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Introduction
Accurate and reliable prediction and assessment of precipita-
tion are valuable for managing water resources, predicting 
floods and droughts, and meeting agricultural water require-
ments (Motohashi & Motohashi, 2015; Tapiador et al., 2012). 
Both observational data and climate model simulations dem-
onstrate complex variations in the amount of rainfall over space 
and time (Chung et al., 2014; Eyring et al., 2019). The use of a 
rain gauge has traditionally been a reliable and precise method 
of monitoring precipitation (Ali et al., 2017); nevertheless, the 
density of rain gauges is somewhat low in distant areas and 
near ocean bodies, limiting the uses of rain gauge data for sci-
entific purposes. Weather radar can measure precipitation, but 
only if the radar systems are widely spaced and calibrated for 
the kind of precipitation. Since radar requires expensive and 
complex maintenance, especially in hilly terrains, with limited 
coverage and shading concerns (De Coning, 2013). In areas 
with little radar coverage and few rain gauges, remote sensing 
techniques provide the best alternative for measuring precipi-
tation (De Coning & Poolman, 2011). Globally, numerous 
gridded precipitation datasets have been created with satellite 
data (Satgé et al., 2017). Several remotely sensed precipitation 
products have been developed, including Precipitation 
Estimation from Remotely Sensed Information using Artificial 
Neural Network (PERSIANN) (Ashouri et  al., 2015), the 
Multi-Source Weighted-Ensemble Precipitation (MSWEP) 
(Beck et  al., 2017), the Climate Hazard group Infrared 
Precipitation (CHIRPS) (Funk et  al., 2015), and Global 

Precipitation Measurements from Integrated Multi-satellite 
Retrievals (GPM-IMERG), which was introduced in 2014 as 
a follow-up project of Tropical Rainfall Measuring Mission 
(TRMM) (Huffman et al., 2019).

Various efforts have been made to validate and compare 
these remotely sensed precipitation products on a regional 
scale. The GPM-IMERG V5 and V6 were validated through-
out Iran by Hosseini-Moghari and Tang (2020) using rain 
gauge readings, and it was discovered that V5 outperformed 
V6. Yu et al. assessed the spatial-temporal accuracy of CHIRPS 
and GPM-IMERG by integrating rain-gauge data with satel-
lite precipitation products, specifically Artificial Neural 
Networks-Cloud Classification System. Their findings favored 
the performance of GPM-IMERG over CHIRPS. Meanwhile, 
Jiang et al. (2021) demonstrated the potential use of IMERG 
final run precipitation product for monitoring drought condi-
tions in mainland China as an alternative data source. Based on 
these insights, Arshad et  al. (2021) suggested in a separate 
study that IMERG final run could help bridge the gap in rain-
gauge data for weather and flood forecasting purposes. Another 
way to obtain precipitation data is through reanalysis products, 
which involve using satellite precipitation retrievals and rain 
gauges. In addition to this, global atmospheric and land surface 
reanalysis products are also available. Researchers such as Hu 
et al. (2016) and Kalnay et al. (1996) have emphasized the sig-
nificance of these reanalysis products in creating a comprehen-
sive global dataset by integrating satellite and rain gauge 
precipitation retrievals into model analysis techniques.
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Chen et  al. (2019) stated that, out of NCEP-2, CFSR, 
ERA-Interim, JRA-55, and MERRA-2 reanalysis datasets, 
Modern Era Retrospective Analysis for Research and 
Applications is considered the most suitable model to portray 
historical drought patterns across China. Shah and Mishra 
(2014) assessed reanalysis data from MERRA, ERA-Interim, 
and CFSR in relation with seasonal monsoon droughts in 
India. The findings of the study in India revealed a notable 
positive bias in monsoon season precipitation across the 
research area for all Reanalysis Precipitation Products.

NASA’s Earth Science research program has historically 
backed satellite systems and investigations that offer essential 
data for researching climate and climatic events. These datasets 
contain extended-term climate-averaged assessments of mete-
orological quantities as well as surface solar energy fluxes. 
Additionally, time series formatted displays depict the average 
daily values for fundamental meteorological and solar informa-
tion. These products derived from satellites and models have 
demonstrated sufficient accuracy to supply dependable solar 
and meteorological resource data in areas with limited or no 
surface measurements. They present two notable benefits: 
international data coverage and frequent continuity over time.

