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Introduction
Climatic challenges resulting from the climate change phe-
nomenon are currently impacting human livelihoods, trigger-
ing social disruptions and economic hardships. Its impacts on 
the quality, availability and use of water resources too, are not 
far-fetched, having both direct and indirect effects on the soci-
oeconomic and biophysical environments (Arnell, 2004; Bates 
et  al., 2008; Kundzewicz et  al., 2008; Rutashobya, 2008; 
Warburnton et al., 2005), on agriculture (Crane et  al., 2011; 
Pielke et  al., 2007; Vermeulen et  al., 2012), on health 
(Bunyavanich et  al., 2003; Gage et  al., 2008), on ecosystems 
and biodiversity and on energy generation (Fameso et al., 2020, 
2022; Magadza, 2010; Magadza et al., 2020; Yamba et  al., 
2011). The rise in the rates of recurrence and degrees of inten-
sity of extreme climatic and geographic events such as hurri-
canes, storms, droughts, volcanic eruptions and earthquakes 
– on both sides of the extremities, are interfering with the bal-
ance in quantum and quality of water available in the ecosys-
tem, impacting on access, conservation, distribution and the 
overall sustainability of water resources.

Quinn et al. (2022) affirmed in their editorial that the sus-
tainability of inland water resources is also suffering human-
induced problems and maladministration, in addition to 
climatic and environmental challenges such as aquifer depletion 

and subsidence, water logging, contamination from household 
and agro-chemicals and seasonal drying of river flows. Several 
human activities produce by-products which when discharged 
into the environment without caution find their way into water 
bodies. This can be in the form of sediment due to wind and 
water erosion of soils; nutrients from fertilizer, animal wastes 
from livestock husbandry, pesticides including herbicides, insec-
ticides and fungicides; salt mostly from winter road application; 
effluent discharge from sewage-treatment plants and septic sys-
tems or toxins from manufactured and refined products 
(Otterpohl et  al., 1999; Biswas and Tortajada, 2019; Brown 
et  al., 2020). These in no small measure have affected water 
quality in a manner which requires a pragmatic and vehement 
approach to the rethinking, re-evaluation and re-evolution of 
water resource management policies. This is even more expedi-
ent for industry and municipal sectors that place high premiums 
and are heavily reliant on the highest possible quality of water 
supply as a way to manage extra costs that need to be incurred 
in addressing treatment and pollution of their water stock.

Managing water quality through rigorous water resource 
analyses happens to be a crucial part of the water resource 
development process as illustrated in Figure 1. Water quality 
analysis and prediction ensure the safety and availability of 
consumable freshwater. This comes with the burden of 
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understanding the influences of factors, including but not 
limited to precipitation patterns, soil properties, watershed 
inundation and replenishment modes and man-made activi-
ties. Climatic conditions have been observed to also alter 
these factors, increasing the frequency and extremities of 
weather events and affecting water distribution, quantity and 
quality in the ecosystem.

The concept of water quality and what amounts to ‘quality 
water’ which will be further discussed in this paper is highly 
multidimensional. It has been observed to encompass various 
parameters within classifications of physical, chemical and 
biological characteristics. These numerous water quality 
parameters may interact in complex ways, posing challenges 
for modelling and prediction. The variability of natural water 
systems, technological limitations, consumption requirements 
and the transient nature of other driving factors over time and 
space also add convolutions to water quality metrics and char-
acterization. On the one hand, obtaining accurate and reliably 
comprehensive water quality data poses a herculean task, on 
the other hand, the integration of these water quality metrics 
into a fully developed universal water quality model presents 
further hurdles. The complexity and interconnectedness of 
water quality parameters have made it difficult to develop a 
comprehensive model that can accurately represent a diverse 
range of water systems. The integration of data from different 
sources and disciplines, such as hydrology, ecology and envi-
ronmental engineering, adds another layer of complexity to 
the development of decision support systems. Thus, the ques-
tions beg:

•• Currently, are there established protocols that holistically 
govern and quantify water quality determinands?

•• Are there any works of research that have successfully 
provided through parametric evaluation, a hierarchy of 
influence or a hierarchy of affectance of water quality 
parameters on the overall quantification of water quality?

•• Can there be a possibility that one (or two) indicator(s) 
or property (ies) for example, Acoustic frequency, or elec-
tromagnetic resonance can be found to meter a signifi-
cant majority (if not all) of water quality parameters and 
hence reduce the drudgery and analytical cost of whole-
somely determining water quality across the three cate-
gories of water quality determinands – physical, chemical 
and biological.

•• What does the future portend for water quality modelling 
in light of recent advancements in technology, changing 
global climate and yearnings for sustainability?

•• What are the prospects and opportunities for developing 
reliable water quality models and decision support 
systems?

This study thus provides a review of the challenges impeding 
the development of DSS that are essential to improving the 
efficiency of water quality management. These challenges are 
viewed particularly from the perspectives of water quality 
quantification, characterization, measurement and integration 
into a robust universal water quality model. The prospects and 
opportunities provided by technological advancements in over-
coming these challenges are also appraised. More specifically, 
this review:

i.  Looks at challenges of, and efforts by the scientific com-
munity over the years to characterize, control, predict 
and properly manage water quality for the benefit of 

Figure 1. A flow graph of the water resource development process.
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end-users, without starving any group of its required 
quantity and quality of supply.

ii.  Presents an overview of how operators and scientists are 
leveraging the availability of full-phased digital tech-
nology, to provide support systems that will help to deal 
better with the dynamics of water quality in increas-
ingly contaminable environments, progressively unpre-
dictable climates, but ever-more insatiable demand for 
the highest possible quality of a fundamental resource 
utilized in virtually every part of the globe.

iii.  Explores the prospects and opportunities of a fourth 
industrial revolution-backed water quality manage-
ment renaissance offered by radical scientific innova-
tions for water service supply operations are discussed.

To do justice to the key questions and objectives of this study, 
documented results of previous similar studies were collected 
from a wide range of publications with a view to obtaining 
compelling evidence and drawing the right conclusions. The 
search included scholarly articles, studies and other relevant lit-
erature obtainable from academic databases, journals, books and 
other sources. This was conducted using science citation index-
ing databases such as SCOPUS and the Web of Science with 
the words/phrases ‘water quality’, ‘water quality management’, 
‘water resources management’, ‘decision support systems in 
water quality management’, ‘water quality modelling’ as some of 
the keywords used in the search. Of the hundreds of results gen-
erated, the search filter was further screened to output results 
that: (1) are clearly related to water quality modelling and (2) 
involved the development and application of decision systems 
for managing water resources. Consequently, As shown in 
Figure 2, a total of about 150 publications that identified with 
the key objectives of this study, spanning the last half a century 
and with a total of close to 40,000 citations were reviewed.

Majority of the reviewed literature was a product of research 
contributions to the body of knowledge through peer-reviewed 
articles published in research journals. This is followed by 
reports from industry experts published in serials and periodi-
cal report documents and proceedings of research outcomes 
presented at conferences and other science engagement and 
communication forums. Internet sources and books formed the 
rest of the body of literature which were all thoroughly read 
and analysed, and a distinct understanding their main argu-
ments, methodologies, findings and conclusions were digested. 
The aim is to better understand the different challenges to the 
development of state-of-the-art decision support systems for 
water quality management systems – from the characterization 
of water quality, to the construction of a universal water quality 
model based on a highly condensed, minute, yet highly effable 
and reliable set of metrics, to the development of all-encom-
passing decision-making systems. This is important because 
the prospects and opportunities offered by these systems, from 

early warning capabilities to support and management analyt-
ics, present a powerful toolkit for safeguarding water resources 
without losing cognisance of their ability to contribute to equi-
table, sustainable and resilient water quality management prac-
tices in the face of a dynamic and evolving climate.

Thus section 1 has introduced the background to the study, 
the changing global climate and the multiple dimensions to 
which it has impacted the water quality question, as well as the 
aims, objectives and steps taken to gather the necessary infor-
mation for this study. Section 2 thereafter, talks about the chal-
lenges to the characterization, quantification and measurement 
of water quality, especially from the purview of previous studies 
by researchers and its implications on decision-making in water 
quality management. Section 3 reviews the early advances in the 
development of decision support as inspired by mathematical 
modelling for predictive and pre-emptive actions on water qual-
ity management. Section 4 reviews the shift in paradigms in 
predictive analysis and sustainable water quality decision mak-
ing at the turn of the millennium in the light of the shift in 
global attention and commitment towards achieving break-
through in issues such as nutrition, human rights and sustaina-
bility and how the optimal utilization and management of water 
resources systems can play a key role in attaining such goals. 
Section 5 examines contemporary approaches of adaptive 

Figure 2. Graphical illustration of the literature review statistics showing 

distribution by (a) period (b) bibliographic sources.
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support applications towards model performance optimization, 
scalability and higher-level simulation applications, within the 
perspectives of the progress made in terms of a variety of meth-
ods, expansion in spatial resolution and advances in uncertainty 
and reliability evaluation. Section 6 presents a synthesis of the 
reviewed literature and the authors’ points of view and proposed 
contributions as to how water quality modelling and decision 
support development should be approached in the light of the 
problems identified and the short comings of the current regime 
of problem solving and decision making. The paper concludes 
with Section 7 discussing the prospects and opportunities of 
operational solutions for water resource management offered by 
the acceptance of science and communication technology-based 
applications, emerging cyber-physical and artificial intelligent 
systems in management operations primed to transform day-
by-day management of water and providing lasting solutions to 
quality water availability and supply challenges.

Challenges of Water Quality Characterization and 
Quantification
To the general public, the concept of water quality is a question 
of its safety for consumption, however, it gets more complex 
than that. According to Haarhoff (2023), water quality is 
defined by parameters grouped either by their potential risk or 
by analytical considerations. Potential risks include aesthetic 
risks such as colour, taste, odour or turbidity; Health risks 
which are characterized by the presence (or not) of chemical 
compounds or microbiological organisms; Operational risks 
such as the measure of corrosivity, alkalinity, acidity or tem-
perature. Analytical considerations define water quality in 
terms of methods and expertise required for its analysis. These 
are classed under Microbiological, Physical, Chemical or 
Organic determinands. The World Health Organization 
(WHO) provides globally sanctioned and reliable protocols 
that guide the definition, management and policy direction of 
water quality, which is subjected to periodic revision and re-
evaluation. Various countries and regions across the globe also 
have adopted local-specific and community-targeted regula-
tions that guide the establishment and maintenance of water 
quality within their geophysical domains. For example, the 
South African Bureau of Standards administers the SANS 241 
(Haarhoff, 2023), which is the country’s version of protocols 
that guide the definition and prescription of water quality. 
Similarly, the United States Environmental Protection Agency 
also provides water quality standards which are enforced within 
the American territory. The Directorate of Water Inspectorate 
(DWI) sets the regulations in England and some other parts of 
the United Kingdom for public water supply, while the 
European Union also has water quality standards set for Europe 
as a region.

