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Abstract 
The islands of the Pacific region hold three of the 35 global biodiversity hotspots with large numbers 
of endemic species. Global climate change will exacerbate the challenges faced by the biodiversity of 
this region. In this review, we identify trends in characteristics for 305 terrestrial species threatened 
by climate change and severe weather according to the International Union for Conservation of Nature 
and Natural Resources (IUCN). We then review the literature on observed and potential impacts of 
climate change on terrestrial biodiversity, focusing on the species’ characteristics that were identified. 
High-elevation ecosystems such as cloud montane forests are projected to disappear entirely by the 
year 2100, with corresponding global losses of their endemic biodiversity. Sea level rise threatens 
restricted range species on small low-lying atolls. Shifts in distribution may be possible for generalist 
species, but range shifts will be difficult for species with small distributions, specialized habitat 
requirements, slow dispersal rates, and species at high elevations. Accurate assessments of climate 
change impacts on biodiversity of the region are difficult because of confusion about nomenclature, 
the many species unknown to science, the lack of baseline data on species’ ecology and distributions, 
and lack of fine resolution elevation data for very small islands. Furthermore, synergistic interactions 
of climate change with other threats like habitat loss and invasive species have not been 
comprehensively assessed. Addressing these knowledge gaps will be difficult for Pacific island nations 
due to limited financial resources and expertise. 
 
Keywords: Biodiversity Conservation, Climate Change, Sea Level Rise, South Pacific Islands, Endemic 
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Introduction 
There is now ample evidence that climate change is occurring and is impacting global biodiversity [1]. 
An undeniable consequence of climate change is sea level rise [2]. The impacts of climate change and 
sea level rise will be felt acutely by the biodiversity on small, low-lying islands surrounded by open 
ocean [3, 4]. The Pacific region is one such area, comprising the islands of Melanesia, Polynesia and 
Micronesia [5] (Fig. 1). The islands have complex and diverse geological histories, which have led to 
the evolution of a unique biota [6]. They are scattered over a large area of approximately 40 million 
km2 of ocean with sizeable distances between islands and island groups [5]. Three of the 35 global 
biodiversity hotspots (East Melanesian Islands, New Caledonia and Polynesia-Micronesia) are found 
here, with numerous endemic species [7, 8], many of which are listed on the IUCN Red List of 
threatened species [9] (Appendix 1).  
 

 
 
Fig. 1. Map showing the islands in Melanesia, Micronesia and Polynesia. 
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Islands can be categorized into four groups (volcanic, low limestone, raised limestone, and continental 
islands) based on the elevation and the types of rocks that form the island, which in turn influence the 
ecology of the island and its biodiversity [6, 10]. The region is experiencing rapid economic growth and 
a rising human population, which place growing demands on natural resources. Agricultural 
expansion, overexploitation of natural resources, deforestation, pollution, coastal development, and 
invasive species are causing fragmentation and destruction of habitats, which in turn pose serious 
threats to the many rare and endemic species found on these islands [11-14]. The addition of climate 
change and sea level rise to these threats exacerbates the pressures and challenges that will be faced 
by the biodiversity of this region, especially in light of the rate of climate change forecast by the latest 
IPCC report [1]. However, the impacts will be variable for the different countries in the region and also 
dependent on the size of individual islands. For example, tropical cyclone activity in this region is highly 
dependent on El Niño–Southern Oscillation (ENSO) cycles. Often an increase in cyclone activity in one 
region is countered by low activity in another [15]. Furthermore, changes in sea level and tidal ranges 
are also projected to be variable for the different countries in the region [16] (Appendix 2), and the 
islands’ topographical differences will cause varying susceptibility to sea level rise [17]. Consequently, 
the impacts on biodiversity in the different countries will also vary.  
 
“Organisms on continents can gradually change their area of distribution in response to changing 
environmental conditions……….the fate of island organisms is played out within the small confines of 
the island they inhabit – there is no adjacent territory to which they can retreat if the island 
environment becomes less congenial” [18]. 
 