An extension of the SSE project started in 2003, the 
Prediction of Worldwide Energy Resources (POWER) project 
uses weather and sun data from NASA studies to improve 
building energy efficiency, renewable energy, and agricultural 
demands. The Modern Era Retrospective-Analysis for 
Research and Applications assimilation model products from 
Goddard’s Global Modeling and Assimilation Office, along 
with the GMAO Forward Processing—Instrument Teams and 
GEOS 5.12.4 near-real-time products, provided the meteoro-
logical parameters used in POWER Release 8. The assimila-
tion models differ very little from one another since MERRA-2 
and GEOS 5.12.4 are comparable. (Prediction of Worldwide 
Energy Resources, 2022).

De Aguiar and Lobo (2020) conducted a comparison 
between weather data obtained from ground stations in Brazil 
and climatic data sourced from the NASA-POWER database. 
Their findings revealed a strong correlation between values 
derived from ground measurements and remotely sensed rain-
fall, with coefficients ranging from .75 to .95 for most loca-
tions. In a separate study, Marzouk (2021) analyzed NASA 
temperature and precipitation data spanning from 1981 to 
2019, concluding that while the air temperature provided by 
NASA-POWER during 2011 to 2016 was highly reliable, the 
accuracy of heavy precipitation data was less consistent.

In Pakistan, there has been no previous research analyzing 
the effectiveness of NASA-POWER for a catchment having 
variable climate. Therefore, in this study we tried to assess 
POWER product over Lower Jhelum River Basin. The key 
objective was to assess how well the POWER records precipi-
tation on monthly time scale. The bias correction and the 
stream flow result from HEC-HMS model helped us to fur-
ther evaluate how the product performed before and after the 

implementation bias correction both on a temporal and spatial 
scale.

Methodology
Study area

The studied area is Lower Jhelum catchment in which Jhelum 
River passes through the Jhelum district. It is the largest river 
of Punjab province. The Jhelum River originates from a spring 
at Verinag located near the foot of the Pir Panjal in the south-
eastern part of the Kashmir valley. It flows through Srinagar 
and Woolar Lake before entering Pakistan through a deep 
gorge in Kashmir. It is joined by the Kichenganga Neelum, the 
largest tributary of the Jhelum River, near Muzaffarabad, like 
Kunhar River in Kagan Valley. The starting point of Lower 
Jhelum River is taken at the confluence point of both these riv-
ers. The catchment under study extends between 
31°00′N−34°30′N latitude and 71°30′E−74°30′E longitude. 
The position of the Lower Jhelum River Basin in Pakistan, 
along with the surrounding natural elements have shaped its 
varied topography and weather patterns. The plain areas pos-
sess a humid subtropical climate and is extreme in nature with 
an average temperature of 49.2°C in summers and 2.7°C in 
winters. Whereas the mountainous areas like Muzaffarabad 
and Garhi Dupatta have an average of 27°C in summers and 
extreme cold with a temperature of −0.6°C. Figure 1 shows the 
catchment with river tributaries and distribution of rain gauges 
over the catchment.

Gauge and satellite precipitation data

Monthly precipitation data covering the period from 2014 to 
2019 for thirteen (13) gauge stations over Lower Jhelum 
River catchment was used as a reference in this study, which 
was obtained from Pakistan Meteorological Department 
(PMD). The names and location of each gauge station is 
listed in Table 1.

The Prediction of Worldwide Energy Resource (POWER) 
Project monthly data was obtained from the National 
Aeronautics and Space Administration (NASA) Langley 
Research Center (LaRC) (https://power.larc.nasa.gov/data-
access-viewer/). The POWER rainfall database is provided by 
the Global Precipitation Climate Project (GPCP, version 2.1), 
which is available at the system’s spatial resolution. Other 
sources, such as microwave imaging, monthly estimates, and 
atmospheric infrared sounders, are also consulted to compile 
more accurate estimates (Stackhouse et  al., 2016). NASA-
POWER makes use of gridded datasets that collect precipita-
tion data from many sources. It estimates precipitation values 
between grid cells using interpolation approaches, leading to 
the extraction of point-specific rainfall data. Spatial resampling 
removes or interpolates precipitation quantities at specific 
places, making point rainfall data more accessible. Users may 
obtain point precipitation data by giving latitude and longitude 
coordinates or choosing areas using the POWER platform’s 
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Figure 1.  Study area with river tributaries and locations of rain gauge stations.