Private water supply companies also do have their water 
quality standards and parameters as an addendum to those set 
up by government agencies and global bodies like the WHO 

(World Health Organization, 2022). These may be in line 
with, or more stringent in measure, to those set by regulatory 
agencies empowered by law for such purposes. They are essen-
tially designed in such manners as to ensure the safety and 
integrity of the water being supplied to consumers. Table 1 
provides information on the parameters used in determining 
water quality according to the SANS 241 protocols. Though 
most of the various region-specific quality standards as well as 
the WHO standard share a general pattern, quantitative com-
parisons by researchers have shown large deviations and differ-
ences among them (Mamba et al., 2008). While some other 
researchers have tried to provide justifications for this, in the 
form of considerations such as locally specific problems and 
prevalence which require more attention, such as soil mineral 
profiles, economic activities or climatic conditions and so on, 
there begs the question as to the possibilities of having unified, 
probably, empirically motivated, generally acceptable metrics 
for the determination of water quality parameters suitable for 
consideration and application across board.

The quality conundrum: Navigating variability 
and shifts in water quality characterization and 
reporting

Amongst other things, monitoring and maintaining water qual-
ity is paramount to public health, hence the need to ensure 
water is available and safe for use and effectively managed, con-
served and utilized. This task is however plagued by the com-
plexity of the metrics associated with defining water quality as 
it spans scientific, technological and logistical domains. Being a 
multidimensional phenomenon, it is affected by several natural, 
ecologic, anthropometric and economic factors which are tran-
sient in their own right, escalating the difficulty in accounting 
for all the influential variables. This was affirmed by Fang et al. 
(2020), Teixeira et al. (2014) and C. Zhao and Chen (2014) in 
their investigations on driving force(s) of water quality, surmis-
ing that the change of water quality is often influenced by mul-
tiple factors, such as economy, population, land use, water 
resources, industry and so on. Exacerbating this challenge, 
according to Brunner et al. (2021) and Quan and Meon (2015) 
are other factors such as sampling issues and uncertainty related 
to limited data or unaccounted values. Hutley et  al. (2020) 
asserted that despite advances inmodelling capability, field data 
remains a limiting factor in understanding these complex water 
quality systems, potentially resulting in misrepresentations 
across a broad spectrum by several orders of magnitude. 
Phenomena such as sediment transport, loading into down-
stream receptors, the ephemeral nature of streamflow and 
topography, limit water quality monitoring capacity and con-
tribute in no small measure to the multiplicity of the spectrum 
of variables that requires description and characterization in 
defining water quality. J. Huang et al. (2021) demonstrated the 
dynamic nature of water quality in river systems, emphasizing 
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Table 1. Water Quality Parameters Grouped According to Potential Risk or Analytical Considerations.

DETERMiNAND RiSK CATEGORy SPECiFiC EFFECT

Microbiological water quality parameters

E. coli or faecal coliforms Acute health Faecal pollution indicator

Cytopathogenic viruses Acute health Damage to cells

Protozoan parasites Acute health Gastro-enteritis and diarrhoea

Total coliforms Operational Faecal pollution indicator

Heterotrophic plate count Operational Microbiological activity indicator

Somatic coliphages Operational Faecal pollution indicator

Physical and aesthetic water quality parameters

Free chlorine Chronic health Disinfectant

Monochloramine Chronic health Disinfectant

Colour Colour aesthetic Consumer resistance

Conductivity at 25°C Aesthetic Dissolved salts indicator

Odour or taste Aesthetic Consumer resistance

Total dissolved solids Aesthetic Unpleasant taste

Turbidity Operational Particle removal indicator

Turbidity Aesthetic Consumer resistance

pH at 25°C Operational Corrosivity, taste and dissolved metals

Chemical (macro-determinands) water quality parameters

Nitrate as N Acute health Methemoglobinemia

Nitrite as N Acute health Methemoglobinemia

Sulphate as SO-
4 Acute health Diarrhoea

Sulphate as SO-
4 Aesthetic Bitter and salty taste

Fluoride as F- Chronic health Tooth enamel and skeletal fluorosis

Ammonia as N Aesthetic Taste and odour

Chloride as Cl- Aesthetic Salty taste

Sodium as Na Aesthetic Taste and hypertension

Zinc as Zn Aesthetic Taste and milky appearance

Chemical (macro-determinands) water quality parameters

Antimony as Sb Chronic health Diarrhoea and liver damage

Arsenic as As Chronic health Skin lesions and skin cancer

Cadmium as Cd Chronic health Kidney damage

Total chromium as Cr Chronic health Gastro-intestinal cancer

Cobalt as Co Chronic health Heart damage and thyroid damage

Copper as Cu Chronic health Taste, staining and gastro-intestinal

Cyanide as CN– Acute health Nervous system and thyroid

iron as Fe Chronic health Fatigue and joint pain

iron as Fe Aesthetic taste Taste, stains and deposits

(continued)
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the need for continuous monitoring to grasp the complexity of 
pollutant transport and transformation.

More importantly, the transient variability of quality param-
eters with time, location and geography from day to day and 
season to season poses challenges to data sampling and moni-
toring efforts, constraining the budget, scope and resources 
needed to ensure data accuracy and reliability. Fan et al. (2010), 
Fan and Fang (2020), Y. Zhao et al. (2019), C. Liu et al. (2019), 
evaluated studies on water quality data and observed that these 
tend to cover periods of short duration, have small sample sizes 
or are restricted to a single sub-catchment. This has made the 
temporal accountability of an already complex spectrum and 
phenomena of water quality characterization one requiring 
a great deal of analytic and operational sophistication. 
Consequently, the unavailability of adequate spatiotemporal 
water quality data to build, calibrate and validate a model, has 
indirectly compounded the difficulties in water resource plan-
ning and management decisions due to a lack of accurate infor-
mation on changes in water quality under different conditions. 
Manjakkal et al. (2021), reviewed the challenges associated with 
deploying sensor technologies for water quality monitoring, 
highlighting the importance of technological advancements in 
addressing measurement accuracy and reliability. Thus, the eco-
nomic realities of the acquisition, operation and maintenance of 
high-quality sensors and instruments required to sustain the 

integrity of temporal and spatial variability and fluctuation in 
water constitutions ensures that ascertaining water quality is an 
exclusive preserve of institutions who have the financial where-
withal to implement such projects (Tsitsifli et al., 2019).

The wide range of objectives of these often citizen-based 
water quality monitoring projects according to Ramírez et al. 
(2023) means that they differ in focus, methods used and sam-
pling frequency. This in turn, affects the spatial and temporal 
resolution of the data and its value for different hydrological 
studies, with possibilities of having extensive spatial coverage 
but data that has a lower precision, quality and reliability, by 
essence raising another question of data integration and stand-
ardization and the notification of assessment metrics and pro-
tocols. The likes Agustsson (2018), Kelly (2013), Pardo et al. 
(2012) and Josefsson and Baaner (2011), have also reported 
apparent misinterpretation due to a lack of clarity on some 
metrics, definitions and objectives. This is quite evident in the 
variability of metrics of water quality across recent water qual-
ity assessment studies as shown in Table 2.

The seeming lack of a unified characterization poses hin-
drances to efforts to integrate and leverage on information 
from different sources, especially in the face of emerging threats 
to water quality which traditional monitoring protocols have 
not accounted for. This has made it challenging to keep pace 
with adaptation to these evolving environmental threats. Santos 

DETERMiNAND RiSK CATEGORy SPECiFiC EFFECT

Lead as Pb Chronic health Neurological damage

Manganese as Mn Chronic health Neurological damage

Manganese as Mn Aesthetic Taste, staining

Mercury as Hg Chronic health Damage to nervous system and liver

Nickel as Ni Chronic health Skin irritation

Selenium as Se Chronic health Liver damage and slow growth of hair

Uranium as U Chronic health Radioactivity

Vanadium as V Chronic health Slow growth and respiratory symptoms

Aluminium as Al Operational Possible neurotoxic effects

Organic water quality parameters

Total organic carbon as C Chronic health indicator of organic pollution

Chloroform Chronic health Low risk of cancer

Bromoform Chronic health Low risk of cancer

Dibromochloromethane Chronic health Low risk of cancer

Bromodichloromethane Chronic health Low risk of cancer

Microcystin as LR Chronic health Skin irritation

Phenols Phenols aesthetic odour Odour

Tabel 1. (continued)
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Table 2. Variability of Quality Definition Metrics in Recent Water Quality Assessment Studies.

AUTHORS CASE STUDy AREA QUALiTy PARAMETERS MAJOR DRAWBACKS

Ma et al. (2023) Pearl River
Basin, China

Ammonium (NH4+–N), chemical 
oxygen demand (COD) and 
dissolved oxygen (DO)

• The seeming insufficiencies of 
the assessment methods:

i. The standard permissible 
concentrations of each 
parameter considered in the 
study were obtained from third 
party sources.

ii. Rank correlation coefficient 
method was used to evaluate 
the changes of various 
pollutants over time.

iii. Trend analysis needs to be 
performed

Qian et al. (2023) Lower Neches
River, Texas, USA

pH, alkalinity, ammonia–N, 
nitrate–nitrite, chloride, hardness, 
total phosphorus, sulphate, TSS, 
turbidity, DO, conductivity, Secchi 
depth, E. coli, temperature and 
water elevation

• Due to the large volume of data 
collected for a wide range of 
parameters Pearson correlation 
techniques were required to be 
applied to establish correlations 
that provide a proxy as a single 
alternative indicator for some of 
the quality factors/indicators, 
together with its associated 
computational and analysis 
costs.

Ramírez et al. (2023) Mississippi River, Shale Sites in 
Pennsylvania, in the United 
States of America and Huangpu 
River in China

Clarity, temperature, conductivity, 
pH, dissolved oxygen, nitrate, 
Phosphate, macroinvertebrates 
and faecal coliform bacteria

• The diversity in quality 
parameters means different 
measurement techniques are 
often required, thus generating 
a hoard of data reliability and 
quality questions.

Ayele et al. (2023) Dire Dawa City, Ethiopia Nitrate, fluoride, hardness, TDS, 
total alkalinity, iron, pH, 
conductivity, iron, halides, 
temperature, turbidity, potassium 
and ammonia

• Relied majorly on secondary 
water quality data from third 
party sources raising questions 
as regards data reliability and 
uncertainty.

Fabian et al. (2023) East and South Asia Temperature, chlorophyll-a, 
nitrates, phosphates, pH, dissolved 
oxygen, biological oxygen demand 
(BOD), COD, total suspended 
solids, conductivity, ammonia, 
dissolved inorganic phosphates, 
algal bloom and transparency

• inability to fully evaluate the 
model’s performance with 
respect to water quality 
assessment

• Lack of adequate flow and water 
quality data.

