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Introduction
Heavy metals (HM) are one of the most abundant environ-
mental pollutants. Metals sources may be natural (wildfires, 
rock erosion, and volcano eruptions), but anthropogenic pollu-
tion (metallurgy, agriculture, transport) exacerbates the metals 
contamination issue (P. K. Rai et  al., 2019; Uchimya et  al., 
2020). The atmospheric HM pollution is related to power 
plants (27%), ferrous metallurgy (24.3%), oil extraction and 
refinery (15.5%), transport (13.1%), and non-ferrous metal-
lurgy (10.5%; Zwolak et al., 2019).

After precipation on the soil surface, HM accumulate in 
soil, especially in humus rich layers (Q. Li et  al., 2022). The 
main risk of HM pollution is the long half-life and ability to 
migrate by trophic chains (Nagajyoti et al., 2010; Zwolak et al., 
2019). Metals half-life may take 70 to 510 years for Zn, 13 to 
110 years for Cd, 310 to 1,500 years for Cu, and 770 to 
5,900 years for Pb (Kabata-Pendias & Pendias, 2011). Metals 
mobility in soil is stipulated by many factors: organic substance, 
clay minerals, oxides, and anions (carbonates, phosphates, sili-
cates, and sulfides). All of these components determine soil 
ability to bind HM and prevent their further migration (Q. Li 
et al., 2022). Besides, soil pH, redox potential, and humidity are 
of high importance for metal mobility (R. Kim et al., 2015).

Bioavailable of mobile HM form in soil include water-solu-
ble compounds, free metal ions, and soluble metal complexes 
with organic and inorganic ligands (R. Kim et al., 2015; Q. Li 
et  al., 2022). Besides, HM exchangeable forms, adsorbed on 
clay minerals by electrostatic forces, are also considered mobile. 
Various reagents and mixtures are used for the extraction of 
metal mobile forms in soil, such as acetate ammonium buffer 

(pH = 4.8), 1 M NH4NO3, 0.02 M CaCl2 + 1 M CH3COONH4, 
0.005 M DTPA (diethylenetriamine pentaacetate) + 0.01 M 
CaCl2 + 0.1 M triethanolamine. Hydrochloric acid (1 M solu-
tion) is often used for the extraction of mobile forms, however, 
in this case not only bioavailable form is extracted, but also less 
plant available metal reserve in soil (R. Kim et al., 2015; Q. Li 
et al., 2022).

HM transport in plants can be passive (without energy con-
sumption), and active (metabolic) with energy consumption to 
transport ions in opposition to electrochemical potential gradi-
ent. Passive transport is implemented via cation non-selective 
channel, while for active transports selective protein transport-
ers are used. For instance, there are proteins, selectively trans-
porting Fe2+ and Cu2+ (Nagajyoti et al., 2010). Metals ions 
are transported to stem and leaves via xylem, after which can 
enter phloem and redistribute in plant organs (DalCorso et al., 
2013).

The rate of metal accumulation in plants is species-specific. 
According to Baker’s (1981) classification there are accumula-
tors, indicators, and excluders plant species. Accumulators 
absorb high metal concentration in the overground part, 
despite low metal content in soil. Indicators accumulate metals 
in such way, that content in plant change proportionally to that 
in soil. Excluders slightly accumulate metals in overground 
part, but after metal concentration in soil reach certain critical 
point, plant start to accumulate HM in an uncontrolled way.

Many HM (Cu, Zn, Fe, Mn, Mo, Ni, and Co) are essential for 
normal plant growth and development (Ghori et al., 2019). All 
plants need to absorb these elements from soil in certain amount. 
These metals implement various physiological functions: 
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participate in redox enzymes, photosynthesis, respiration, protein 
biosynthesis (Andresen et  al., 2018). However, excessive HM 
concentration leads to toxic effect (Edelstein & Ben-Hur, 2018; 
Riyazuddin et al., 2022).