Islands, particularly small, low-lying reef islands, are spatially restricted environments [19]. Unlike 
species on continents, species on small islands have limited opportunities to adapt to changing 
environmental conditions by altering their distribution, given the limited area of small islands [18]. 
Nevertheless, the organisms that live on islands must be able to survive periodic variations in their 
environment. Surviving changes in environmental conditions may not be as simple for island species 
as for continental ones due to a variety of characteristics as outlined below. Research has shown that 
island biota are generally at a higher risk of extinction and that island extinctions are two to three 
orders of magnitude higher than continental rates for birds and mammals [20-23]. Extinction risk is 
strongly associated with limited geographic distribution at a variety of scales. Thus, risk is higher for 
endemic taxa than for indigenous taxa; single-island endemics than for multi-island endemics; small 
island endemics than for large island endemics; and for endemics with narrow habitat distributions 
[24]. 
 
Island species may be limited in their ability to cope with climate change due to a range of 
characteristics, including smaller geographic ranges, limited genetic variation, small colonizing 
populations, reduced species richness, and poor adaptations to avoid predation [13, 18, 23, 25-27]. 
The smaller land area of islands provides a smaller realized niche space, which generally translates 
into very small ranges for island species and especially for endemics [28, 29]. As a result, harmful 
effects from climate change can encompass an island species’ entire habitat more readily than a 
continental species’ habitat [30].  
 
There are three natural ways for species to respond to ongoing climate change. First, given enough 
time and dispersal they can shift to more favorable habitats elsewhere, thus changing their 
distribution [31-33]. Second, they can adjust to new environments through behavioural or 
physiological alterations [34]. Third, they can adapt through genetic changes via the process of 
evolution [35-37]. Failure to adjust or adapt can lead to the most extreme outcome of climate change, 
species extinction [38]. We undertook a literature review to examine the impacts of climate change 
on the terrestrial biodiversity of the Pacific region. Our review investigated terrestrial vertebrate and 
vascular plant species found by IUCN to be threatened by climate change and severe weather, in order 
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to identify any trends in species characteristics within this group. We then reviewed the literature on 
the observed and potential impacts of climate change and the possible consequences for the 
terrestrial biodiversity of the region, focusing on the species’ characteristics identified earlier. 
 
Trends in species’ characteristics threatened by climate change and severe weather 
We selected all terrestrial amphibian, bird, mammal, reptile and vascular plant species from the 
developing island nations in Oceania (excluding Australia and New Zealand) listed on the IUCN website 
as threatened by climate change and severe weather [9]. This yielded 305 species, of which 10 were 
data deficient, 97 were of least concern, 42 were near threatened, 78 were vulnerable, 44 were 
endangered, and 34 were critically endangered. We further scrutinized the information on each 
species on the IUCN website to identify any trends in specific characteristics that may have led to 
climate change and severe weather being listed as a threat for that species. The species’ 
characteristics thus identified were grouped into two categories: one that would make a species 
vulnerable to the direct impacts of climate change, and one that increases a species’ vulnerability to 
climate change indirectly, such as habitat reduction caused by sea level rise (Appendix 3). The large 
variation in numbers of species identified within each class could be due to some groups, such as birds 
and mammals, being the focus of more research than amphibians, which are a poorly known group 
with over 1,000 species worldwide categorized as data deficient by the IUCN [39]. The following 
sections provide an overview of the literature on observed and potential impacts of climate change 
on the terrestrial biodiversity of the Pacific region, with a focus on the species’ characteristics 
identified in this section. 
 