• The hydrologic simulation 
programme Fortran (HSPF) 
model was found to be lacking 
in usefulness for temporal 
variations in WT,

• Probabilistic approaches often 
failed to detect a significant 
trend from climate extremes due 
to sampling issues and limited 
data

• Parametric approaches for 
finding linear trends analysis 
may fail to reveal underlying 
patterns in extremes, 
particularly indices of extremely 
unusual events.

• Difficulties in defining the whole 
range of extremes due to a lack 
of water quality data, further 
complicating systematic 
analysis of the relationship 
between water quality and 
climate extremes.

(continued)
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AUTHORS CASE STUDy AREA QUALiTy PARAMETERS MAJOR DRAWBACKS

Perveen (2023) Pakistan pH, conductivity, TDS, 
temperature, hardness, faecal 
coliform, E. coli, COD, BOD and 
TSS

• inadequate data on drinking 
water quality, especially in rural 
and remote locations

• Difficult to regularly evaluate the 
quality of natural water in 
freezing glacier regions

J. Huang et al (2021) China Dissolved oxygen (DO), chemical 
oxygen demand (COD), total 
phosphorus (TP), ammonia 
nitrogen (NH3−N) and eight heavy 
metals including copper (Cu), zinc 
(Zn), selenium (Se), arsenic (As), 
mercury (Hg), cadmium (Cd), 
chromium (Cr) and lead (Pb)

• Complex interplay among 
instream physical, chemical and 
biological processes profoundly 
modulate the ambient variables 
data

• Data aggregation in time and or 
space may not be reflective of 
the wide range of 
spatiotemporal dynamics 
typically experienced in any 
riverine ecosystem nor does it 
allow to evaluate progress with 
ecosystem services at the 
degree of granularity required to 
assess the public sentiment

Albert et al. (2021) Karst landscapes of 
Guadalcanal, Solomon islands

Turbidity, conductivity, pH and 
water depth

• Testing and identifying 
underground flow paths and 
interactions between surface 
water and groundwater

et  al. (2021), stated, for example, that the paradigm of water 
management has shifted from an anthropocentric perspective 
of water (defining it as a resource for direct exploitation by 
humankind) to an ecocentric perspective (where water is seen 
as an ecosystem holder). This establishes ecological status as a 
new concept to consider and focusses on ecosystem integrity as 
the foundation of management decisions concerning water 
quality. The assessment of ecological status of a given water 
body has hence changed from a general chemical quality assess-
ment to the integration of a range of descriptors concerning 
biological communities, hydromorphological and physico-
chemical quality elements. Ramírez et  al.’s (2023) review of 
water quality assessment studies showed serious divergence in 
the trends and objectives of quality parameters considered by 
the investigators as illustrated in Figure 3, with most studies 
covering different varieties and ranges of parameters. They 
later submitted that the diversity of approaches that were used 
in the studies is a strong indication of the complex challenge of 
a water quality assessment, with every method posing different 
questions concerning cost, logistical efforts, requirements for 
training and the type and quality of data that can be obtained. 
The diversity in quality parameters means different measure-
ment techniques are often required, thus generating a hoard of 
data reliability and credence questions. This in itself remains a 
limiting factor in the development of decision support systems 
and present modelling challenges to water quality and its man-
agement. This has contributed in no small measure to the chal-
lenge of policymakers in developing and recommending 
broad-based effective regulations and interventions to address 
water quality issues.

Decision-making in water quality management

While amongst decision-makers, water resource managers, 
industry practitioners and other stakeholders, there is unanim-
ity in the acceptance of science-based decision support in water 
quality determination and management, the design, application 
and administration of the support tools and systems requiring 
unified quality parameter definition have remained an open-
ended question. Decision support systems (DSS) are meant to 
be pivots upon which socio-economic decision-making with 
regards to water quality is driven, to improve efficiency, attract 
investments, guide research and innovation, drive scientific 
regulatory practices and provide means for service delivery and 
feedback networking with the public. This pivotal role that a 
DSS can play in water quality management is illustrated in 
Figure 4 (Quinn et al., 2022). With the advancement in com-
puting power in recent decades and the increasing acceptability 
and progress of mathematical modelling and simulation tech-
nologies in research and innovation, the computational analysis 
and development of water quality management have expanded 
the opportunities for improved prediction of time scales and 
patterns of variability of water quality parameters. DSS has 
since advanced the science of data-driven modelling and sci-
ence-based decision support for water quality management. 
Structured, semi-structured and/or unstructured data can now 
be obtained and analysed in massive datasets running to exa-
bytes in volume from real-time or quasi-real-time smart sen-
sors and computed by supervised or unsupervised computational 
algorithms to provide forensic insights into what, how, when or 
which factors affect corresponding quality outcomes and how 
managers should address them.

Tabel 2. (continued)
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Izquierdo et al. (2004) in their review of mathematical mod-
els and methods in the water industry emphasized the neces-
sity of having analysis tools which will enable reliable 
simulations of the different models by examining and being 
able to compute different configurations, operation modes and 
load conditions to study existing installations from their basic 

characteristic data. These could require the application of 
numerical techniques for coupled and possibly, typically non-
linear systems of algebraic, ordinary differential and partial dif-
ferential equations. Lately and due to advancements in available 
techniques and technologies, procedures based on neural net-
works, genetic algorithms, fuzzy theory and chaos theory are 

Figure 3. Frequency of the physical, chemical and biological water quality parameters measured in rivers and lakes for the reviewed studies.

Figure 4. Decision support systems as a centrepiece of water quality management.

Downloaded From: https://complete.bioone.org/journals/Air,-Soil-and-Water-Research on 26 Feb 2025
Terms of Use: https://complete.bioone.org/terms-of-use



10 Air, Soil and Water Research 

becoming indispensable, especially where experimental designs 
are necessary to turn design processes into real optimization 
problems.

Early Advances Inspired by Mathematical Modelling
Mathematical modelling efforts towards more efficient man-
agement of water resources and improved decision-making via 
the development of computational decision support systems 
predate well over half a century ago when Walker and 
Skogerboe (1973) applied mathematical modelling techniques 
to water management strategies and decision support. In evalu-
ating and thereafter developing alternative strategies for con-
trolling urban water quality and supply demands, his study 
investigated the feasibility of alternative water management 
strategies to alleviate mounting problems of water shortage and 
water quality deterioration. Special emphasis was placed on the 
levels of water quality control achievable in arid urbanizing 
areas and the optimal policies to accomplish such control. 
Mathematical and optimization formulations were proposed 
from an economics and cost-benefit perspective, utilizing the 
Jacobian Differential Algorithm ( JDA), a differential approach 
to solving linear and non-linear resource optimization prob-
lems. According to Walker and Skogerboe (1973), water qual-
ity management revolves around or emphasizes pollution 
control, hence their focus on two (2) major quality parameters 
that is, the inorganic concentration of total dissolved solids 
(TDS) or Salinity as often referred to in concise terms, and the 
5-day biochemical oxygen demand (BOD5), to describe the 
effects of water quality or lack thereof. They proposed two 
models which apply to determining the optimal strategies for 
water management in arid urbanizing areas, especially in appli-
cations requiring increasingly stringent water quality standards 
as well as optimal management approaches.

Kitanidis (1980) formulated non-linear conceptual models 
for accurate real-time short-term forecasts of river flows and 
optimal control of watershed systems. This was done in an 
attempt to provide a generic water resource management 
model amenable and adaptable to the variability of water qual-
ity metrics, which will utilize real-time data to update system 
states and improve streamflow predictions. These data could be 
measured, guessed or even obtained from forecasts. But the 
goal was to conceptualize and create a system that will process 
incoming real-time discharge information and thereafter fore-
cast flow and supply available, hours in advance over a step-
wise time domain. Employing a highly numerical methodology 
based on the state space formulation of equations, flow at fixed 
spatial descriptions could be determined, as a nonlinear func-
tion of the state of the system. By building up the model to be 
amenable, they succeeded in developing a water quantity and 
quality management system that would combine information 
from various sources to report in real-time the hydrological 
profile of a location. Though their study treated water quality 
metrics as a lumped input vector and did not emphasize 

meeting up or not with prevailing quality standards, the model 
was however able to generate the resulting information on flow, 
interflow, runoff and free water storage forecasts given the 
required inputs and the time step required.

Ugo (1988) in his perspectives of water resources develop-
ment at the time identified the amelioration of water quality 
as one of the major measures which would dictate innovation 
in water resources technology for the future, with decision 
analysis and support systems being integral in water resources 
analysis and planning. However, challenges such as the large 
volume of quantities required to define and describe the 
physical and chemical processes of diffusion and dispersion 
must be overcome to escape the encumbrances of a large 
number of mathematical models and poor available data, both 
in quantity and quality, let alone the difficulties encountered 
in obtaining reliable measurements. This was observed in the 
strong tendency of National and International Agencies to 
oppose the use of sophisticated models in the search for bet-
ter knowledge of the dynamics of water quality evolution. 
Experimental and theoretical work was preferred to mathe-
matical modelling and simulation, despite their attendant 
demerits and inflexibility. A general consequence was the dis-
connect between those producing the models and those who 
should make use of the models to make decisions, leading to 
the alienation between researchers and practitioners. Even in 
the field of research concerning water management at the 
time, only about 5% applied mathematical modelling meth-
ods, largely owing to inadequacy and cumulatively insuffi-
cient reliability of design parameters (Rogers & Fiering, 
1986). Thus, clearly, there seemed to be a break in the loop, as 
illustrated in Figure 5, which made informed decision-mak-
ing and the development of effective and efficient manage-
ment systems impracticable.

Figure 5. The field of Hydrological Science in general described as a 

broken loop.
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The inadequacies of water quality modelling according to 
Somlyody (1995) remained a major reason for the seeming 
kneejerk reaction to water quality challenges at the time, usu-
ally driven by crises, accidents and interests. Countermeasures 
and corrections were made nearly exclusively when the prob-
lem manifested itself and action should be made immediately. 
Problems are accepted and treated, rather than prevented 
(Wetzel, 1992). Where progress has been made in the areas of 
nutrient removal and cycling in rivers and lakes, integration has 
been a challenge as there are hardly two such models, as eluci-
dated by Rauch et al. (1998); Thomann and Mueller (1987), 
which would use the same water quality variables (and frac-
tionation) and thus could be linked to each other.

In their attempt to develop models for application in soft-
ware that can provide decision support during water resource 
management (WRM) planning and operations, Andreu (1996) 
also identified complexities in defining and capturing water 
quality characterization as a hindrance to developing DSS 
modules that can evaluate it. Reitsma (1996) in his study fur-
ther discussed the necessity of looking beyond the usual role of 
decision support systems (DSS) as analytical tools for assisting 
the operational management of water resources systems, advo-
cating for the inclusion of components capable of supporting 
the political, organizational and social dimensions of the deci-
sion-making process. The complexity of defining quality met-
rics and objectives under the prevalent ill-structured nature 
renders the number of feasible combinations virtually infinite 
according to Bosman (1983) and Fedra et  al., (1987). 
Scepticisms thus arose as to the usefulness of the decision sup-
port models to host organizations, with questions arising as to 
if any discernible difference in their performance was being 
recorded. Consequently, the study avowed that traditional DSS 
approaches based on physical modelling alone are unlikely to 
represent the true and salient features of these problems. 
Instead, new modelling and DSS paradigms are needed.