Metals can have various negative impacts on plants vital 
functions. HM can oppress plant growth by lowering cell divi-
sion intensity, and violate cell elongation, binding to –SH 
groups of cell wall proteins (Bharti & Sharma, 2022; Kupper & 
Andresen, 2016). Metal accumulation leads to oppression of 
plants development, delay in phenological phases, and disturb 
mineral nutrition (Rhiyazuddin et al., 2022). Photosynthesis is 
very sensitive to HM accumulation, photosynthetic enzymes, 
chloroplasts membranes, and photosystem in whole can be tar-
gets for HM (R. Rai et al., 2016). Besides, HM decrease activ-
ity of respiration enzymes and electron transport in respiration 
chain (Bharti & Sharma, 2022). Finally, HM disturb water bal-
ance in plants, by decreasing water volume in cells, osmotic 
potential, and transpiration rate (Kabata-Pendias & Pendias, 
2011; P. K. Rai et al., 2019).

There have been numerous studies on heavy metal concen-
tration in soils and plants in various countries (Baltas et al., 
2020; Demkova et  al., 2017; Dong et  al., 2018; Galal & 
Shehata, 2015; Gupta et  al., 2021; H. S. Kim et  al., 2016; 
Kumar et al., 2020; Noli & Tsamos, 2016; Rutigliano et al., 
2019; Shaheen et  al., 2016; Sulaiman & Hamzah, 2018; 
Swiercz & Zajecka, 2018; Varol et al., 2021; Wang & Zhang, 
2018; Wu et al., 2018). However, there are few studies associ-
ated with HM translocation in Russia (Chaplygin et al., 2018; 
Minkina et al., 2017; Popova, 2019). Tyumen is a fast-devel-
oping industrial city with oil and gas, engine-building, and 
metallurgical enterprises, as well as a high number of vehicles 
per capita. This creates the risk of HM contamination. Earlier 
in some studies, HM content in soils was (Konstantinova 
et al., 2019; Seleznev & Rudakov, 2019; Shigabaeva, 2015), 
however, the issue of metal translocation to plants remains 
poorly investigated. This study attempts to fill the research 
gap of heavy metals translocation to plants of urban area, and 
metals bioavailability in disturbed urban soils in a case study 
of Tyumen.

Coltsfoot is a plant with widely recognized medicinal prop-
erties (Shikov et  al., 2014). However, our previous research 
showed that it has a high capability of metal accumulation, 
compared to other herbs in the studied area (Petukhov et al., 
2020). The purpose of this study was to investigate heavy met-
als soil migration to coltsfoot in Tyumen during 4 year period 
(2017–2020). Assumed metal accumulation in coltsfoot will 
limit its use in medicinal purpose. The data on HM concentra-
tion in soils and herbs of Tyumen can be recommended to 
apply in the development of environmentally justified norms of 
human activity on wildlife. The investigation of quantitative 
relation of metal concentration in soils and plants can predict 
the possibility of phytoextraction, and limit herbal materials 
from polluted areas.

Materials and Methods
Study area

Soil and plants samples were collected at the end of July 2017 
to 2020 in Tyumen at the control site (30 km from the city, and 
5 km from anthropogenic sources), highway (30 km from the 
city), and 200 m distance at plants in the city: engine-building, 
oil refinery, battery manufacturing, and metallurgical plant 
(UMMC). Tyumen (57°09´N, 65°32´E) is situated in Western 
Siberia and is the capital of the Tyumen Oblast in the Russian 
Federation.

Sample collection and analysis

Soil samples were collected at 0 to 10 cm depth. Air-dried soils 
were averaged by quartering, ground, and sifted through a 
1 mm sieve. Heavy metal mobile form in soil was extracted 
using acetate-ammonium buffer (pH = 4.8; PND F 
16.1:2:2.2:2.3.78-2013), acid-soluble fraction was extracted by 
5 M HNO3 (RD 51.18.191-2018).

Coltsfoot (Tussilago farfara L., 1753) overground part 
(leaves and stems) was collected at five spots at each site. 
Plants were washed and air-dried, and then ashed at 500°C 
for 3 hours. Then metals in plant ash were extracted by 5 M 
HNO3 (Ministry of Agriculture of the Russian Federation. 
Central Institute of Agrochemical Treatment of Agriculture, 
1992). Metal content analysis (Cu, Zn, Fe, Mn, Pb, Cd, Ni, 
Co, and Cr) in soils and plants was conducted by atomic 
absorption spectrophotometer “ContrAA 700” (Analytic 
Jena, Germany) and atomic emission spectrophotometer with 
inductively coupled plasma Plasma Quant PQ 9000 (Analytic 
Jena, Germany). Analysis was conducted at the Center for 
Collective Usage “Rational nature management and physic-
chemical research.”