Table 1.  Specifics of Rain Gauge Stations.

ID Stations Latitude (Y) Longitude (X) Elevation (m)

1 Kakul 34°11′ 72° 15′ 1,308

2 Garhi Dupatta 34°13′ 73°37′ 813.5

3 Muzaffarabad 34°22′ 73°29′ 702

4 Rawalakot 33°52′ 73°41′ 1,677

5 Kotli 33°31′ 73°54′ 614

6 Mangla 33°4′ 73°38′ 283.3

7 Jhelum 32°56′ 73°44′ 287.19

8 Mandi Bahauddin 32°58′ 73°48′ 252.97

9 Chakwal 32°55′ 72°51′ 519

10 Jauharabad 33°30′ 72°26′ 187

11 Sargodha 32°3′ 72°40′ 187

12 Noorpur Thal 31°52′ 71°54′ 186

13 Jhang 31°16′ 72°19′ 158
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map interface. The monthly data was downloaded by inserting 
the coordinates of the gauge stations. The specifications of the 
POWER dataset are given in Table 2.

Digital elevation model

The topography was described using a DEM, which identifies 
every point’s elevation inside a given area at a specific spatial 
resolution. A 30 m by 30 m resolution DEM was acquired from 
the SRTM (Shuttle Radar Topography Mission) website 
(https://earthexplorer.usgs.gov/).

With the help of reference elevation points provided by 
PMD, the DEM was analyzed. The discrepancies between the 
values of each DEM pixel and the existing elevations were used 
for the validation of DEM. When the elevation error was esti-
mated, positive differences indicated that the DEM elevation 

was higher than the actual point elevation. Similarly, the nega-
tive errors occurred when the DEM elevation was lower than 
the actual elevation. Our analysis showed negative errors for 
most of the analyzed pixel cells, indicating that the elevation of 
the DEM was lower than the elevation of the actual.

Elevation Error Z Z Zdiff DEM PMD= −

Thiessen polygons for average basin rainfall

The reliable modeling of flash flood values can only be achieved 
if the factual average rainfall estimates for the basin are availa-
ble. The average basin rainfall represents a single rainfall value 
for a specific period, but uniformly distributed over the entire 
watershed. To incorporate the response of entire catchment, 
the availability of reliable average basin rainfall is essential. By 
increasing the number of rain gauge stations, the obtained val-
ues of average basin rainfall become more reliable and signifi-
cant for hydrological investigations in the catchment. Therefore, 
average basin rainfall was obtained by means of the Thiessen 
Polygon Algorithm in ArcGIS (Saber & Yilmaz, 2018). The 
resulting Thiessen weights were then multiplied with the pre-
cipitation of each rain gauge station to obtain the average basin 
rainfall. Figure 2 shows the Thiessen polygons and the corre-
sponding weights for each station.

Table 2.  Specifications of POWER Dataset.

Spatial resolution 0.5° (55.5 km) latitude by 0.5° (55.5 km) 
longitude

Reference satellite GPCP

Sensor Infrared and microwave

Temporal coverage 1 January 1997 to near present

Figure 2.  Thiessen polygons and weights for each station.
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Bias correction

To carry out hydrological investigation the rain estimates pro-
vided by the SPPs must be as precise as possible. Therefore, 
multiplicative bias factor technique was employed to adjust the 
satellite estimates (Saber & Yilmaz, 2018). The bias factor is a 
scaling factor that is used to adjust the bias in the estimated 
outcome measure. Due to insufficient historical data from rain 
gauge stations, this technique is used. The equation for bias 
factor is given as:

BiasFactor =
GaugePrecipitation

ModelPrecipitation

M =BF Mi_corr i×

Initially, the bias factor for each month was determined 
using the bias factor formula. The bias factor values were then 
averaged across two consecutive months to provide a single 
value. This single value was multiplied by the uncorrected val-
ues of the satellite estimates of 2 months. This technique was 
applied for the next 2 months as well.