Singh and Xu (1997) found a way around the complexity 
and ill-structured challenge in water resource management 
modelling with a proposition that they can also be resolved in 
a series of structured components. With progressive increases 
in experience gained in modelling over time through continu-
ous upgrades and testing against practical requirements, the 
importance of different hydrologic parameters under varieties 
of hydrologic conditions came under scrutiny. In their review of 
hydrological models, it was noted that the approach of devel-
oping models at different time scales and to varying degrees of 
complexity found proclivity in exploring the impact of climatic 
change (Arnell, 1992; Schaake & Liu, 1989; Xu & Halldin, 
1996) and long-range streamflow forecasting (Alley, 1985; Xu 
& Vandewiele, 1995). Applications were found along the lines 
of reconstruction of the hydrology of catchments, assessment 
of climatic impact changes and evaluation of the seasonal and 
geographical patterns of water quality demand. It appeared 
from the review that three to five parameters may be sufficient 
to reproduce most of the information in a hydrological record 

on a monthly scale in particular regions. This aligned with the 
submission of Dooge (1977) who surmised the need for brevity 
in the number of parameters used in defining quality objectives 
in hydrological modelling, since according to his study, ‘keep-
ing the number of parameters as low as possible increases the 
information content per parameter and therefore allows both a 
more accurate determination of the parameter and a more reli-
able corelation of the values obtained with catchment charac-
teristics. A general comparison of the hydrological models 
developed at the time is presented in Table 3.

Water Resource Management Modelling at the Turn 
of the Millennium
By the turn of the millennium, global attention shifted towards 
issues such as nutrition, human rights and sustainability, pro-
ducing commitments for combined international action on 
those matters, with the provision of portable drinking water 
forming a major cardinal point of interest of the 8-item devel-
opment agenda of the international community (A/
CONF.166/9: Copenhagen Declaration on Social Development 
(un.org). The Millennium Development Goals (MDGs) were 
eight international development goals for the year 2015 that had 
been established following the Millennium Summit of the 

Table 3. General Comparison of the VariousEarly Models.

Common features • Founded on based on continuity 
equation

• Conceptually land-based hydrologic 
process or processes which are 
spatially averaged or lumped

• Parameters estimated by fitting to 
observed hydrologic data

• Specific-purpose models concerned 
primarily with streamflow simulation

• Relatively simple structure
• Small number of parameters 

compared with other short-period 
models

Different features • input data requirements
• Variation in modes of accounting for 

soil moisture and aquifer recharge
• Variation in the number of storages 

considered
• Variation in the hydrological process 

considered; from evapotranspiration 
to streamflow to surface runoff, 
infiltration, evapotranspiration, deep 
percolation, base flow and ground 
water flow

Applications and 
limitations

• Models using precipitation as input 
cannot be recommended when other 
meteorological data besides 
precipitation are available

• Monthly models using rainfall and 
temperature as input can be used in 
reproducing annual and seasonal 
flows, however the state variable 
simulated by these models may be 
unrealistic

• Models using daily data of rainfall and 
evaporation as inputs are more 
reliable in the treatment of hydrologic 
processes
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United Nations in 2000, following the adoption of the United 
Nations Millennium Declaration (United Nations Millennium 
Development Goals). Global water resource management and 
improvement initiatives, being very fundamental to the broad 
objectives of the SGDs, likewise, started to tilt toward overcom-
ing challenges to innovation and exploration as those outlined in 
the gazette, especially in the upgrading of challenging areas in 
water systems. As envisioned from the onset, effective global 
water resource management and improvement initiatives are 
integral to addressing water-related challenges and contributing 
to sustainable development, which according to Heiba, Ibrahim, 
et  al. (2023) and Heiba, Nasr, et  al. (2023), entails practical 
approach to ensure the effective use of natural resources such as 
water, without jeopardizing the needs of future generations. 
Consequently, leveraging innovative technologies was one criti-
cal component of best practices needed to be adopted to tackle 
challenges associated to quantity, quality and access to water for 
equitable, resilient, water resource sustainability across the globe. 
Such best practices would effectively directly address at least 4 
sustainable development goals relating to:

•• Zero hunger (SDG 2) – which ensures that by making 
water plentifully available for agricultural purposes, espe-
cially in vulnerable regions, food production can experi-
ence a bountiful upturn.

•• Good health and wellbeing (SDG 3) – which brings to 
the front burner the place of access to clean water in pre-
venting waterborne diseases and the importance of sani-
tation in public health and well-being.

•• Clean water and sanitation (SDG 6) – which addresses 
issues of water quality, availability and sanitation facili-
ties, emphasizing the importance of sustainable water 
resource management.

•• Life below water (SDG 14) – which focusses on conserv-
ing and sustainably using oceans, seas and marine resources.

One of these innovative technological best practices was the 
integration of modelling into predictive analysis and sustaina-
ble decision making as tools for assisting operational manage-
ment of water resources systems, optimal utilization of water by 
consumers and preservation of ecosystems and the environ-
ment. As previously discussed, efforts had progressively been 
ongoing in the development of environmental and economic 
models for watershed management. A great deal of experience 
had been gained and there had been propositions as regards the 
need to continue to upgrade and test them against practical 
requirements. To enhance the sustainability of water-quality-
management systems, in-depth research on the related barriers 
and the relevant mitigation approaches remain desirable (G. H. 
Huang & Xia, 2001). Concerns, as regards data availability and 
reliability, system complexity and methodology validity, limita-
tions of computer techniques, the usefulness of research out-
puts, difficulties in policy implementation and necessity of 

training programmes, had dominated the list of items that con-
stituted barriers to the development and integration of DSS 
into water quality management.

Integration of advanced computational techniques

The progress made in the areas of electronic, micro-electronic 
and computing technologies by the turn of the millennium 
opened up vistas by which different perspectives of sustainable 
water-quality management could be investigated. Cardwell and 
Ellis (1993) proposed stochastic dynamic programming mod-
els for water quality and quantity management. Huang (1996) 
and Huang (1998) similarly proposed inexact optimization 
models for watershed environmental planning and applied 
them to two real-world case studies. With these came chal-
lenges of uncertainties in system parameters and their inter-
relationships, complicated number of dependent factors, 
non-reflecting non-linearities as well as unavailable and/or 
unmeasurable parameters. With these in mind, G. H. Huang 
and Xia (2001) opined that low reliability in data systems could 
be worse than no data, as limited information on inputs inevi-
tably led to the limited scope of applicability of the outputs, 
hence methods that improve reliability and certainty should be 
the cynosure of investigations bordering on water quality man-
agement for the immediate future. Lovejoy et al. (1997) also 
identified that less work is being undertaken to incorporate 
individual modelling components within a general framework, 
resulting in the generation of less efficient decision alternatives, 
with conflicting objectives, unrealistic independence assump-
tions and deviations from realistic regional objectives. Hence 
providing insights as to research direction in the coming years.

In recommending efforts for integration, G. H. Huang and 
Xia (2001), opined that the water pollution challenge does not 
just begin and end with water quality or contaminants at every 
given point and space, rather, the challenge has more to do with 
the pollution source as well as the effects on humans and the 
ecosystem and about the need to avoid these effects. Chapra 
(2003) thus took a wholesome look at water supply systems as 
a whole, in their effort to quantify, organize and process all 
sources of information necessary to adaptively manage the 
water supply system so that long-term plans can be adapted 
weekly to changing conditions and time-varying objectives. 
The study provided a sample DSS developed for real-time 
adaptive management of water reservoir systems that supplied 
the domestic needs of the Boston metropolitan region in the 
United States of America. Independent watershed models 
were developed to predict watershed runoff and yield and its 
attendant effects on water quality and flood control. They 
employed simplified quantification of water quality under two 
(2) parameters that is, Body of dissolved salts (BOD) and Total 
organic carbon (TOC) content. Backed by two-dimensional 
mass balance models, they succeeded in optimizing daily and 
weekly reservoir operations towards four objectives based on 
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short-term climate forecasts. These objectives included maxi-
mum water quality, ideal flood control levels, optimum reser-
voir balancing, as well as maximum hydropower revenues. 
The success and applicability of their study to a metropolitan 
water supply system showed that simple tools, such as spread-
sheet-based software and compact parameter definitions can 
be used to improve system efficiencies. This affirmed Loucks’s 
(1995) position that the success of any real-time DSS model 
will be dependent on its ability to make predictions with an 
appreciable degree of accuracy using a minimum of input 
data. Westphal et  al.’s (2003) segmented approach also 
showed that models could be applied in such a way as to select 
amongst different operating objectives for any given period as 
conditions may warrant. Such objectives may be singly opti-
mized or simultaneously optimized and traded off to suit oper-
ational priorities.

Model development and quality assurance

The misperceptions of predictive modelling of climatology and 
hydrology, and decision support tools as a replacement rather 
than enhancements to water management operations used to 
be perceived as the key obstacles to the eventual acceptance and 
utility of the integrated support systems. For example, accord-
ing to Refsgaard et al. (2005), the strengths and limitations of 
modelling applications are often difficult, if not impossible, for 
water managers to assess. Similarly, the transformation of 
objectives defined by the water manager to specific perfor-
mance criteria can be very dificult for the model users to assess. 
Furthermore, re-creating or replicating the modelling process 
and its results can be challenging for non-technical experts. 
The inadequate use of guidelines and quality assurance proce-
dures, and improper interaction between the manager (client) 
and the modeller (consultant), has also been fingered as the 
most prevalent reason for poor modelling results. For water 
quality modelling, description is usually based on the physical, 
chemical and biological components of water quality. However, 
the data to model all these are usually sparse, unavailable and 
still yet to be deeply understood.

Thus, as depicted in Figure 6, Refsgaard and Henriksen 
(2004) recommended committed efforts towards validation 
and calibration as necessities and priorities that must be under-
taken to affirm the predictive capability of a model. Uncertainty 
and reliability analyses must accompany predictions achieved 
through simulations while continuous interactions between 
operator and modeller is also crucial for the success of the 
modelling process. In addition to multistage or multipurpose 
approach to modelling, as opposed to the development of one 
complex, all-encompassing model with a high degree of uncer-
tainty and low-quality outcomes, Refsgaard et al. (2005) also 
recommended modelling according to specified technical 
guidelines as a way of ensuring quality is assured. Such quality 
assurance (QA) guidelines were classified according to:

•• Type 1 – Internal technical guidelines developed and 
used internally by the modeller’s organization.