Climate change impacts on terrestrial flora 

The Pacific region has high levels of diversity for vascular and non-vascular plant species, and some 
countries have exceptional levels of endemic species [40]. For example, New Caledonia contains 
approximately 3,371 native species of vascular plants, of which 74% are considered endemic [41], 
while endemism levels are as high as 80% in Papua New Guinea [42] and 90% in Hawaii [43, 44]. 
Increasing atmospheric temperatures will have substantial impacts on endemic species that have 
highly restricted distributions in only a few localities [45]. Over 20% of all angiosperm and 
gymnosperm species in New Caledonia fit into this category [41]. Approximately 48% of the vascular 
plants identified by Wulff and co-workers [41] to be directly threatened by climate change are 
endemic to single islands or archipelagos in the Pacific region, with over 90% of the endemics being 
found in New Caledonia. 
 
Island plant species with restricted ranges are less able to migrate to suitable habitats than mainland 
plants [46], and the low dispersal ability of many island plant endemics will also hinder migration [43]. 
Altitudinal shifts in plant distributions may be possible on high islands, but not on small, low-lying 
islands [43]. Plant community types in the Pacific region will likely undergo fine-scale shifts in species 
distributions [42]. For example, an upward expansion of fire-adapted grasses along a warming 
elevation gradient has been recorded in Hawaii [47]. Similarly, increased mortality of an iconic species, 
Haleakalā silversword (Argyroxyphium sandwicense), is associated with warmer and drier trends at 
high elevations in Hawaii [48]. Such shifts in distribution will depend on the tolerance ranges for each 
species. Species with broad ecological tolerances may be able to accommodate suitable climate as it 
changes.  
 
However, species with narrow ranges may not be able to cope with the predicted rate of climate 
change, which may move them outside their climatic niche within only one or two plant generations 
[42]. Other climate change related impacts such as changes in cyclone frequency and severity could 
cause changes in relative species’ abundances, favouring disturbance-specialist species and therefore, 
new forest turnover rates [49, 50].  
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Climate change will have substantial impacts on ecosystems that only occur in regions with a specific 
combination of climatic variables, such as tropical dry forests and tropical rainforests (Fig. 2). Tropical 
dry forests, for example, occur in frost-free regions with an annual rainfall of 500 – 2,000 mm and a 
distinctive dry season lasting 4 to 7 months [51]. These ecosystems are highly threatened in the Pacific 
region [52, 53], with only <10% of their original cover remaining and almost all remaining fragments 
less than 100 ha [54], making dry forest species highly vulnerable to the impacts of climate change. 
Species vulnerability modelling by Fortini and co-workers [55] showed that dry forest species were 
much more vulnerable to climate change than species from any other habitat types in Hawaii. Tropical 
dry forests contain a number of endemic plant species with small geographical ranges in only one or 
two localities [56], such as the endemic Diospyros genus and Ancistrachne numaeensis in New 
Caledonia [57] and the rare and potentially highly endangered Cynometra falcata and Guettarda 
wayaensis in Fiji [58]. Such species, with highly restricted spatial ranges and very specific rainfall 
requirements, are extremely vulnerable to climate change [29, 46].  
 
Tropical rainforests in the Pacific region occur in areas with higher levels of rainfall (> 2,400 mm) and 
lack the distinctive dry season typical of tropical dry forests [57, 58]. These rainforests contain diverse 
flora with high levels of endemism. For example, in New Caledonia, over 82% of species found in 
rainforests are endemic and may be restricted to one or two localities, such as two rainforest palms, 
Pritchardiopsis jeanneneyi, and Lavoixia macrocarpa [57, 59]. Climate and especially rainfall regime 
play an important role in the occurrence of tropical dry forests and rainforests; climate change will 
impact the local climates within such ecosystems. Species with highly restricted ranges in these 
ecosystems may not be able to persist under the projected climatic changes for the region. On the 
other hand, some species, such as Acacia koa (Metrosideros polymorpha), which occurs across broad 
climatic gradients in tropical dry forests [60], may have enough phenotypic plasticity to allow it to 
adapt to new climatic conditions [46]. However, the occurrence of many endemic plants with narrow 
distributions on islands suggests that most in situ speciation on islands occurred within specific 
habitats and climate zones, thus making them especially vulnerable to climate change [24, 42, 43]. 
 