The plants ability to accumulate HM was estimated by 
Bioconcentration factor (BCF), which was calculated as the 
ratio of the metal content in the plant to that acid-soluble frac-
tion in soil:

BCF
Cplant

Csoil
 =

Quality control and assurance

Sample using a known amount of metal standard was exam-
ined for verification of the accuracy of the analytical procedure. 
Recoveries of the heavy metals ranged between 85% and 110%. 
All reagents used were analytical reagent grade. A pre-cleaning 
regime, that is, acid washed was applied for each glassware 
apparatus prior to use. Double-distilled water was used 
throughout this study for laboratory applications including 
reagents, blanks, and standard reparation. Soil and plants sam-
ple preparation was conducted twice, while measurements were 
conducted in three parallel.
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Statistical analysis

Statistical analysis was conducted by calculating the mean 
value and mean deviation. Normal distribution was confirmed 
by Kolmogorov-Smirnov test. Mean values comparison was 
done by Student’s t coefficient, confidence interval was calcu-
lated for p ⩽ .05. Bivariate correlations were analyzed at p ⩽ .05.

Results and Discussion
The content of Cu mobile form in soil ranged from 0.07 to 
0.94 mg kg−1 (Table 1). In 2017, 2018, and 2020 Cu concentra-
tion in urban soils was higher than in control by 1.6 to 4 times. 
The maximum permitted concentration of Cu mobile form in 
soil (3 mg kg−1) was not reached. Acid-soluble Cu fraction in 
soils of Tyumen ranged from 1.2 to 24 mg kg−1 (Table 1) and 
exceeded concentration at the control site in urban area in 2017 
to 2020. Mobility of Cu in soil (ratio of mobile form to acid-
soluble) ranged from 0.2% to 37%, mostly from 1% to 18% 
(Figure 1).

Elevated Cu content in urban soils may be stipulated by a 
high amount of vehicles, fossil fuel burning, and likely the his-
toric application of pesticides and fertilizers at the city out-
skirts. In previous research Cu contention in soils of Tyumen 
ranged from 11 to 28 mg kg−1 (Shigabaeva, 2015), while in 
another study the mean Cu content was estimated at 30 mg kg−1 
(Konstantinova et al., 2019). Cu content in soils was close to its 
content in another city of Russia, Yoshkar-Ola (Voskresenskaya 
et  al., 2013), soils of Slovakia (Demkova et  al., 2017), and 
Northern India (Gupta et al., 2021). The comparison of results 
in this research with other studies is presented in Table 2.

The Cu concentration in coltsfoot ranged from 6 to 
24 mg kg−1 (Table 3). The plant accumulation was not observed 
in 2017, while in 2018 to 2020 Cu concentration in coltsfoot 
from highway, oil refinery, engine-building, and metallurgical 
plants exceeded the control by 20% to 140%. The highest con-
centration was at highway and metallurgical plant. Cu content 
in plants correlated with Cu mobile form in soils during 2017 
to 2020 (R = .43). The Cu content in coltsfoot turned out to be 
close its concentration in vegetables, grown in HM polluted 
soil in Bangladesh (Shaheen et  al., 2016) and India (Gupta 
et al., 2021).

The content of Zn mobile form in soils ranged from 0.7 to 
13 mg kg−1 (Table 1). The maximum permitted concentration 
of Zn in soils is 23 mg kg−1, there was no exceeding of this value 
(Chief State Sanitary Doctor of the Russian Federation, 2021). 
In most cases, Zn mobile form in urban area was higher than 
that of control at least by 1.5 times, the highest concentration 
was at oil refinery and metallurgical plant.