•• Type 2 – Public technical guidelines developed in a pub-
lic consensus-building process.

•• Type 3 – Public interactive guidelines developed as pub-
lic guidelines to promote and regulate the interaction 
between the modeller and the water manager throughout 
the modelling process.

These wares meant to assure technically and scientifically ade-
quate parameters are catered for in the development and execu-
tion of the model, in addition to ensuring it is defensible and 
reproducible. This hypothesis was tested on existing model 
samples and from different countries and the summaries are 
presented in Tables 4 and 5, as well as Figures 7 and 8.

Thus summarily, initially, when models are developed, the 
key focus should be to set up for practical application, with 
internal technical guidelines (Type 1) originating from the 
research community applied. Transitioning from Type 1 to Type 
2 guidelines should occur at the attainment of a certain degree 
of maturity, following continuous applications, calibration and 
validation within both the specific scientific discipline and the 
market. Process descriptions should be explicit and there should 
be common agreement about the scientifically sound proce-
dures for solving the problems within the domain, driven by the 
demands of regulators and water managers. The transition from 
Type 2 to Type 3 will subsequently be dependent on a clear and 
conscious demand from regulators and water managers.

Big data application

Graduated quality assurance techniques have become helpful 
in big data modelling tasks such as in Ingleby and Huddleston’s 
(2007) study on ocean temperature and salinity predictions 
where substantial checks were required, for both the historical 
data obtained from climatological and oceanographic archives 

Figure 6. Computational model development cycle.
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and the real-time estimates transmitted from automated pro-
cessing algorithms. The system was used to process archived 
data for 1956 to 2004, applying techniques such as Bayesian 
probability theory in the background check and the associated 
check against nearby observations. Versions of the system were 
used for near-real-time ocean analysis and for initializing both 
short-range ocean forecasts and seasonal atmosphere–ocean 

forecasts. The remote acquisition of data has thence become 
increasingly commonplace in water resources management and 
monitoring applications and driving new technology. The 
demands and usage of data for various management solutions 
have as a result increased in quantum leaps and hence, a spike 
in the level of quality of remotely monitored and obtained data 
for associated purposes.

Table 4. Comparison of Hydrological Models According to Specified Technical Guidelines.

MODEL TyPE APPLiCATiON QA GUiDELiNE MATURiTy LEVEL

Ground water modelling. 
(Refsgaard & Henriksen, 2002)

Modelling ground water flow, 
solute transport, geochemical 
modelling

Type 1 (geochemistry and 
underground water quality)
Type 2 (solute transport)
Type 3 (ground water flow)

Can oscillate between immature 
and new/restricted fields of 
application to well developed 
and currently being applied in 
many areas and across many 
countries.
Geochemical and ground water 
quality applications are still 
small and limited largely due to 
data availability, access and 
quality challenges
Solute transport is emerging in 
the variety of application 
domains

Precipitation-runoff modelling 
(Perrin et al., 2002b)

Modelling runoff for flood 
forecasting and surface water 
quality.
integral parts of ground water 
and hydrodynamic models

Type 1/Type2 Currently being applied on a 
wide scale in a number of 
countries, especially as 
subroutines in the ground water 
modelling domain

Hydrodynamic modelling 
(Metelka & Krejcik, 2002a)

Surface water quality, flow, 
sediment transport and 
morphological transitions 
modelling in urban drainage and 
sewer systems, rivers, 
floodplains, estuaries and 
coastal waters

Type 1 (for sediment transport 
modelling) Type 2 for other 
applications

Hydrodynamic modelling of 
sediment transport is still on 
applied in new studies and not 
yet applied on a public 
commercial scale.
Hydrodynamic modelling for 
surface quality and flow 
transition predictions already 
finds applications in many 
countries on a wide scale of 
scientific areas and has a 
competitive market

Flood forecasting modelling 
(Balint, 2002)

Surface flows, runoff and flood 
forecasting

Type 1 One of the oldest modelling 
fields, based on real-time 
operations. Applied widely in 
many countries

Surface water quality modelling 
(Da Silva et al., 2002)

Used to model water quality 
based on the description of 
physical, chemical and 
biological processes

Type 1 Still very new and finding 
applications in restricted areas 
of science and industry. The 
vast scope of what constitutes 
the definition of water quality 
and its parameters still remains 
a challenge to its maturity and 
emergence

Biota (ecological) modelling (Old 
et al., 2002)

Used to model biological 
processes, relations and 
interdependencies of flora and 
fauna to one another and to their 
physical environment

Type 1 Widely used, but in a very 
restricted domain. The general 
complexity of ecological systems 
and the general limited 
availability of relevant field data 
remains a restricting factor

Socio-economic modelling 
(Heinz and Eberle, 2002)

Modelling socio-economic 
impacts of water resources and 
management decisions 
undertaken by managers and 
governments

Type 2 Used in only a few countries. 
Still very restricted in application 
with respect to the water 
industry
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The growth in the development of data management solu-
tions according to Goasguen (2008) is buoyed by the overcom-
ing of shortfalls of traditional methods such as the capacity to 
support real-time data access, dealing with the required data 
diversity needed to dictate specific technology choices at every 
level and the need to provide solutions that support high 

performance and scalability. Software solutions that address 
these needs without imposing strict requirements on the hard-
ware or application side subsequently sprung up and have 
found applications in intelligent river basin management sys-
tems and water control operations. Gowdish (2009) applied 
partitioned data systems to the real-time water budgeting and 

Table 5. Comparison of Hydrological Modelling Guidelines in Different Modelling Environments.

MODEL TyPE APPLiCATiONS AND MARKET MATURiTy QA GUiDELiNES

Dutch guidelines (Scholten and Groot, 2002) Very generic and vast application in water management. A large market 
for modelling exists and technical expertise is vastly available at various 
levels of experience.

Type 3

Australian groundwater flow modelling 
guidelines (Henriksen, 2002a)

Though restricted to a small domain, the environment is technically 
comprehensive and has found consistent application over several 
years. Possess a very mature market for applying and integrating 
models into operations.

Type 3

Danish groundwater modelling guidelines 
(Henriksen, 2002b)

Though restricted to a small domain, the environment is technically 
comprehensive and has found consistent application over several 
years. Possess a very mature market for applying and integrating 
models into operations.

Type 3

Central and Eastern Europe (Metelka & 
Krejcik, 2002b; Van Gils & Groot, 2002)

New and unregulated market for modelling services. An immature 
market where the managers and their organizations often are 
technically too weak to adopt and integrate modelling into water 
management operations and decision support.

Type 1

French guidelines in flood forecasting (Perrin 
et al., 2002a)

Public or interactive guidelines do not exist in this area. The modelling 
market seems non-existent and technical capacity is limited to a few 
sectors.

Type 1

UK guidelines (Packman, 2002) The use of models is generally described as routine and wide enough 
in areas of application. The market is agile and well-regulated, a sure 
characteristic of maturity. QA guidelines are well developed

Types 2 and 3

Bay-Delta Modelling Forum, California 
(BDMF, 2000)

Well mature with constant interactions between modellers, managers 
and even the public. Models find usage in virtually all spheres of water 
management as well as decision support.

Type 3

American Society for Testing and Materials 
(ASTM, 1992, 1994)

Very comprehensive, highly competitive and mature market for 
modelling services and applications. Technical support and expertise 
are readily available and the practice of the application of modelling into 
organizational systems has been in adaption for a while.

Type 2

Figure 7. Hydrological models quality assurance as influenced by market maturity of its application domain.
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efficient control and storage of water in the South Florida 
water management department in order to meet multiple water 
resource objectives. An operations decision support system was 
developed to receive rainfall, evaporation and flow/stage meas-
urements from gauges, interpolate into regular time intervals 
and model the data into a water-budget equation to evaluate 
the storage of water in the control system.  Quinn et al. (2010) 
in their study on the use of environmental sensors and sensor 
networks described the use of continuous surface flow and 
salinity monitoring as well as electromagnetic remote soil map-
ping techniques to develop water and salinity budgets for sea-
sonal wetland real-time water quality management, and 
obtaining water and salinity mass balances for seasonally man-
aged wetlands. More widespread applications recorded include 
weather station sensor arrays – used to estimate wetland pond 
evaporation and moist soil plant evapotranspiration; high-res-
olution multi-spectral imagery – used to differentiate between 
and estimate the area of wetland moist soil plant vegetation; 
and groundwater level sensors – used primarily to estimate 
seepage loses beneath a wetland pond during flood-up.

The extensive data requirements and the difficult tasks of 
building input parameter files, which had long been an obstacle 
to the development and application of such complex models for 
timely and effective decision support by resource managers now 
got to be addressed with object-oriented spatio-temporal data 
models. Such data models have the ability to restore, manage, 
query and visualize various historic and updated datasets and 
information concerning watershed hydrology, water resource 
management and water quality as well as compute and evaluate 
the watershed environmental conditions so as to provide online 
forecasting to police-makers and relevant authorities for sup-
porting decision-making. Leveraging on the affirmations of 
Isakowitz et al. (1998) that with the rapid development of the 
Internet and maturity of database technology, management 
information systems will extend from Client/Server (C/S) 

architecture to Browser/Server (B/S) architecture, Y. M. Liu 
(2012) in their Huaihe basin water resource and water quality 
management platform project implemented a spatiotemporal 
data model to develop a WebGIS management platform. This 
water management data and decision support system combined 
spatial attribute and temporal information to update, query and 
analyse environmental information as well as manage historical 
data, and help the user interpret results so as to provide scientific 
support for decision-making. Ru’s (2012) research on the man-
agement of water resources introducing GIS technology under 
the mode of water saving also laid emphasis on the positive 
impacts of the aid of modern advanced network technology, cor-
respondence technology as well as GIS technology, in the reali-
zation of system integration of water resources monitoring, 
management and decision support. Their study demonstrated a 
real-time monitoring management system based on detailed 
network construction, hardware construction and the system 
assistance decision function. R. Harvey et al. (2013) described 
the development of a real-time water quality monitoring system 
based on the analyses of water quality data collected from water-
sheds using in-stream digital sensors with capabilities of record-
ing a range of water quality indicators over long stretches of 
time. The evolution in remote sensing technology meant water 
quality on both spatial and temporal scales can possibly be con-
tinuously measured and collected using digital techniques. Their 
study highlighted the possibilities of concise definition and 
measurement of water quality by applying real-time measure-
ments of variables like water temperature and specific conduct-
ance to predict the chemical concentrations of other water 
quality indicators. Just as Christensen et al. (2000), Christensen 
(2001) and Rasmussen et  al. (2011) had similarly done previ-
ously, regression models were developed that employed real-time 
data parameters as surrogates for physical properties and chemi-
cal properties that define water quality. In a similar vein, meas-
urements of air temperature were demonstrated as possible to be 

Figure 8. Prevailing modelling quality assurance patterns in selected domains.
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used in predicting water temperature and the concentration of 
dissolved oxygen at the real-time stations. This was backed by 
findings from previous works such as Crisp and Howson (1982), 
Webb (1987), Stefan and Preud’homme (1993), Pilgrim and 
Stefan (1995), Mohseni et al. (1998), Pilgrim et al. (1998) and 
Webb et al. (2003) in which historical data of air temperature 
were used for the prediction of important indicators of river 
health like water temperature and dissolved oxygen, both key 
metrics of water quality. The use of regression methods proved 
essential, as best-fitting models of unitary historical records 
mapped with real-time measurements, rather than multiple 
parameter datasets, were determined based on the computation 
of residuals, errors and probability values for the explanatory 
variables. The water quality datasets and variables considered are 
presented in Table 6.