Tatistical and performance parameters

To evaluate the performance of POWER product, it was com-
pared with the observed rain gauge product before and after the 
implementation of bias correction respectively. For this purpose, 
three performance parameters were evaluated including False 
Alarm Ratio (FAR) which is the ratio of no. of rain events falsely 
reported to total number of reported events, Probability of 
Detection (POD) which the ratio of no. of rain events accurately 
reported to total number of events (accurately reported plus 
missed) and Critical Success Index (CSI) which is the ratio of 
no. of rain events accurately reported to total number of events 
(accurately reported plus missed plus falsely reported). Moreover, 
four statistical parameters were also used that is, Relative Bias 
(RE) which gives the percentage error present in a dataset, the 
Mean Error or Bias Error (ME/BE) which gives simple error, 
the Correlation Coefficient (R) which tells us about the linear 
association between two datasets and the Root Mean Square 
Error (RMSE) which is highly sensitive to the value of error that 
is, if there is bigger error in data RMSE value would be higher 
and vice versa (Le et al., 2018). Table 3 provides the description 
about these parameters.

Table 3.  Description of the Statistical and Performance Parameters.

Index Formulas Unit Best values

Bias error (BE)

BE
n

S Gi
i

n

= −( )
=
∑1
1

mm 0

Relative bias (RE)

RB

S G

G

i
i

n

i

n
=

−( )
×=

=

∑

∑
1

1

100

% 0

Root mean square error (RMSE)

RMSE
n

S Gi
i

n

= −( )
=
∑1 2

1

mm 0

Correlation coefficient (R)

CC

G G S S

G G S S

i i
i

n

i
i

n

i
i

n
=

−( ) −( )

−( ) −( )
=

= =

∑

∑ ∑
1

2

1

2

1

NA 1

False alarm ratio (FAR)

FAR
False Alarms

Hits False Alarms
=

+
 

   

NA 0

Probability of detection (POD)

POD
Hits

Hits Misses
=

+  

NA 1

Critical success index (CSI)

CSI
Hits

Hits False Alarms Misses
=

+ +     

NA 1
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where, n is the total number of gauge stations; Si is the sat-
ellite-built estimates and G is the observed rainfall value by the 
gauge. The “Hits” are the events which are correctly measured 
by both the gauge and the POWER product. “False Alarms” 
represents the false values predicted by the POWER product 
when there was no rainfall in actual. “Misses” represents the val-
ues which were missed by the POWER product when there 
was a rainfall in real.

Hydrological modeling

The HEC-HMS watershed model was utilized to analyze 
the impact of topography, land use, soil, and weather condi-
tions on stream flow in the Lower Jhelum River Basin from 
2014 to 2019. The hydrological modeling in HEC-HMS 
involved using the SCS-Curve Number method for loss esti-
mation, SCS-Unit Hydrograph method for runoff estima-
tion, and Muskingum method for flow routing. The study 
sought to assess changes in stream flow following bias 
correction.

The basin was initially defined by delineating 19 sub-basins, 
which were based on the physical characteristics of the study 
area, including land use and land cover, soil distribution as well 
as topographical features. This process was carried out using 
ArcGIS tools and analysis. The sub-basins are shown in the 
Figure 3. The determination of a curve number necessitates 
understanding the hydrologic soil group, which signifies the 
degree of infiltration for different soil types. There exist four 
classifications of hydrologic soil groups: A, B, C, and D. These 
groupings and their definitions are listed in Table 4. The Curve 
Number table developed by the Soil Conservation Service 

presents CN values for various land use and hydrologic soil 
group combinations. The CN is a unit less parameter that var-
ies from 0 (indicating high infiltration) to 100 (indicating no 
infiltration). The CN map was created by combining hydro-
logic soil groups and land use configurations. Table 5 shows the 
CN values adopted from Technical Release 55 (USDA-NRCS, 
1986). In order to compute rainfall runoff, the SCS-CN loss 
approach has been utilized. The CN approach for evaluating 
infiltration requires an estimate of the CN for each sub-basin. 
The SCS-UH approach (Barman & Bhattacharjya, 2020; 
Khaddor et al., 2017; Tassew et al., 2019) was used to calculate 
outflow at a certain outlet, needing lag time and percentage 
impervious area of it. A hydrograph of the upstream boundary 
conditions was provided at Kohala Station, and the basin’s lag 
time was set at 0.6 times the concentration time. The 
Muskingum method is one of the various techniques used by 
HEC-HMS to calculate stream flow at the basin’s outlet. It is 
an easy approach that doesn’t require multiple inputs, as noted 
by Song et al. (2011) and Tassew et al. (2019).