Any changes in species’ distributions and population sizes that may occur in response to changing 
temperature and rainfall will most likely be observed near climatically determined limits of species’ 
ranges. Increasing atmospheric temperatures will lead to the disappearance of cold climatic zones on 
higher mountains and isolated mountain ranges.  These support montane ecosystems such as cloud 
forests, where high levels of local endemism can be found in the Pacific region [61, 62]. Habitat for 
species unable to survive and reproduce in warmer climates will shift upslope and shrink in area [63] 
(Fig. 2). Changes in cloud cover, humidity and rainfall associated with climate change might disrupt 
the highly specific conditions necessary to sustain cloud forests [44, 64-66]. Indeed, a substantial 
reduction in the size of glaciers in New Guinea has already been observed, and a recent estimated 
warming of 1°C suggests that freezing heights may have already shifted upslope with warmer 
temperatures and reduced rainfall [67]. Cloud forests that are already restricted to the very highest 
elevations on some islands in Micronesia and French Polynesia may disappear even with small changes 
in climatic regime. This could increase rates of species extinction and biodiversity loss, particularly as 
colonization of new habitats such as those with novel climatic regimes occurs relatively infrequently 
in the biota of remote Pacific islands [43]. Changes in ocean and mean air temperature in the range of 
2°C to 2.5°C could lead to an upward shift of 360 m–450 m in native species’ temperature tolerance 
zones in Hawaiian montane cloud forests, and similar shifts are projected for many other tropical 
islands [44]. Changes in vegetation response since 1960 have been observed in Papua New Guinea, 
with shrubby regrowth above the current tree line and the development of grasslands on former 
moraine [67]. Observations in the 20th century and model projections indicate that warming will occur 
faster at high elevations than at low elevations [68-70]. Many current tropical montane climates, 
which exhibit high levels of endemicity, are projected to disappear entirely by the year 2100, with 
disproportionate impacts on global biodiversity [71, 72]. 
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Fig. 2. Summary of climate change impacts on terrestrial flora. (1) Montane Forests: warming temperatures 
cause cold climatic zones to disappear leading to an upslope shift and shrinking of habitat for montane 
species, putting large numbers of endemic species at increased risk of extinction. (2) and (3) Tropical 
Rainforests and Dry Forests: changes in rainfall regimes cause shrinking of habitat for tropical dry and moist 
forest species. Species that are found in only one or two localities are at increased risk of extinction. 

 
 
Climate change impacts on terrestrial vertebrate fauna 
Ectotherms 
Terrestrial ectotherms are likely to be highly vulnerable to the impacts of climate change, because 
environmental temperature has a strong influence on key physiological functions such as movement, 
growth, and reproduction [73]. Ectotherms in tropical regions show limited adaptability to increases 
beyond their threshold for upper thermal limits [74]. In general, reptiles have narrower distributional 
ranges than other vertebrates such as birds [75]. Lizards, in particular, are unable to evolve fast 
enough to adapt to current climate change because they are genetically programmed to specific 
thermal preferences [36]. The combination of small range and narrow niche requirements makes 
reptiles highly vulnerable to the impacts of climate change. 
 
The Pacific region reportedly has 672 species of amphibians and reptiles, although this record may be 
incomplete [76]. A more recent estimate for the Papuan Region alone (PNG and Solomon Islands) is 
793 currently known species [77]. Species with narrow ecological tolerances, small geographic ranges, 
narrow altitudinal bands, and species endemic to small islands are the most vulnerable to the impacts 
of climate change [77]. The mountainous areas in Papua New Guinea support large numbers of frog 
and lizard species with such attributes [78, 79]. An analysis of the herpetofauna of the Papuan Region 
indicated that approximately 35 species of frogs, several species of lizards and several species of 
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snakes have small populations on islands or mountain summits, making them vulnerable to extinction 
due to climate-change-related habitat loss [77] (Fig. 3a).  
 