These advances made during these years in real-time water 
resource management through improved and more reliable 
data engineering in no small way ensured more positive strides 
made in advancing the way managers and agencies implement 
protocols for operation and maintenance, quality assurance and 
control and data management and transmission around the 
world. The rapidly increasing number of sophisticated sensors 
available has thence expanded the innovation space of water-
shed monitoring and reporting networks. As these networks 
expand and more data become available both spatially and 
temporally, additional tools and techniques will need to be 
developed to make effective use of these data for river and 
human health protection.

Advancements in Adaptative Decision Support 
Applications Within the Last Decade
The data engineering era

The evolution of data-based solutions over the years paved the 
way for the development of tools and techniques to quantify 
and predict the function and response of aquatic systems 

(Montanari, 2013; Wagener et  al., 2010), this has led to the 
widening of the scope of water quality management investiga-
tions and with that its peculiar challenges. However, even in 
the face of these challenges which include model performance 
optimization, scalability and higher-level simulation applica-
tions, appreciable progress has been made in terms of a variety 
of methods, expansion in spatial resolution and advances in 
uncertainty and reliability evaluation. According to Porter et al. 
(2009) and Read et al. (2014), successfully modelling aquatic 
environments across broad and heterogeneous landscapes, 
complexity and interdisciplinarity requires rich streams of data, 
hence the need for the establishment of flexible and interactive 
model libraries, data networks and learning frameworks. 
According to Hipsey et  al.’s (2015) study of resilience and 
recovery predictions of aquatic systems, modelling efforts have 
historically been focussed on areas such as nutrient cycling, 
eutrophication and other drivers of water quality degradation. 
Advances in models are however required to provide more 
holistic predictions that capture system-level properties such as 
resilience and other emergent behaviours. Pahlow et al. (2015) 
demonstrated the use of Water Footprint Assessment (WFA) 
in the measure of appropriation of freshwater resources by 
source and polluted volumes by type of pollution in South 
Africa. Using indicators obtained from ratios of specific quality 
parameters, water pollution control was implemented from the 
additional information generated, contributing to the sustain-
ability of freshwater use and allocation. The key water quality 
concerns as reflected by Department of Water Affairs and 
Sanitation (2015) include point and non-point sourced salina-
tion, eutrophication, micro and micro-biological pollution and 
erosion and sedimentation.

Probabilistic search algorithms

The trends in water resources management research and inno-
vation in the last few years have seen an evolution into more 

Table 6. Predictive Models of Multiple Water Quality Metrics Developed Based on the Specific Conductance of Collected Samples.

VARiABLE MEASURED RANGE CCME GUiDELiNES REGRESSiON MODEL (DEVELOPED 
BASED ON SPECiFiC CONDUCTANCE)

R2
ADJUSTED

Alkalinity (mg/LCaCO3) 6–21 0–10 LogAlkalinity = 1.64 − 0.00037SC − 0.63ST .80

Dissolved Oxygen (mg/L) 7.1–24.7 >5.5 N/A N/A

Hardness (mg/LCaCO3) 10–53 N/A Hardness = 4.18 + 0.61WT + 0.04SC .85

Total Dissolved Salts 
(mg/L)

107–959
142–625

N/A TDS = 0.66SC + 7.17
TDS = 0.56SC + 10.34

.95

.90

pH 4.9–14 6.5–9.0 N/A `N/A

Water Temperature (°C) 0.5–28.7 N/A N/A N/A

Turbidity 0.3–19.2 N/A N/A N/A

Zinc Content (mg/L) 0–0.03 0.03 mg/L Zn = 11.786/
(1 + exp(0.002 × (4463.299 − SC)))

.75
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numerical and intelligent computational methodologies usu-
ally utilized to define the optimum combination of parameters 
that will yield optimum outcomes either in dominating or non-
dominating orders. Wang et  al. (2018) presented a New 
Dynamic Firefly Algorithm (NDFA), an optimization tech-
nique based on swarm intelligence. The technique was devel-
oped to achieve an optimal and reasonable allocation of water 
resources which according to Davijani et al. (2016) is the key to 
sustainable utilization of water resources. With divergence in 
quality metrics for different water demand objectives, choosing 
what weighting parameters to rank quality and consumption 
purpose becomes a tough task. While some traditional meth-
ods such as the quota method (Assareh et al., 2010), regression 
analysis (Brentan et  al., 2017), particle swarm and harmony 
searches (Bai et al., 2014; Oliveira et al., 2017) had been in use, 
swarm intelligence inspired algorithms proved to be promising 
in their performance (Cai et al., 2016, 2018; L. Z. Cui, Li, et al., 
2017; Z. H. Cui, Sun, et al., 2017; Davijani et al., 2016; M. Q. 
Zhang et al., 2017). The NDFA show reduced dependency on 
its parameters in finding solutions to benchmark functions 
and real-world problems with its variable step factor that can 
be dynamically updated during the search process. In addition 
to swarm optimization searches, techniques such as the 
Kalman Filter modelling method have been demonstrated by 
Boukharouba and Harkat (2020) in the spatiotemporal mod-
elling and prediction of hydrological principles that affect 
water quality such as precipitation and stream flow at different 
time scales. This technique supports the stochastic and non-
linear character of hydrological processes as well as the varia-
bility in the times in which they occur. This is essential for 
accurate water resource decision-making, management and 
regulation efforts. The obtained models provided predictions 
that respect the variables' stochastic character and also charac-
terize the nonlinear nature of the hydrological system. Using 
data from annual stream flow records of ten gauging stations 
over a 25-year time frame, the state-space model formulation 
was used to generate multi-site annual predictions for the ten 
subsequent years from both temporal and spatial points of 
view.

Multi-decision optimization

Optimizing across multiple objectives has also been used to 
provide structures for decision-making, whereby trade-offs can 
be made across conflicting objectives. The economics of water 
quality management is an important aspect of water resource 
management, which requires as much attention as maintaining 
and ensuring water quality and security. This is even more 
essential in relation to water demand and supply quality, where 
the quality requirements for different applications also differ 
accordingly. Ullah and Nehring (2021) developed and applied 
a multi-objective constrained optimization model for optimal 
water allocation among irrigation and environmental sectors. 
The study adopted and improved upon the Lewis and Randall 

(2017) model, using a Non-dominating Sorting Genetic 
Algorithm (NSGA-II) of dominance and non-dominance 
sorting to maximize net returns while minimizing flow deficits 
under constrained groundwater pumping capacity and alloca-
tion. Similarly, Musa (2021) applied a multi-objective model in 
modelling optimal water allocation in three sectors named 
domestic, agricultural and industrial sectors, using a goal pro-
gramming technique. Ikudayisi et  al. (2018); Masood et  al. 
(2021) also carried out demonstrations of simultaneous opti-
mization of water allocation and crop distribution under con-
straints of water accessibility by implementing a combined 
Pareto multi-objective differential evolution algorithm. Zeinali 
et al. (2020) focussed on linking the NSGA II with a coupled 
surface water–groundwater model to achieve and sustain a bal-
ance between surface water and groundwater withdrawal by 
considering various constraints. This modelling approach pro-
vides a platform for decision-makers to simulate surface water–
groundwater interaction in low-flow regions, especially for the 
simultaneous depletions in river flow and groundwater during 
dry seasons. Jalili et  al. (2023) also successfully combined 
Support Vector Machine (SVM) method and NSGA-II algo-
rithm for optimal real-time operation of water released volume 
from the reservoirs, leveraging on the low average error rate of 
optimality derived from both techniques. Fuzzy logic and 
genetic algorithm (GA) were also combined with computa-
tional neural network (CNN) in a hybridization concept and 
experimental benchmarks showed that the hybrid model out-
performs the single CNN model. Romano and Kapelan com-
bined evolutionary algorithms (EAs) and ANN to construct a 
smart estimation model. Boah and Twum (2020) study expli-
cated, as shown in Table 7, the different applications by which 
stochastic techniques have been applied to water quality man-
agement and decision support.

Cyber intelligent systems

Web-based and intelligent systems have also found proclivity 
in water quality management and decision support. Despite the 
complexities earlier highlighted and the time-consuming com-
putations of simulation models which have largely hindered 
application, the worldwide web has proven to be a useful 
resource for the development of a decision support system for 
watershed management (DSS-WM). D. Zhang et al. (2015), 
Syrmos et  al. (2023) integrated open-source web-based GIS 
tool, soil-water modelling component, open-source libraries 
and a cloud computing platform do develop quasi-real-time 
decision-making systems to achieve the goal of distributing 
water resources and urban and rural water supply quality moni-
toring. Alshattnawi (2017), Feng (2020), R. Liu et al. (2022) 
also advanced the case of combining information technologies, 
the cyber-physical environment and hydrological theories and 
modelled their studies on smart water distribution manage-
ment system architecture based on internet of things and cloud 
computing. In a physical world, according to Weiser et  al. 
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(1999), Talari et  al. (2017), that is now richly and invisibly 
interwoven with sensors, actuators, displays and computational 
elements, embedded seamlessly and connected through a con-
tinuous network, developing systems that facilitate control and 
management of potable water characteristics such as quality, 
via remote monitoring of the most relevant parameters. 
Jothimani et  al. (2017), Viswanathan (2017), Ahmed et  al. 
(2021), C. Harvey et  al. (2021), Jiang et  al. (2022) also pre-
sented a smart water quality systems based on data from a sys-
tem of sensors connected in a predefined network interface as 
shown in Figure 9. The system explored the use of models for 
data processing and analysis, visualizations using serial port 
terminal display functions, storage on a cloud facility and 
accessibility of detailed information about water quality via the 
Internet of Things (IoT) – which is a worldwide network of 
interconnected objects uniquely addressable based on standard 
communication protocols (Atzori et  al., 2010). Its typical 
infrastructure setup is presented in Figure 10.

The common denominator in these systems was found in 
their technology architecture which primarily consisted of 
three layers; a layer which consists of wireless networks of sen-
sors and readers (WSN) with the ability to collect data from 
source; a worldwide web interconnectivity layer through which 
data is shared via standard communication network protocols; 
a storage service to store and back up received data for future 
access. The Integrated hydrological modelling–information 
technology approach to real-time water resource management 
and decision support has since gone on to become a trend 
amongst hydrological scientists. With user-friendly interactive 
graphic interfaces, it has become even more convenient for 
operators and other users to access and apply.