The system of equations for Lag time (L), Time of concen-
tration (Tc), and maximum retention time (S) in HEC-HMS 
are illustrated below.

Figure 3.  Lower Jhelum River Basin with sub-basins distributions in 

HEC-HMS.

Table 4.  Description of NRSC Soil Groups (James et. al., 2010).

Group Description Saturated 
hydraulic 
conductivity 
(in/hr)

A High infiltration rates, well to 
excessively drained sands or 
gravels.

⩾0.45

B Moderate infiltration rates, 
shallow loses, sandy loam.

0.30–0.15

C Slow infiltration rates, clay 
loams, shallow sandy loam.

0.15–0.05

D Very slow infiltration rates, 
consisting chiefly of clay soil.

0.05–0

Table 5.  Curve Numbers for Hydrologic Soil Groups. Technical 
Release 55 (USDA-NRCS, 1986).

Land cover type Curve number

A B C D

Water 98 98 98 98

Forest 30 55 70 77

Wetlands 87 89 90 91

Agriculture 70 80 83 90

Urban 80 88 91 93

Barren land 77 86 91 94
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S = −
1000

CN
10

L T = 0.6 c

T =
(S+1)

1140Y
c

0.8 0.7

0.5



Where S is maximum soil retention (mm) and CN is the Curve 
Number, Tc is time of concentration (hours), ℓ is flow length 
(ft), Y is average watershed land slope (%) and S is maximum 
soil retention (in).

Results
Comparison of average basin rainfall

Before the application of the multiplicative bias removal factor 
for average basin rainfall, the two datasets were demonstrating 
the B value of −11.32, which showed underestimation, that is, 
the product underestimated the rainfall as compared to gauge, 
RE value of −16.53%, which was also a sign of underestimation 
by the POWER product. The gauge and satellite datasets were 
found to be connected in a strong way, as indicated by R being 
.93. However, the POD was 0.62, which is good but not decent, 
and the FAR was 0.78, which showed that there were numer-
ous events when POWER predicted some rainfall value but 
originally there wasn’t any precipitation. Around 20% of 
POWER’s data was found to be accurately captured. After 
using the bias correction factor, the parameters revealed posi-
tive results. BE’s value after rectification was 0.63, demonstrat-
ing convergence to the optimum value of zero. Likewise, the 
result of RE −0.92% indicated convergence to the standard 
value. The value of R was increased to .96, which demonstrated 
an enhanced relationship between gauge and POWER prod-
uct. The behavior for bias correction for average basin rainfall 
is illustrated in Figure 4a and b scatter plots.

Comparison of point precipitation of entire study 
area

For whole study area the point data for all the stations was 
gathered to plot the scatter plot and to evaluate the parameters. 
Thorough comparison between ground-based rain estimates 
and NASA-POWER product for point-based rainfall was 
achieved, initially by making the comparison for point rainfall, 
for each rain station and then for all stations covering the study 
area. The statistical indices were expansively estimated and 
examined, earlier and later the implementation of bias adjust-
ment procedure on NASA-POWER monthly estimates. The 
examined statistical indicators were RE, R, RMSE, and BE 
respectively. The performance evaluating indices for the cate-
gorial based validation were analyzed just for NASA-POWER 
product that is, they were not assessed after the implementa-
tion of bias amendment, as the assessment of performance of 
the NASA-POWER sensor was required. The indices evaluat-
ing both the estimation and performance of NASA-POWER 
are presented in Table 6 and 7. It was observed that heavy rain 
events (>10 mm) were usually underestimated by NASA-
POWER, while lighter rain events were mainly overestimated 
by it. Prior to the application of the multiplicative bias removal 
factor, the two datasets exhibited a BE value of −0.05, indicat-
ing underestimation, that is, the model underestimated the 
precipitation compared to the gauge (RE value being −0.03%), 
which was also an underestimated signal. The RMSE score of 
0.70 revealed convergence of data to the reference line. The 
correlation coefficient reached to .82, indicating a very strong 
relationship between the gauge and satellite dataset. However, 
the POD was 0.21, which is good but not ideal, and the FAR 
was 0.18, indicating that there were less occasions for which 
the product predicted precipitation but there was no precipita-
tion. CSI value was determined to be 0.2, meaning that only 
0.2 out of 1 part of data was accurately evaluated. Applying the 
bias correction factor directed us to quite appreciable 