The concentration of Zn acid-soluble fraction in soils of 
Tymen ranged from 7 to 67 mg kg−1. Zn content in soils from 
industrial plants was higher than control at least by 15%, with 
maximum at metallurgical and battery-manufacturing plants, 
exceeding control by four times. The increase in Zn content at 
metallurgical plant may be connected to application of 

zinc-coated scrap in steel production. Zn mobility in soils 
ranged from 5% to 20% (in average 5%–10%; Figure 1). Zn 
concentration in our study was close to another research in 
Tyumen (Boev et al., 2019; Shigabaeva, 2015), as well as study 
from Middle Urals copper smelter (Trubina & Vorobeichik, 
2013). The content of Zn in Tyumen soils was similar to other 
countries: Poland (Swiercz & Zajecka, 2018), Italy (Rutigliano 
et al., 2019), and India (Gupta et al., 2021).

The content of Zn in coltsfoot ranged from 17 to 160 mg kg−1 
(Table 3). The relative Zn accumulation of at least by 15% to 
100% was at all sites, except for battery-manufacturing plant. 
The maximum Zn accumulation was at metallurgical plant, 
exceeding control by 2.5 to 4 times. Zn concentration in plants 
correlated with its mobile form in soil (R = .40). Coltsfoot at 
highway, engine-building, oil refinery, and metallurgical plant 
accumulated Zn higher than its maximum permitted concen-
tration in plants (50 mg kg−1; Governmental Agricultural 
Committee of USSR, 1987). Zn concentration in coltsfoot was 
close to that of plants from Novocherkassk (Chaplygin et al., 
2018) and Yoshkar-Ola cities (Voskresenskaya et  al., 2013), 
vegetables in Greece (Noli & Tsamos, 2016), and lettuce in 
Italy (Rutigliano et al., 2019).

The concentration of Fe mobile form in soils ranged from 
16 to 207 mg kg−1 (Table 1). Fe content at highway and metal-
lurgical plant in 2018 and 2020 was elevated, compared to 
control. Fe acid-soluble fraction in soils ranged from 15,000 to 
95,000 mg kg−1 (Table 1). Fe content exceeded the control at 
all sites, except highway. The maximum Fe concentration was 
at battery manufacturing and metallurgical plants, where it 
exceeded control at least by two times. Similar Fe concentra-
tion in soil was reported in Turkey (Baltas et al., 2020), and 
Mn mining area from southern China (M. S. Li et al., 2007). 
Environmental pollution by Fe is likely to appear from chim-
neys of steel production and iron-nickel battery manufactur-
ing wastewaters. Fe mobility in soils was extremely low 
(0.03%–0.57%; Figure 1). This is probably due to iron pres-
ence in poorly soluble oxides and hydroxides (; Colombo et al., 
2013; Kabata-Pendias & Pendias, 2011).

The concentration of Fe in coltsfoot ranged from 95 to 
8,500 mg kg−1. Coltsfoot accumulated Fe at all sites compared 
to control (Table 3). The greatest Fe accumulation was at met-
allurgical plant (up to 17 times) and highway in 2019. This may 
be due to steel production waste and application of Fe-based 
octane rating booster. In 2017 to 2020 Fe concentration in 
coltsfoot correlated with its mobile form in soils (r = .44). Fe 
concentration in plants is similar to that of plants from Malaysia 
(Sulaiman & Hamzah, 2018) and Egypt (Galal & Shehata, 
2015).

The concentration of Mn mobile form ranged from 25 to 
110 mg kg−1 (Table 1). Maximum permitted concentration of 
Mn mobile form in soil is 100 mg kg−1 (Chief State Sanitary 
Doctor of the Russian Federation, 2021). Mn content in soil at 
engine-building and metallurgical plant in 2019 exceeded 
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maximum permitted concentration. Mn mobile form in soil 
from urban area exceeded the control by 1.1 to 2 times during 
2017 to 2020 period.

The concentration of acid-soluble Mn fraction in soil 
ranged from 160 to 690 mg kg−1 (Table 1). Mn content in urban 
area exceeded the control by 1.3 to 2.8 times, with highest con-
centration at metallurgical and battery-manufacturing plants. 
This is likely stipulated by Mn application in steel ligation. In 
previous studied Mn content in soils of Tyumen was estimated 
by 400 to 930 mg kg−1 (Shigabaeva, 2015), while 170 to 
770 mg kg−1 in puddle sediments (Seleznev & Rudakov, 2019). 
The concentration of Mn in soil was similar to that in 
Hangzhou, China (Wang & Zhang, 2018). Mn mobility in soil 
ranged from 5% to 35% (mostly 10%–25%; Figure 1), which is 
explained by high solubility of Mn compounds and stability of 
its aqua complexes.