Analogous approaches have also been recorded in several 
studies within the last half-decade. Kurtz, et  al. (2017) inte-
grated field data acquisition and stochastic physically based 
hydrological modelling in a data assimilation and optimization 
framework as a service to water resources management. The 
system which was developed to run in a cloud computing envi-
ronment reported minimal computational costs associated with 
typical data assimilation platforms, making it more adaptable 
for practical application to solving water resources manage-
ment challenges. Stochastic predictions are performed using 
the assimilated data as a first step, in the presence of invoked 
initial and boundary conditions. Subsequently, updated model 
predictions are used to perform real-time decision-making on 
the selected response parameters. Thereafter model and data 
resources are adapted to the cloud computing environment in 
compatible code structures.

Suciu et al. (2017)’s presentation of the Water-M project's 
new concepts such as water security, virtual water and inte-
grated real-time data systems for the quality management of 
water resources, in a unified intelligent water management 
approach, using cyberinfrastructures based on cloud comput-
ing and IoT. No thanks to the rapid growth in urban areas, and 
ageing infrastructure, a lot of stressors are contributing to the 
complexity of water and wastewater management. Hence man-
agement decisions have to be taken, armed with the intelli-
gence of support systems developed for the collection and 
analysis of even the most multifarious of data.

Sukaridhoto (2016) describes in Figure 11 the architecture 
of such cyberinfrastructure-reliant platforms capable of utiliz-
ing multi-variant data for monitoring water quality. The sys-
tem would typically consist of a central measurement unit that 

Table 7. Stochastic Techniques in Water Quality Decision Support Modelling and Management.

MODEL CATEGORy MODEL TyPE PURPOSE AND APPLiCATiON

Mathematical 
programming

Linear programming Optimizing water resource use in irrigation projects, economic water quality 
management and optimal water pollution management.

integer programming Ground-water remediation

Nonlinear programming Stream water quality management, general water quality management, synthesis 
and optimization of water treatment processes

Dynamic programming General water quality management

Stochastic programming General water quality management

Robust programming Agricultural water quality management

Multi-objective programming For general water quality management, optimization of water quality pumps 
operation and storage sizing of water distribution systems

Meta-heuristic 
programming

Artificial neural networks Optimize water distribution system designs and prediction of water quality 
parameters.

Genetic algorithms General water quality management, Minimizing the risk of low water quality along 
a river, developing water quality management of river systems and reservoirs and 
assisting water pollution control.

Simulated annealing Optimization of groundwater management
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collects water quality measurements from sensors, processes 
the collected data based on the model response algorithm and 
transmits the data to either control storage in a readable format 
(for operational, support, planning and management decision 
making) or a web server for access via internet protocols. Their 
identification of the need for the future introduction of artifi-
cial intelligence and data analysis techniques in water manage-
ment would go on to become a recommendation that would 

shape the immediate future of research, application and inno-
vation in the state of art on water management systems.

Syntheses From Reviewed Studies
The enthusiasm fuelled by advances in other fields of science, 
is creating a compulsion to create models which are as detailed, 
multifarious and as all-inclusive as they come. Hydrological 
systems on their own are already complex by nature, and 

Figure 9. A schematic of a smart web-enabled water quality measurement unit showing four key measurement metrics – pH, temperature, electrical 

conductance and ORP.

Figure 10. The integrated cyber-physical systems architecture.
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undertaking scientific investigations on water resource sys-
tems is a complex endeavour involving immense details within 
its structure. The let-down of such efforts, if not facilitated 
appropriately may be a further be-clouding of the issues at 
hand and raising of more questions than answers. Some 
schools of thought believe it is rather more realistic to con-
strain modelling efforts more to answering specific questions 
and solving simple problems – Making each segment become 
well known to its operators and integrating them into a system 
of simple functions and subroutines – and by so doing, simple 
uni-purpose models can then be integrated into a matrix of 
decision-making systems to be managed by engineers and 
professionals.

While the general consensus seems to be in agreement that 
by adopting modelling approaches that progress from simple 
to advanced solutions, the development of DSS will be adapt-
able to the priorities of the users. However, to get this right, 
keeping the number of qualities determinands as low as practi-
cable, say up to five parameters – with about two parameters 
aggregating multiple determinands from each of the physical, 
chemical and biological classifications of the water quality 
metrics – being sufficient enough to reproduce most of the 
information in a hydrological record, allows better accuracy and 
a more reliable correlation of values obtained. Validation of 
input data before usage is also highly desirable to maintain reli-
ability and certainty and lend credence to whatever further 
analysis that would be carried out. Quite typically, it is not nec-
essary to model with all detail the enormous variety of effects 
in a receiving stream but to emphasize the dominant aspects, 
hence, case studies can serve as very table tools for testing and 
benchmarking. These case studies can help planners and 

operators understand the potential value of the DSS being 
developed by addressing the uncertainty inherent in the pre-
dictive model elements, and by demonstrating whether or not 
the DSS could add value to the traditional operating methods 
while operating in full accordance with longstanding regula-
tions and operating rules. Rigorous validation testing against 
independent data, uncertainty assessments and peer reviews of 
a model at various stages throughout its development is also 
essential to lend credibility to the modelling task. The success 
of the endeavour will eventually depend on an integrated 
approach that brings together scientific, education and training 
advances made across many individual disciplines and modi-
fied to fit the needs of the individuals and groups who must 
design, implement, monitor, evaluate and re-adjust their water 
quality management plans based on the results produced by the 
model. The improved prediction will contribute immensely to 
both exploring and better understanding the theory and sup-
porting decision-making. Ultimately, integrating model pre-
dictions within observatory systems offers the advantage of 
increasing the worth of data to management agencies and 
encourages tight feedback between observation, understanding 
and on-the-ground actions.

Prospects and opportunities for water quality 
modelling

Literature reviewed thus far has revealed the growing desire for 
water quality models that incorporate various factors influenc-
ing water quality, such as hydrodynamics, pollutant transport 
and biogeochemical processes. However, there exist a plethora 
of challenges which have proven to be a drawback 

Figure 11. The general architecture of multi-variant data cyber-intelligent platforms.
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to endeavours aimed at developing generic integrated water 
quality models. The wide range of determinands required for 
consideration, coupled with their vulnerability to spatial, tem-
poral and anthropogenic variabilities, makes the definition of 
water quality highly multi-faceted. Overcoming this entails 
extensive data collection, sophisticated data integration and 
accurate normalization and representation of hydrological and 
hydrodynamic processes. These challenges underscore the need 
for a comprehensive approach to water quality modelling, inte-
grating robust data collection, adaptive modelling techniques 
and rigorous validation processes across different space and 
time divides.

These prevailing circumstances notwithstanding, advance-
ments in technology, especially in areas such as High-powered 
Computing, Remote Sensing and Cloud-Internet of Things 
solutions have opened new avenues for more accurate and 
sophisticated modelling approaches. These advances are driv-
ing a revolution in data acquisition, correlational and sensitivity 
analyses and integration of complex computational algorithms 
and mathematical representations into single-model frame-
works. Offering increased potential for a better understanding 
of water quality dynamics and development of decision sup-
port, contemporary scientific tools and evaluation approaches 
supported by Machine Learning and Artificial Intelligence 
techniques can process large datasets and changes across vast 
spatiotemporal domains, identify complex patterns and adapt 
to changing conditions. These developments are stimulating 
the evolution of integrated models that consider multiple 
determinands and their complex interactions to make predic-
tions and enable real-time monitoring and decision-making 
strategies. This much has been revealed by the successes 
recorded and reported by various studies where the practical 
application of these contemporary methodologies has yielded 
appreciable results.

Hai et al. (2022) offered a robust practical approach to the 
prediction of the longitudinal dispersion of pollution in natural 
waters, improving on the previous efforts of Azamathulla and 
Ghani (2011) and Kargar et al. (2020). Their study highlighted 
the potential of machine learning techniques in providing 
accurate and reliable insights into pollution spread and control, 
especially in highly prone areas such as industrial and mining 
catchment areas. The paper's inclusion of a sensitivity analysis 
to assess the impact of various input parameters on model per-
formance was a noteworthy contribution which helped to 
identify significant factors in pollution spread and hence scale 
down the number of model parameters to manageable limits. 
Abdalrahman et al. (2022) similarly made significant contribu-
tions to pollution estimation prediction in river basins, employ-
ing a backward stepwise sensitivity analysis to identify the most 
significant parameters required to predict infiltration rate and 
machine learning architecture to predict pollutant infiltration 
rates with high quality and accuracy. This was validated by a 
robust benchmarking of the model’s predictive power with data 
obtained from 50 different rivers. Li et al. (2024) demonstrated 

the effectiveness of machine learning-based models for the 
prediction of water quality by employing a detailed correlation 
analysis and additive explanations methodology to identify the 
most relevant input variables for the prediction of water quality 
of Tualantin River. Deng et al. (2022) through their work on 
eutrophication prediction and its impacts on water quality 
demonstrates the effectiveness of ML models in handling non-
linear problems and providing accurate predictions. Their inte-
gration of Environmental Kuznets Curve (EKC) models for 
future water quality forecasting in the semi-enclosed Tolo 
Harbour is an innovative approach, offering insights into 
potential trends and guiding decision-makers in managing 
coastal ecosystems.

Adaptative cross-disciplinary methodologies 
towards improved water quality decision support

Cross-disciplinary methodology integration refers to the 
combination of approaches, concepts and tools from multi-
ple disciplines to create a more comprehensive and holistic 
solutions problems. More often than not, this allows for the 
assimilation of diverse perspectives and expertise, leading to 
more wide-ranging and universal understanding of prevail-
ing complex phenomena. Potentials and opportunities have 
been identified from insights and techniques across diverse 
related domains such as public health, social and ecological 
sciences, which when adopted and adapted offer significant 
improvements to water quality modelling and the develop-
ment of decision support systems. The complex, multifaceted 
nature of water quality issues, which often spans technical, 
environmental and social domains is one which yearns for 
such integrated interventions as efforts continue to be geared 
towards developing more robust and versatile models and 
improving the general strength of modelling endeavours 
with time.

Adoptive methodologies emphasize iterative learning, and 
continuous feedback and adjustments based on real-time 
monitoring and evaluation, enabling the development of 
models that dynamically adapt to changing conditions. The 
application of Explainable Artificial Intelligence (XAI) mod-
els adapted from other domains to water quality modelling 
are playing a vital role in helping the course of development 
of universal water quality models with their capacity to iden-
tify key variables amidst the stack of water quality determi-
nands available and their interactions and influences on water 
quality outcomes. Generally, machine learning (ML) and 
artificial intelligence (AI) techniques are viewed to be black-
box in nature, in that their decision-making processes are not 
open and often difficult to understand or explain, operating 
through complex layers of interconnected neurons and mak-
ing deciphering how predictions and outcomes arrived at a 
challenging task. XAI techniques addresses identification of 
biases and errors and help in the refinement of models which 
when integrated into water quality models increase the 
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possibilities of identifying critical quality determinands, 
detecting anomalies and understanding the factors driving 
water quality problems.