(a) (b)

Figure 4.  (a) Monthly average basin rainfall before correction. (b) Monthly average basin rainfall after correction.
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parameters for the study area. After being adjusted, the values 
for BE, RE, RMSE, and R were 0.06, 0.01%, 0.29, and .9. 
Convergence to the reference value is found in all the 

parameters. There was an increase in the R value, suggesting a 
higher relationship between the gauge and the product. 
Figure 5a and b demonstrate the behavior of data for the entire 

Table 6.  Statistical Parameters for Multiple Scenarios Before Bias Correction.

Stations BE/ME RE/PB (%) RMSE R POD FAR CSI

Chakwal 1.31 2.14 36.85 .82 0.22 0.12 0.22

Garhi Dupatta –29.39 –27.31 51.25 .86 0.13 0.1 0.13

Jauharabad –5.07 –11.26 43.48 .6 0.13 0.38 0.12

Jhang –6.99 –19.87 48.29 .68 0.12 0.5 0.1

Jhelum 0.87 1.24 38.93 .89 0.15 0.23 0.14

Kakul –26.47 –24.88 43.09 .91 0.09 0.14 0.08

Kotli –21.12 –21.05 61.42 .8 0.12 0.11 0.12

Mandi Bahauddin 1.68 2.42 43.08 .85 0.2 0.25 0.17

Mangla –8.01 –10.12 46.92 .81 0.12 0.11 0.12

Muzaffarabad –38.58 –34 59.39 .88 0.13 0 0.13

Noorpur Thal –4.45 –13.95 38.94 .66 0.09 0.4 0.09

Rawalakot –45.34 –36.69 87.48 .78 0.06 0.33 0.06

Sargodha –11.5 –25.36 30.73 .87 0.09 0.45 0.09

Average basin rainfall –11.32 –16.53 24.12 .93 0.21 0.18 0.2

Entire study area –0.05 –0.03 0.70 .82 0.21 0.18 0.2

Table 7.  Statistical Parameters for Multiple Scenarios After Bias Correction.

Stations BE/ME RE/PB (%) RMSE R

Chakwal 0.23 0.37 25.23 .9

Garhi Dupatta 1.21 1.13 33.10 .91

Jauharabad 2.18 6.24 38.93 .7

Jhang 0.28 0.9 35.21 .66

Jhelum 0.61 0.87 26.77 .95

Kakul 1.4 1.3 30.52 .94

Kotli –3.16 –3.15 47.91 .87

Mandi Bahauddin 0.09 0.13 31.80 .93

Mangla 0.37 0.47 24.01 .95

Muzaffarabad 0.7 0.6 29.39 .93

Noorpur Thal 4.4 13.93 31.97 .76

Rawalakot –1.54 –1.24 42.28 .93

Sargodha 1.61 3.55 29.2 .9

Average basin rainfall 0.63 0.92 16.98 .96

Study area 0.06 0.01 0.29 .9
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study area by means of a linear scatter plot. The results for all 
station before and after the bias correction are shown in Tables 
6 and 7 in tabular form.

Estimation of outflows for lower Jhelum River 
Basin

For evaluating the generated stream flows, a comparison of 
average basin rainfall of gauge, uncorrected and corrected 
POWER product was made. In case of average basin rainfall 
for gauge, the peak flow was observed in July 2017 with a value 
of 1,10,804 m3/s. When comparing it with the average basin 
rainfall for uncorrected POWER product, the peak flow was 
observed as 1,08,484.7 m3/s in the month of July 2017. 