Mn concentration in coltsfoot ranged from 15 to 318 mg kg−1 
(Table 3). Mn accumulation compared to control was at high-
way, oil refinery, and metallurgical plant by 1.5 to 13 times, as 
well as engine-building plant in 2020. Elevated Mn content in 
coltsfoot at highway may. The usage of Mn in steel production 
leads to its accumulation by coltsfoot at metallurgical plant. 
Mn content in plants turned out to be similar to that in Egypt 
(Galal & Shehata, 2015), Novocherkassk (Chaplygin et  al., 
2018), and vegetables in northern India (Gupta et al., 2021).

The concentration of Pb mobile form in soils ranged from 
0.7 to 55 mg kg−1 (Table 1). In most cases Pb concentration was 
at control level and in the range of 1 to 20 mg kg−1 in 2017 to 
2019. Pb content at oil refinery exceeded the control by 60% in 
2018. In 2020 Pb mobile form concentration was higher than 
control at all sites, at least by 1.8 times. Besides, Pb mobile 
form at battery manufacturing plant greatly exceeded the con-
trol during all studied period. This is likely due to lead-acid 
batteries production.

The concentration of Pb acid-soluble fraction in 2017 to 
2019 was roughly the same as mobile form. The exception was 
battery manufacturing plant, where 54 to 172 mg kg−1 of Pb 
was registered (Table 1). In 2020 Pb acid-soluble fraction was, 

at least two times higher in urban area than at control and 
highway. Pb content at battery manufacturing plant was 
140 mg kg−1, which exceed the control by 20 times. In previous 
study (Shigabaeva, 2015), Pb content in soil was 158 mg kg−1, 
which is similar to the results of this study. Pb mobility in soils 
was 10% to 64%, which creates the risks of Pb accumulation by 
plants. High Pb mobility in urban soils was previously regis-
tered in Samara (Morozova & Prokhorova, 2007). The Pb con-
tent in soil was similar to its level in urban soils of Slovakia 
(Demkova et al., 2017), and agricultural soils in Turkey (Baltas 
et al., 2020).

The concentration of Pb in coltsfoot from urban area in 
2017 to 2019 was at the detection limit or similar to control 
(Table 3). In 2018 Pb concentration in plants from battery 
manufacturing plant exceeded control, which is due to lead-
acid battery production. In 2020 Pb content in coltsfoot ranged 
from 0.7 to 11.5 mg kg−1 (Table 3), with exceeding the control 
at all sites, at least by 1.6 times. The maximum Pb accumula-
tion was at metallurgical and battery manufacturing plants, 
where, according to the Pharmacopeia of Russian Federation, 
maximum permitted concentration of Pb was exceeded 
(Ministry of Health of Russian Federation, 2015). 

Cd mobile form concentration in soils of Tyumen ranged 
from 0.03 to 0.84 mg kg−1 (Table 1). In 2017 to 2019 there were 
no statistically significant differences among studied sites. In 
2020 Cd mobile form is soils of urban area exceeded the con-
trol by 60% to 130% (Table), but still remained low (0.03–
0.07 mg kg−1). Cd acid-soluble fraction in soil ranged from 0.08 
to 0.56 mg kg−1 (Table 1). This is similar to Cd content in soil 
from Novocherkassk power station (Chaplygin et al., 2018). In 
2020 Cd content in urban soils was higher than control by 1.6 
to 3.4 times (Table 1). Elevated Cd concentration may be due 
to accumulation and burn of municipal waste, and industrial 
and municipal wastewaters. According to the results of 2020, 
Cd mobility in soils was high (21%–39%).