Nallakaruppan et  al. (2024) demonstrated the burgeoning 
potentials offered by cross-disciplinary adaptation of XAI 
models when they used it to provide transparent and interpret-
able predictions to water quality by parametric analysis of pota-
bility of water based on key parameters. The proposed approach 
employs model-based and model-agnostic interpretations to 
provide a deeper understanding of feature importance and 
their relationship with water quality. The study presented case 
studies in river pollution and urban water contamination to 
validate and demonstrate the potential impact of XAI in 
addressing water quality issues using performance metrics like 
accuracy, precision, recall and f1-score to emphasize the relia-
bility and credibility of the water quality predications. Natarajan 
et al. (2024) have also demonstrated the practical applicability 
of optimized machine learning models to air quality predition, 
a discipline which is analogous to water quality prediction in 
many ways than one. The study employed benchmark air qual-
ity data from 26 major cities in India to evaluate the proposed 
model. This comprehensive dataset allows for detailed analysis 
and validation of the model's accuracy and reliability, demon-
strating pristine robustness and effectivness in predicting air 
quality. Kshirsagar et al. (2022) similarly emphasized the ben-
efits of machine learning and deep learning techniques in tack-
ling complexities that challenge and limit the prediction of air 
quality. Using a hybrid approach which combines different ML 
algorithms, their study overcame the limitations of individual 
models to enhance predictions accuracy and reliability of air 
quality forecasts. The likes of He et al. (2024) and Shitharth 
et  al. (2023) and also put forward opportunities in adapting 
novel approaches of artificial intelligence-backed time series 
analysis and satellite imagery to benchmark baseline water 
quality models, indicating its effectiveness and feasibility for 
complex water environments. Ablation experiments showed 
substantial performance improvements with the inclusion of 
the coordinate attention (CA) module, efficient channel atten-
tion (ECA) module and varifocal loss function into the predic-
tion algorithms. These components enhance detection accuracy 
by improving the ability to extract features from complex back-
grounds and varying scales of floating objects. The inclusion of 
various optimization techniques and experimental verification 
through case studies further strengthen the validity of the pro-
posed approach.

Attaining sustainability in water quality modelling 
in the face of climate change

While developing a truly generic and all-encompassing water 
quality model may be challenging as previously discussed, 
focussing on model flexibility, adaptability and modularity can 
help create frameworks that can be tailored to broad-based 
contexts and provide valuable insights for water quality 

management and decision support as buttressed by Strokal 
et al. (2019) and Van Vliet et al. (2021). This is very essential 
in response to the climate change phenomenon which is much 
of a reality in our contemporary world. Its potential to impact 
future generations has been reported to be far-reaching, with 
possible consequences on losses and alterations in biodiversity 
and ecosystems, degradation of water quality and availability 
with its attendant health risks and disruptions in food produc-
tion as a result of shifts in weather patterns and season and lots 
more. This then calls for the alignment of the management of 
resources such as water, in ways that meet the needs of the 
current generation and without compromising those of future 
generations. Judging by how important water in general (pota-
ble water in particular) is to life, there are no indications yet 
that future generations will not be as reliant on water resources 
as the current. There will continue to be the need for access to 
clean and adequate volumes of water, efficient usage of avail-
able water, recycling of used water, improvement of water-
supported agricultural practices and preservation of the 
environment. Thus, there is a need for the development and 
implementation of frameworks and strategies that ensure 
long-term protection, efficient management and equitable 
distribution.

As affirmed by Li et al. (2014), water quality modelling is a 
fundamental approach to ensure sustainable water resource 
management in line with sustainable development goals 
(SDGs). Since water quality is influenced by a series of deter-
mining factors and parameters, it must be taken into account in 
whatever strategies and frameworks to be developed for the 
preservation of future generations. According to Alcamo (2019), 
the challenges of the complex interactions of influential factors 
have to be overcome for the holistic understanding and devel-
opment of adequate support systems. Reports from various 
studies reviewed so far have shown appreciable progress made in 
these regards while prospects and opportunities are promising. 
The integration of advanced data-driven computational tech-
niques in water quality modelling is enabling the analysis of 
large datasets and enhancing the quality of forecasting and 
interpretation of complex patterns which can be used to develop 
early warning systems for future occurrences (Dawood et  al., 
2020; Sperotto et  al., 2019). Given the uncertainty of future 
environmental conditions, adaptive and modular frameworks 
are essential. The potential of adaptative cross-disciplinary 
methodologies towards improved water quality decision sup-
port accommodates changing conditions, allowing for flexibility 
in response to environmental shifts, climate change and human 
activities. Interdisciplinary frameworks enable the integration 
of new components or methodologies without requiring a com-
plete overhaul of existing models. The focus for stakeholders 
therefore has to remain geared towards aligning all arms of 
water quality management, which includes qualitative and 
quantitative forecasting, with sustainable development goals 
particularly those focussed on clean water and sanitation, good 
health and well-being, climate action and sustainable cities and 
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communities. Efficient water quality modelling can help achieve 
these sustainability targets through:

•	 	prediction	 and	monitoring	 of	 water	 quality	 parameters	
and the effects of climate change on water quality.

•	 	assessing	pollution	 sources,	 spread	 and	 identification	of	
areas at risk of contamination.

•	 evaluating	the	effectiveness	of	water	treatment	processes.

•	 	developing	interventions	to	prevent	waterborne	diseases	
and guide investments in associated infrastructure.

•	 	supporting	decision-making	for	water	resource	manage-
ment and guiding policies for sustainable water manage-
ment.

The associated challenges notwithstanding, these alignments 
with SDGs are crucial for developing sustainable practices that 
account for the uncertainty and variability associated with cli-
mate change and safeguard future generations' well-being. 
Accordingly, an adaptive water resource planning method 
should be based on ensembles and multi-model probabilistic 
approaches rather than on an individual scenario and a single-
value projection for the future.

Conclusion
This review study has explored the development of water qual-
ity models and their application in decision support systems in 
a climate-changing world, highlighting the challenges, 
advancements and future opportunities in this field. It discusses 
the complexities of water quality characterization, universal 
modelling and the evolution of decision support systems that 
can improve water quality management. The development, 
implementation, integration and acceptance of model-based 
DSS in water quality management has come a long way since 
it evolved from an object of academic curiosity to a concept for 
possible practical implementation. Like many emerging meth-
odologies, nascent challenges associated with the integration of 
science in the description and prediction of real-life phenom-
ena initially proved to be a stumbling block, with a wide gap of 
distrust created between modeller and operator. This has left 
finding solutions to water quality challenges more of a reac-
tionary endeavour rather than being pre-emptive, predictive 
and precautionary. However, as the realities of climate change, 
increasing populations and the endangerment of the environ-
ment began to dawn, the pressing need to bridge the gap 
between science and applications came. As observed, the big-
gest challenge to water quality modelling was the sheer number 
of parameters that define or serve as determinands of quality 
water, together with the means by which each of these determi-
nands could be detected and measured. Nevertheless, continu-
ous experimentation, testing and upgrades helped increase the 
experience gained in modelling over time. Departure from 

lumped descriptions to descriptions based on spatial, temporal 
and sensitivity analyses helped in scaling down quality metrics 
to be domain-specific. This meant that keeping the number of 
parameters as low as possible as a first breakthrough, increased 
the information content per parameter and therefore allows 
both a more accurate determination of the parameter and a 
more reliable correlation of the values obtained with catchment 
characteristics.

Limitations of the study

While this study has tried to be as extensive as possible in cov-
ering a wide range of sub-topics, focussing mainly on providing 
broad overviews without overshooting the scope of water qual-
ity modelling and development of associated decision support 
systems, the breadth of coverage has come at the expense of 
depth. With the hindsight that knowledge is inexhaustible and 
also the constraints of publishing costs, some aspects of water 
quality decision support systems such as the challenges of 
standardization and validation across different regions of the 
world have not been elaborated upon, potentially limiting the 
depth of insights into these subdomains of the overall scope of 
the review study. Furthermore, climatic contexts and their 
impacts on model variability have not been adequately enu-
merated, hence it is still unclear if the transferability of certain 
modelling outcomes can be guaranteed. Lastly, while mention 
has been made about the integration of methods and tech-
niques across different levels of modelling and application, the 
pathway and frameworks for clear and seamless integration of 
these methodologies and collaborative efforts were not explored 
in this study.

Possible improvements

As highlighted in the limitations of the study, the vast horizon 
of the knowledge base associated with water quality and 
resource management makes it difficult to discuss in detail at 
the first time of asking. Broader focus for further research can 
be centred around more nuanced insights into the different 
contexts in which factors that influence water quality can be 
viewed, such as groundwater remediation, soil decontamina-
tion and strategies for minimization of water consumption. 
Exploring these domains has the potential to significantly 
enrich the water quality management discussion. This can be 
boosted by exploring innovative methods for collecting, stand-
ardizing and validating water quality data to ensure accuracy 
and reliability across diverse regions and ecosystems. Cross-
disciplinary collaboration is key in this regard.

Future possible directions

The emerging fields of Machine Learning (ML) and 
Explainable Artificial Intelligence (XAI) are yet to be fully 
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tapped into in terms of application to water quality decision 
support systems and management. Continued exploration of 
these techniques can provide valuable insights, transparency and 
interpretability into complex water quality patterns. The success 
rate of such will depend on the quality of data and models ema-
nating from algorithms built on it. With such innovations com-
ing through for water quality monitoring and evaluation, 
proactive actions can be taken by water supply mangers and 
operators to ensure consumers are not put at risk or compro-
mised by water consumed. Already, digital technologies are 
revolutionizing and improving the quality of products, services 
and decision-making in many spheres. The rapidly increasing 
number and degree of sophistication of sensors available have 
expanded the innovation space for watershed monitoring and 
reporting networks with the capacity to gather data quickly and 
in real-time. Leveraging remote sensing and Internet of Things 
(IoT) technologies can enhance real-time monitoring and data 
collection for water quality management. This integration can 
improve the accuracy and scalability of water quality models. 
While efforts are ongoing in bridging the innovation gap 
between conceptualization and modelling by water scientists 
and managers in municipalities and industries, for more accept-
ance of science and communication technology-based applica-
tions in management operations, emerging cyber-physical and 
artificial intelligent systems have been primed to transform day-
by-day management of water and provide lasting solutions to 
quality water availability and supply challenges. The prevailing 
challenges notwithstanding, there remains a vast landscape of 
possibilities and markets for exploration in developing tools, 
techniques and products that will help in ensuring quality water 
is sustainably available for all in line with the development goals 
of many nations of the world.
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