New species and range extensions of known species are still being discovered for the herpetofauna of 
the Pacific region [80-83]. A newly discovered species of cross frog, Oreophryne ezra, has only been 
recorded from a single small patch of cloud forest, less than 1km2 in total extent, at elevations ranging 
from 630 m–800 m in PNG [80]. Species with such small habitats in cloud forests are highly vulnerable 
to loss of habitat through climatic warming and changes in rainfall or cloud cover [80].  
 
Species that occur exclusively on low-lying atolls face particular challenges, such as the native lizards 
of the genus Emoia (Family Scincidae) that are widespread on reef islands in Federated States of 
Micronesia, Marshall Islands, Tokelau and Tonga. The Micronesia forest skink Emoia boettgeri  is 
endemic to Marshall Islands and has the most limited range of the 11 species of lizards (six geckos, 
five skinks) found on reef islands of Micronesia [84, 85]. Climate change impacts such as sea level rise, 
increased storm frequency and intensity, and saltwater intrusion destroy the lizard’s critical forest 
habitat [9]. The restricted area of the coral atolls provides limited opportunities for this species to 
accommodate any changes in climate (Fig. 3b). The main option available to species on coral atolls is 
to shift to neighbouring atolls which might have some favourable habitat, but such range shifts are 
difficult given the vast expense of ocean between islands. Additionally, species from the Emoia genus 
have an extremely limited capacity for active overwater dispersal, relying mainly on chance events 
such as rafting on floating debris.  
 
Endotherms 
Terrestrial endotherms such as birds have high body temperatures and metabolic rates and little 
capacity for fat storage, and they generally exist on thermal physiological margins; thus any changes 
in temperature may push them over their physiological limits [88]. The physiological boundaries in 
tropical birds are much narrower than in temperate species, limiting their ability to cope with changing 
climate [88]. The islands in the Pacific region are home to many restricted range species (<50,000 km2) 
from a variety of families such as Drepanididae (Hawaiin honeycreepers), Zosteropidae (White-eyes) 
and Paradisaeidae (birds of paradise from PNG) [89] (Fig. 3b). The majority of the species in these 
families are small-island colonizers that have evolved in isolation and have altitudinal or spatial habitat 
restrictions, their preferred habitat type generally being forests. Mountaintop-restricted bird species 
with narrow elevational ranges are particularly susceptible to the impacts of climate change since they 
have a much smaller area of occupancy [90-92]. On the other hand, species with a broad elevational 
breadth have populations in more habitats, providing greater plasticity in their habitat requirements 
[88] and making them less vulnerable to the impacts of climate change [93]. An analysis of the 
distributions of terrestrial and freshwater species in Melanesia indicated that over 50 percent were 
strongly to moderately vulnerable to climate change impacts based on their elevational spans [88]. 
Increasing temperatures may reduce many montane species' ranges, causing them to shift to higher 
elevations or to become locally or globally extinct, particularly in the case of endemic species 
restricted to tropical montane highlands [94-97]. 
 
Changes in climate will also affect the seasonal availability of food, affecting the many species of 
frugivorous and nectarivorous birds in the Pacific. Such species forage vast areas and use different 
islands when food is available, and any alterations to these cycles could affect the whole population 
[88]. Furthermore, many small islands such as atolls provide nesting sites for breeding migratory 
species. For example, species like the Bristle-thighed Curlews (Numenius tahitiensis) that winter on 
small Pacific islands could be severely impacted if rising sea levels and storm surges destroy habitat 
on the small islands and atolls that are important breeding destinations or stopovers for migratory 
species [88]. However, some atoll dwellers, such as the Eastern Polynesian reed-warblers (genus 
Acrocephalus) may be likely to survive rises in sea levels as they have done in the past [98, 99]. 
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Populations of Acrocephalus sp. currently occur on carbonate islands that have elevations exceeding 
3m, which provided refugia for the birds during the Quaternary sea-level variations [99].  
 