The concentration of Cd in most plant samples in 2017 to 
2019 was at the detection limit (0.02 mg kg−1) or at control 
level (Table 3). Low Cd content was previously observed in 
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Petukhov et al. 11

floodplain plants in Tyumen (Motorin & Bukin, 2014). In 
2020 Cd concentration in coltsfoot ranged from 0.09 to 
0.37 mg kg−1 (Table 3), only exceeding the control at battery 
manufacturing plant. In 2020 positive correlations between Cd 
content in plants and Cd mobile form in soils, as well as its 
acid-soluble fraction were established (R = .68 and .72 
respectively).

In 2020 the concentration of Ni mobile form in soils ranged 
from 0.8 to 3.6 mg kg−1 (Table 1). Ni content at all sites, except 
for battery manufacturing plant, exceeded the control at least by 
1.3 times. The acid-soluble fraction of Ni in soil ranged from 14 
to 54 mg kg−1 and exceeded the control at all sites by 1.5 to 3.8 
times (Table 1). The maximum Ni concentration was at oil 
refinery, which is likely due to application of Ni as catalyst in 
such petrochemical processes as hydrogenation and hydrotreat-
ing. Previous studies registered average of 46 mg kg−1 
(Konstantinova et  al., 2019) and 75 mg kg−1 Ni in soils of 
Tyumen (Shigabaeva, 2015). The mobility of Ni in soil was rela-
tively low and ranged from 2% to 11%. Ni is known to have 
high affinity to clay minerals, and Fe, Mn hydroxides, which can 
explain its low mobility in soil (Kabata-Pendias & Pendias, 
2011). Ni content in soil was similar to its concentration in 
many countries: roadside soils in China (Wang and Zhang, 
2018), urban soils in Poland and Slovakia (Demkova et  al., 
2017; Swiercz & Zajecka, 2018), agricultural soils in India 
(Gupta et al., 2021).

The concentration of Ni in coltsfoot ranged from 2 to 
25 mg kg−1 (Table 3). Relative accumulation of Ni compared to 
control was only at oil refinery, which correlates with elevated 
Ni content in soil. Ni content in plants correlated with its con-
centration in soil (R = .79). Ni content in plants is estimated to 
range from 0.1 to 2.7 mg kg−1 (Kabata-Pendias & Pendias, 
2011). The maximum permitted concentration of Ni in live-
stock plants is 1 to 3 mg kg−1 (Governmental Agricultural 
Committee of USSR, 1987). Similar to this study Ni concen-
tration in plants was at charcoal mine in China (Zhang et al., 
2016), power plant in Novocherkassk (Chaplygin et al., 2018), 
highways in Korea (H. S. Kim et al., 2016). All of this indicates 
Ni anthropogenic pollution in studied area.

The content of Co mobile form in soil ranged from 0.02 to 
0.36 mg kg−1 (Table 1). The concentration of Co at highway 
and oil refinery exceeded the control by 2 and 2.6 times respec-
tively. Acid-soluble fraction of Co in soil was 7 to 15 mg kg−1, 
Co content at engine-building, battery manufacturing, and 
metallurgical plants exceeded the control by 1.6 to 2.1 times 
(Table 1). Co is used as additive to steel, which can explain its 
elevated content in soil. In previous study Co content in soil at 
oil refinery was 7 mg kg−1 (Boev et al., 2019). Co mobility in 
soil was low and ranged from 0.1% to 4%. Low migration of 
soluble Co forms in soil is observed due to its sorption at Fe 
oxides and clay minerals (Kabata-Pendias & Pendias, 2011). 
Co concentration in soil of Tyumen was similar to the Co con-
tent in roadside soils in China (Wang & Zhang, 2018) and 
agricultural soils in Italy (Rutigliano et al., 2019).

The concentration of Co in coltsfoot ranged from 0.16 to 
1.35 mg kg−1 in 2020 (Table 3). Co content at all studied sites 
exceeded the control at least by 70%. Co content in coltsfoot 
correlated with its mobile form in soil (R = .75). As in the case 
of Ni, the highest accumulation of Co was at oil refinery. This 
is probably connected to application of cobalt-molybdenum-
alumina catalysts in petrochemical processes. In previous study 
Co content in plantain in vehicles pollution conditions was 0.6 
to 5.6 mg kg−1 (Galal & Shehata, 2015). Co content in coltsfoot 
was close to its level in vegetables from India (Gupta et  al., 
2021).