Although the peak flows observed in both the cases were in the 
month of July 2017 but difference in the values can be seen 
evidently. The model results improved when amended average 
basin rainfall was utilized. Likewise, the peak flow was seen in 
July 2017 with a value of 1,14,750.3 m3/s. When comparing 
this value with the other two datasets, the results were improved 
but there was some overestimation in the outflows. Figure 6 is 
depicting the outflows for gauge, uncorrected and corrected 
POWER based average basin rainfall. Statistical parameters 
such as BE, RE, RMSE, and R were also determined to evalu-
ate the amount of error before the correction. The parameters 
BE, RE, RMSE, and R showed a value of 329, 6.96%, 5,809 
and .98 respectively. The three parameters other than R showed 
the huge error but after the implementation of bias correction 

(a) (b)

Figure 5.  (a) Monthly point rainfall of entire study area before correction. (b) Monthly point rainfall of entire study area after correction.

Figure 6.  Stream flows generated in HEC-HMS by utilizing average basin rainfall of gauges, uncorrected and corrected POWER datasets.
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the improvement in the results can be seen. Likewise, to visual-
ize the effect of bias correction linear scatter plots are shown in 
Figure 7a and b for visualizing the behavioral impact of data on 
runoff simulations. It can be said on this base that smaller value 
of mean error in rainfall estimates leads to bigger values of 
mean errors in results of hydrological investigations. Therefore, 
use of reliable global rainfall estimates for hydrologic use must 
be made. There exist many possibilities for the occurrence of 
inaccuracies in results of model that is, the bias adjustment pro-
cedure or the chances of error in gauge-based estimates due to 
influence of wind, interception losses, splash, and evaporation 
effects (Saber & Yilmaz, 2018).

Since, the hydrological modeling was performed to see the 
peak flows and their time for peak, so the model calibration 
was accomplished to adjust the driving parameters of model 
in such a way that both hydrographs that is, observed and 
simulated came closer to each other in all cases. With the 
help of auto optimization manager in HEC-HMS, the cali-
bration of model was conducted for rainy months that is, July 
to September. The model’s sensitivity was improved by apply-
ing auto optimization repeatedly. The performance of model 

during these calibration trials was assessed through statistical 
indices BE, RMSE, RE, and R correspondingly. As far as vali-
dation of model is concerned, it was achieved by considering 
a smaller hypothetical catchment, but the months for valida-
tion were changed that is, from April to June were selected 
for 11 years.

Mean average rain maps

Rain is usually presented as a map to display rainfall spatial and 
temporal variation over certain periods of time and land areas 
with a color range. The rainfall maps were developed in ArcGIS 
by utilizing the gauge, uncorrected and corrected POWER 
rainfall data. For our study area over a 6-years period, we cre-
ated mean annual rainfall maps to demonstrate how the Lower 
Jhelum catchment’s rainfall differ in both space and time. It is 
also evident from the below diagrams that as the terrain 
become mountainous the behavior of the POWER product 
becomes complex and biased. Figures 8a and b and 9a and b 
display the mean average rainfall maps before and after the 
application of bias correction.

(a) (b)

Figure 7.  (a) Stream flow comparison before correction. (b) Stream flow comparison after correction.

Figure 8.  (a) Mean annual rainfall of POWER dataset before bias correction. (b). Mean annual rainfall of gauge dataset.
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Discussions of results

The evaluation of NASA-POWER estimates relative to gauge 
products was made with the help of few statistical indices that 
is, RMSE, BE, RE, and coefficient for linear correlation (R) 
(Tables 6 and 7). BE shows the mean value of error available in 
NASA-POWER relative to gauge estimates. Its value can be 
either positive or negative, representing overestimation and 
underestimation accordingly. RE parameter also indicates 
overestimates or underestimates of rainfall depending upon the 
negative or positive value. The absolute measure of mean error 
is sensed by RMSE and is the most used parameter of statistics. 
It is found to be sensitive to bigger values of bias (Chu & 
Shirmohammadi, 2004; Singh, 2005). While the linear associ-
ation between the two datasets is represented by R.

Moreover, for the assessment of sensor of NASA-POWER 
product, three functionality evaluating indices were also used 
namely, POD that is, Probability for Detection of rainfall 
events, FAR that is, False Alarm Ratio and CSI that is, Critical-
Success Index. POD represents the rate for hit rain events that 
is, the proportion of events which are correctly perceived by 
NASA-POWER, the range is from 0 to 1. FAR shows the 
fraction of rain events inaccurately captured. While CSI tells 
us the fraction of successfully read rain events by NASA-
POWER. All the above-mentioned statistical indices are given 
in Table 4 along with their best figures.