 
 
Fig. 3a. Summary of climate change impacts on terrestrial fauna. (1) Extreme temperatures cause 
mortality in some species such as Pteropus spp. (Flying foxes) [9]. (2) Species on mountain summits with 
highly localized distribution are at increased risk of extinction [86]. 
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Fig. 3b. Summary of climate change impacts on terrestrial fauna. (1) Restricted range species such as the 
many bird species of the Pacific region are at increased risk of extinction from habitat loss associated with 
climate change [87]. (2) Atoll species are at increased extinction risk due to habitat loss from sea level rise 
(occurrence of two threatened species on Ant Atoll in the Federated States of Micronesia) [9, 86]. 

 
 

The native mammal fauna of the Pacific region is composed mainly of bats, marsupials, and rodents 
from the Australopapuan region [100, 101]. These are mainly found on islands with large land areas 
and high elevations, such as the Bismarck and Solomon archipelagos, which host many species of 
endemic mammals [102]. No native mammals including bats can be found on archipelagos composed 
of low-lying, sandy islands such as Marshall Islands, Tuvalu, and Tokelau [102]. These islands have low 
plant diversity not conducive to the persistence of large mammal populations [56].  
 
Mammals are directly affected by changes in climate, particularly extreme temperatures [103] and 
indirectly through extreme weather events such as tropical storms [104]. Extreme temperatures cause 
large numbers of deaths from hyperthermia in flying foxes (Pteropus species) [105] (Fig. 3a). 
Populations of Pacific flying fox, Pteropus tonganus, and Samoa flying fox, P. samoensis, also suffered 
high mortality following a 1990 typhoon in Samoa and American Samoa due to changes in their feeding 
behaviour that made them more vulnerable to predation by domestic dogs, cats and pigs [106]. In 
some cases indirect impacts such as increased hunting by humans after a storm led to higher mortality 
rates for Pteropus species on Mariana Islands, Samoa, and Vanuatu [107]. Susceptibility to extremely 
high temperatures has also been reported in the long- and short-beaked echidnas, particularly if they 
do not have access to cooler shelters, shrinking their distribution in areas with substantial temperature 
increases [108]. Species of echidnas restricted to montane environments [109] will face the prospect 
of habitat loss as increasing temperatures destroy montane ecosystems [71, 72]. Sea level rise will 
impact a large number of range-restricted endemic vertebrates, and 37 to 118 endemic species face 
the threat of extinction from a projected sea level rise of one to three meters, respectively, in the 
Pacific and Southeast Asia alone [110].  
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Interacting Factors 
Terrestrial biodiversity in the Pacific region has been significantly affected by increasing human 
populations and the associated increase in agriculture. Clearing of forested areas and commercial 
logging have caused substantial losses in forest habitats [111]. Habitat destruction and invasive 
species are the two main causes of species’ extinctions in this region [112]. Invasive vertebrate and 
vascular plant species have caused large numbers of extinctions on islands [21, 113-115]. Pollution 
and overexploitation are also having severe impacts on terrestrial biodiversity in the region [111]. 
 
Climate change may interact synergistically with these other threats, exacerbating the impacts of 
climate change and ultimately causing multiple extinctions [46, 90, 116, 117]. Little is known about 
many of these interactions and how they will impact the biota of the Pacific region [43], but research 
on honeycreepers (Drepanidae) on the islands of Kauai and Hawaii shows that the combined impacts 
of invasive species, historical land-use change, and anthropogenic climate change may cause the 
extinction of many remaining species [118]. Changes in land-use associated with agricultural practices 
have caused habitat fragmentation, which together with climate change could intensify adverse 
impacts on restricted range and dispersal-limited species [46]. The ability of species to persist in the 
long term is highly dependent on their geographical range and dispersal ability [20, 24, 119], and traits 
such as restricted range and ecological specialisation can act synergistically with climate change to 
increase extinction risk [117]. Such traits are common in the terrestrial species discussed in this review. 
Furthermore, species that are found in small populations in only a few localities are vulnerable to 
natural disasters such as cyclones, which are common in the Pacific region. Further research is needed 
on how climate change will interact with other threats outlined in this section. The vegetation covering 
Earth’s continents has a profound impact on its climate, and anthropogenic land cover change from 
agriculture, forestry and urbanization will thus have a substantial impact, not only on Earth’s climate 
but also on the carbon cycle [120]. This is a complex issue that will not be discussed in this review but 
has received detailed treatment elsewhere (see [120] and references therein). 
 