The concentration of Cr mobile form in soils of Tyumen 
ranged from 0.01 to 1.31 mg kg−1 (Table 1). Cr content in soils 
exceeded the control almost at all studied sites. The maximum 
Cr concentration was at oil refinery. Similar results were 
obtained for acid-soluble Cr fraction in soils (Table 1). 
Cromium (III) oxide is used as catalysts in petrochemical pro-
cesses, which can explain elevated Cr content at oil refinery. Cr 
mobility in soils was low and ranged from 0.03% to 3.6%. 
Cromium compounds in soils are known to be stable and inert 
(Kabata-Pendias & Pendias, 2011). Cr content in soils of 
Tyumen was similar to Cr concentration in cities of Poland and 
Slovakia (Demkova et al., 2017; Swiercz and Zajecka, 2018).

The analysis of Cr content in coltsfoot registered from 0.4 
to 16.5 mg kg−1 (Table 3). The content of Cr in plants from 
urban area exceeded the control. Steel chromating and applica-
tion of Cr in petrochemical catalytic processes led to maximum 
Cr accumulation at metallurgical plant and oil refinery. The 
maximum permitted concentration of Cr in herbs is 0.5 to 
1.0 mg kg−1 (Governmental Agricultural Committee of USSR, 
1987), which was exceeded almost at all sites. Similar Cr con-
tent was previously registered in plants from Novocherkkask 
power station (Minkina et al., 2017) and plantain at highway in 
Egypt (Galal & Shehata, 2015).

Thus, heavy metals mobility in soils of Tyumen can be 
decreased in the following order: Cd > Mn > Pb > Zn > Ni = 
Cu > Co > Cr > Fe (Figure 1). Metal accumulation in soils of 
Tyumen compared to control decreased in the order: Pb > Cu 
> Zn > Ni > Cr > Fe > Co > Mn > Cd (Figure 2). High Cd 
and Mn mobility in soils is likely due to its weak complexing 
ability, and stability of water-soluble compounds. This corre-
lates with their low accumulation in soils. Fe mobility in soils 
is limited to low solubility of oxides and hydroxides. During 
2017 to 2020 studied period Tyumen urban environmental 
contamination was stable, with such sources as vehicles (Fe 
and Mn), steel production (Fe, Mn, Cr, and Zn), iron-nickel 
and lead-acid batteries production (Fe and Pb), and petro-
chemical processes (Ni, Co, and Cr).

Heavy metal accumulation in coltsfoot decreased in the 
order: Fe > Zn = Mn > Pb > Cu > Cr > Co > Ni > Cd. There 
were seemingly opposite results of metal mobility in soil and 
accumulation in plants. For example, Fe has low mobility in 
soils, but actively accumulated by coltsfoot, when compared to 
control. However, high Cd mobility in soil does not provide its 
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accumulation by plants. This result can be explained by plants 
active participation on metal accumulation due to different 
biochemical functions of metals: absorption of essential Fe by 
specific proteins, and stopping Cd accumulation, which is toxic.

The HM concentration in soil positively correlated with its 
concentration in plants. Linear regression equations are pre-
sented in Table 4, which can forecast Pb, Fe, Cu, and Zn accu-
mulation in coltsfoot by their mobile form content in soil.

The value of bioconcentration factor is presented in Table 
5. BCF > 1 indicates not only metal absorption, but plant 
accumulation as well.

Heavy metals bioavailability (according to the decrease in 
BCF value) changed in the order: Cu > Zn > Cd > Pb > Ni > 
Mn > Cr > Co > Fe. The order of metals bioavailability was 
closer to the order HM mobility in soil, compared to the order of 
metal accumulation in plants. Low Cr, Co, and Fe bioavailability 
correlates with their low mobility in soil. However, for other 
metals this correlation is not so straightforward. Probably, this is 
due to the important contribution of metabolic metal transport 
in plants via protein transporters. Eariler in other studies Cu 
(Sulaiman & Hamzah, 2018) and Zn (Popova, 2019) 
Bioconcentration factors were also high. The lowest bioconcen-
tration factor of Fe was for herbs in Mn mining area (M. S. Li 
et al., 2007). Despite high Fe accumulation in coltsfoot, its trans-
location compared to soil is low, due to poor mobility in soil.