Hydro-meteorological research greatly depend on the accu-
rate spatial and temporal estimation of precipitation. When 
obtaining spatially distributed rainfall estimates at regional and 
global dimensions, satellite-based products are frequently used 
(Abdullah et al., 2020). Based on our findings, it was found that 
NASA-POWER in this instance significantly underestimates 
rainfall when compared to rain gauges. Orographic effects, 
which induce moist air to rise over mountains and generate 
rain shadows on leeward slopes and increased rainfall on wind-
ward slopes, are common in variable topographical regions. 

Underestimating the amount of rainfall across a basin may take 
place when rainfall estimation models fail to appropriately 
account for these orographic effects (Sun et  al., 2020). This 
behavior was clearly observed in mean annual rain maps. 
Short-duration, intense rainfall events that considerably 
increase the total amount of precipitation throughout a basin 
might not have been captured by the temporal resolution of 
NASA-POWER data. Underestimating average basin rainfall 
over a given time may arise by failing to record these heavy 
rainfall events. Localized characteristics that may not be ade-
quately captured in the dataset can be found on plains, such as 
lakes, tiny hills, rivers, and variations in land cover and use. 
Errors in point rainfall estimates may result from missing these 
features (Shah & Mishra, 2014).

The quality and availability of field-based observations that 
are utilized to test and calibrate the models have a significant 
impact on the accuracy of rainfall estimates. The dataset might 
be deficient in information needed to appropriately depict 
regional rainfall patterns in places with a low density of ground-
based meteorological stations which could be another reason 
for the underestimation of rainfall (Yu et al., 2020).

Limitations

Although NASA-POWER product provides useful informa-
tion about climatological and meteorological factors, such as 
precipitation, it possesses several limitations, most notably 
regarding bias correction. Particularly in areas with few or weak 
observational networks, bias correction approaches may be sen-
sitive to the quantity and quality of reference data used for cali-
bration, which could result in errors. The research was 
conducted using the monthly precipitation data for 6 years.

Conclusion
The results of study showed that POWER tends to underesti-
mate the rainy events in mountainous region like Muzaffarabad, 

Figure 9.  (a) Mean annual rainfall of POWER dataset after bias correction. (b) Mean annual rainfall of gauge dataset.
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Garhi Dupatta, Kakul. The reason for the uncertainty between 
the gauge and satellite-based estimates is probably the proxim-
ity of mountains in these regions. The mountains’ steep topog-
raphy expedites the abrupt and rapid growth of rain clouds, 
resulting in successive sensor snapshots of miss events.

However, for the plain areas it shows overestimation for 
Jhelum, Mandi Bahuddin and Chakwal stations. While for 
Jhang, Sargodha, Jauharabad, and Noorpur Thal it shows 
underestimation. The possible reason for this can be the com-
plexity of the topography and the dry seasons present in these 
areas. Due to which there is a possibility of satellite to detect 
the lower or greater thresholds of precipitation.

After incorporating the bias factor, the satellite’s ability to 
reproduce precipitation patterns increased adequately. The 
parameters like R, BE, and RE showed good results after the 
implementation of bias factor. However, RMSE being very 
sensitive to bias values illustrates that the error between the 
gauge and satellite-based estimates was due to error in bigger 
rain events. The categorial authentication parameters that is, 
POD, FAR and CSI discovered that the rainfall data from 
POWER product has a far better quality than many other 
SPPs. This can be due to better agreement of rainfall governing 
factors (on which POWER product is based) with the climate 
and topography of our region. The results of hydrological mod-
eling revealed that the POWER product can become a good 
asset in developing the weather data for those areas where the 
rain gauges are either absent or inaccessible.

Future Scope
To improve bias correction models, especially in regions with 
few ground-based data or intricate topography features, the 
future scope of the research will involve investigating machine 
learning algorithms and modern-day statistical techniques. 
Moreover, the utilization of high-resolution satellite data could 
provide more accurate bias correction, thereby increasing the 
usefulness of NASA-POWER in hydrological modeling, 
renewable energy assessments, and climate research.
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