge-
nous materials would greatly overestimate the remaining soil
resource that can be used to produce crops. Moreover, despite
important errors in depth estimates, digital mapping results
were consistent with the observed distribution of the DML
and CLT.

5. Conclusion
The use of freely available covariates and DSM techniques

provided the first maps of the depth to the mineral layer,
coprogenous layer thickness, and maximum peat thickness
covering five peatlands at a regional scale. Although their
prediction error was comparable to other DSM studies, the
CLT model did not achieve a sufficient accuracy to produce
CLT and MPT maps of similar precision to site sampling for
now and further work is needed. Thus, we were not able to
elaborate on the contribution of the individual covariates on
the CLT model performance. Although the DML map provides
more accurate information as a tool to determine priority
intervention zones, MPT still remains a key metric to guide

soil conservation practices. The produced MPT map should
serve as a baseline to be built upon and improved in future
research. For instance, proximal sensing tools could be inves-
tigated as a more relevant source of covariate data to produce
coprogenous layer thickness maps at a local scale instead of
relying on remote sensing tools at a regional scale. Such could
provide new insight on the CLT spatial variability and would
also improve the accuracy of the MPT map.
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Appendix A

Table A1. Summary statistics of the coprogenous layer thickness (CLT) and of the depth to the mineral layer (DML) for each of
the five peatlands. Refer to Fig. 2 for peatland identification numbers.

Peatland: 1 2 3 4 5

Feature: CLT DML CLT DML CLT DML CLT DML CLT DML

N 22 22 7 7 9 814 157 451 60 3194

Minimum (cm) 0 34 0 192 0 30 0 17 0 5

Maximum (cm) 0 260 281 284 223 310 287 392 172 300

Mean (cm) 0 131 74 236 89 178 81 181 88 119

Median (cm) 0 112 0 246 95 185 71 170 92 110

Standard deviation (cm) NA 63.68 126.38 33.25 94.12 64.14 76.00 78.74 40.73 63.98

Coefficient of variation (%) NA 48.78 171.78 14.10 105.36 36.09 93.39 43.52 46.24 53.69

Variance (cm2) NA 4055 15 971 1105 8859 2888 5776 6630 1659 2584

Skewness NA 0.64 0.78 −0.03 0.25 −0.02 0.55 0.17 −0.22 0.58

Kurtosis NA −0.64 −1.51 −1.68 −1.81 −0.93 −0.81 −0.73 −0.40 −0.11

Note: No coprogenous layer was found in peatland 1. Therefore, no summary statistics can be computed.
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