Conclusions 
The small island nations of the Pacific region contribute a small proportion of global greenhouse gas 
emissions but will experience disproportionate consequences from global climate change. This region 
contains three of the world’s global biodiversity hotspots, with many endemic species that are 
vulnerable to and already experiencing many effects of anthropogenic climate change, such as sea 
level rise, changes in rainfall and temperature, and more extreme weather events. The impacts of 
activities such as habitat destruction through mining and logging, agricultural expansion, 
overexploitation of natural resources, pollution, and coastal development are exacerbated by the 
impacts of climate change.  
 
An accurate assessment of the impacts of climate change is hampered by limited ecological data on 
species, especially species with highly restricted ranges and those that are found in only one or two 
localities. Published literature on the physiology of island species in relation to predicted climatic 
changes is rare. New species are still being discovered in the region, some previously distinct species 
are being merged, range expansions are being discovered in species thought to be endemic to one 
region, and new extinctions are still being recorded. These factors will all lead to changes in endemism 
and biodiversity estimates for the islands of the region [42, 77, 88]. 
  
There has been a lack of intensive survey work in the region to identify and map the distribution of 
species [78, 121]. Thus, many countries have neither complete national lists of threatened species nor 
complete, current IUCN Red Lists, and many species of the region are listed as data deficient by the 
IUCN [122]. Collection of baseline data on species’ ecology, distributions, and endemic status is a 
priority, necessary both to assess the impacts of climate change on the species of the region and to 
devise effective conservation strategies. Projects such as the Pacific-Asia Biodiversity Transect 
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(PABITRA) network may provide baseline data and fill some of the existing knowledge gaps so that 
more accurate climate change assessments can be undertaken [62, 123, 124]. Other regional 
coordination efforts also focus on gathering baseline scientific data on threatened species, raising 
awareness about the value of biodiversity among local communities, and assisting countries in the 
design and implementation of a National Biodiversity Strategic Action Plan (NBSAP) [16, 125, 126, 127, 
128, 129]. Some of these have been highly successful, resulting in baseline inventories of the flora and 
fauna of relatively untouched regions [126] and highly detailed scientific information on current and 
future climate projections for individual countries [16]. However, other efforts, such as the 
development of NBSAPs, have had limited success in some countries due to lack of funds and available 
personnel and skills [130]. 
 
The loss of habitat on island biodiversity hotspots caused by sea level rise has been investigated [3, 
110], although very small reef islands could not be assessed due to lack of elevation data. There is an 
urgent need for fine resolution elevation data for the very small reef islands in this region in order to 
measure area loss due to sea level rise, but acquisition of such data is too costly for some Pacific Island 
countries. Because space-restricted reef islands preclude range shifts in species whose physiological 
tolerances have been exceeded, there is significant danger of loss of endemic biodiversity and the 
consequent loss of evolutionary potential. It is therefore vital to identify climate refugia that could be 
used for translocations. However, such refugia will have to be selected with care to provide a safe 
environment for the persistence of endemic species, particularly poorly dispersed ones [131, 132]. 
 
The unique biogeographical processes on islands that have given rise to such high levels of endemism 
have also endowed species with characteristics that make them highly susceptible to climate change. 
The accelerated rate of climate change, limiting the capacity for rapid adaptation, and the limited 
amount of suitable habitat on small islands suggest that the consequences could be severe for the 
biodiversity of the region. 
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Appendices 
Appendix 1 Threatened species in each country in the Pacific Region [9]. 