Coltsfoot can be attributed to heavy metals excluder species, 
despite metal accumulation in urban area compared to the con-
trol. In most cases, BCF in urban area was lower than control, 
despite elevated metal content in soils. Likely, plants in condi-
tions of anthropogenic pollution develop heavy metals toler-
ance mechanisms and can emit metal chelators (citric acid, 
oxalic acid, and histidine) in rhizosphere to prevent its accumu-
lation in plants (Thakur et al., 2016).

The investigation of metal translocation in soil-plant sys-
tem depends on climate conditions, soil properties, and plant 
species. Therefore, the results of this study are recommended 
to apply in similar conditions of temperate climate, sod-pod-
zolic soils, and related to coltsfoot plant species. For the dem-
onstration of pollution source, samples in this study were 
collected close to industrial plants. However, in the future 
study more samples are needed to compose pollution map 

Table 4. The Results of Linear Regression Analysis (n = 24).

№ PARAMETERS (X–Y) LiNEAR REGRESSiON EQUATiON CORRELATiON COEFFiCiENT R P-VALUE

1 Pb mobile–Pb plant Y = 0.177X + 5.53 .564 .02

2 Fe mobile–Fe plant Y = 19.8X + 685 .441 .02

3 Сu mobile–Cu plant Y = 9.69X + 8.42 .430 .02

4 Zn mobile–Zn plant Y = 0.0414X + 2.16 .405 .03

Table 5. bioconcentration Factor of Cu, Zn, Fe, Mn, Pb, and Cd for 
Coltsfoot.

2017 2018 2019 2020

Cu 4.95 1.43 1.34 1.12

Zn 1.53 1.52 1.57 1.68

Fe 0.008 0.042 0.097 0.008

Mn 0.18 0.09 0.15 0.23

Pb 0.75 0.97 0.65 0.24

Cd 0.67 2.38 0.42 1.69

Ni — — — 0.23

Co — — — 0.06

Cr — — — 0.22

Note. Mean value of studied sites during 2017 to 2020 period. bCF ⩾ 1 is marked 
in bold.
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Figure 2. Heavy metals in soils of Tyumen exceeding the control in 2017 to 2020. Vertical lines indicate first and forth quartile, and horizontal line inside 

the box is median.
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and establish local background values. Besides, there is per-
spective in studying biochemical parameters and medicinal 
properties in plants under conditions of metal accumulation.

Conclusions
Heavy metal content in soils of Tyumen exceeded the control by 
1.1 to 2.0 times. Relative metal accumulation by soils decreased 
in the order: Pb > Cu > Zn > Ni > Cr > Fe > Co > Mn > Cd. 
The maximum Cu, Zn, and Pb content were at battery manu-
facturing plant, Ni, Cr—at oil refinery, while Fe, Mn—at metal-
lurgical and battery manufacturing plants. Metal mobility in 
urban soils changed in the order: Cd > Mn > Pb > Zn > Ni =  
Cu > Co > Cr > Fe. Heavy metals accumulation in coltsfoot 
compared to the control decreased in the order: Fe > Zn = Mn 
> Pb > Cu > Cr > Co > Ni > Cd. The greatest metal accumu-
lation of most metals was at metallurgical plant, while Ni and 
Co accumulated the most at oil refinery. Fe Zn, Ni, and Cr con-
tent in coltsfoot exceeded the maximum permitted concentra-
tion for livestock plants. Cu, An, Fe, Cd, Ni, and Co content in 
coltsfoot correlated with their level in soil. Bioconcentration 
factor indicated the following metal bioavailability: Cu > Zn > 
Cd > Pb > Ni > Mn > Cr > Co > Fe. Heavy metal accumula-
tion in coltsfoot should be taken into account during sanitary 
control of herb drugs based on this plant. The data on metal 
concentration in soils and plants of Tyumen can be applied in 
ecological monitoring of urban environment. Linear regression 
between metal concentration in soil and plant may forecast 
metal accumulation in plants. Heavy metal translocation in 
coltsfoot should be considered in sanitary control of medicine, 
containing coltsfoot leaves.
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