Oceania Mammals Birds Reptiles* Amphibians Fishes* Molluscs* Other Invertebrates* Plants* Total* 

American Samoa 1 8 6 0 10 5 59 1 90 

Cook Islands 1 15 3 0 11 0 32 11 73 

Fiji 6 14 14 1 13 68 97 65 278 

French Polynesia 0 31 2 0 30 34 31 47 175 

Guam 2 14 5 0 10 6 54 4 95 

Kiribati 1 5 2 0 11 1 80 0 100 

Marshall Islands 2 3 4 0 13 1 72 0 95 

FSM 7 10 7 0 19 4 111 5 163 

Nauru 1 2 0 0 9 0 68 0 80 

New Caledonia 9 16 54 0 30 28 97 259 493 

Niue 1 8 3 0 8 0 30 0 50 

Northern Marianas 4 16 4 0 13 4 53 5 99 

Palau 4 5 3 0 15 40 106 4 177 

PNG 39 38 9 11 48 2 179 145 471 

Pitcairn 1 10 0 0 9 5 11 7 43 

Samoa 2 6 5 0 13 1 61 2 90 

Solomon Islands 20 25 5 2 18 2 149 17 238 

Tokelau 0 1 2 0 8 0 35 0 46 

Tonga 2 5 4 0 12 4 43 4 74 

Tuvalu 1 1 3 0 10 1 77 0 93 

Vanuatu 7 9 4 0 15 4 88 10 137 

Wallis and Futuna 0 9 2 0 11 1 64 1 88 

*Groups that have not been completely assessed. 
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Appendix 2 Observed and projected changes in the climate of the Pacific region [16]. 

Variable Observed Change Projected Change 

Atmospheric 
Temperature 

Increase of 0.18 °C since 1961 Increase of 0.5 – 1.0 °C and 2.0 – 4.0 °C for 2030 and 2090, respectively, under very high 
emissions scenario 

Rainfall SW and NW Pacific – wetter; Central 
Pacific – drier over past 30 years 

Increase in average annual rainfall; fewer droughts; extreme rainfall events will be 
more common 

Sea Level Variable across the region Increase of 26 – 55 cm by 2081 – 2100 relative to 1986 – 2005 (RCP2.6) 
Increase of 45 – 82 cm (RCP8.5) 

Cyclones Decrease in total number of cyclones Less frequent but more severe cyclones 
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Appendix 3 Trends in characteristics of species with climate change and severe weather listed as a threat by IUCN [9]. 

Species Characteristic* No. of Species 

Amphibians (3) Birds (196) Mammals (16) Reptiles (13) Vascular Plants 
(77) 

Restricted Range (altitudinal e.g., habitat in cloud montane forest; area, 
e.g., habitat on low lying atolls) (ID) 

3 119 10 11 75 

Physiological processes susceptible to increasing temperatures (D) 3 119 12 11 13 

Vulnerable to fires (D and ID) 2 - 1 - 55 

Vulnerable to extreme weather events (cyclones, storms, typhoons, 
droughts) (D and ID) 

- 6 12 11 6 

Migratory processes impacted by increasing temperature (D and ID) - 30 - - - 

Reproductive processes impacted by increasing temperature and 
alterations to rainfall regimes (D) 

3 2 - 2 - 

Highly specific rainfall requirement (D and ID) - - - - 7 

Dispersal limited (D) 3 - 1 11 2 

Foraging behaviour associated with temperature and rainfall (D) 3 2 - 2 - 

Increased susceptibility to diseases due to changes in temperature and 
rainfall (ID) 

- 9 - - 1 

Dependent on highly specialised relationships e.g., pollinators (ID) - - - - 2 

*Characteristics are not exclusive. Numbers in parentheses represent total number of species within each class. 
D = characteristic that increases a species’ vulnerability to the direct impacts of climate change; ID = characteristic that increases a species’ vulnerability to 
climate change indirectly. 
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