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Introduction
Carbon disulfide (CS2) is a chemical intermediate best known 
for its historical use in the production of rayon, cellophane, 
and carbon tetrachloride.1–3 Industrial emissions of CS2 to the 
atmosphere have declined as textile manufacturing has shifted 
from the US to Asia, and the use of CS2 in carbon tetrachlo-
ride production has been phased out.4 With energy extraction 
expanding across the US, emission of CS2 may be on the rise 
and its contribution in formation of greenhouse gas (GHGs) 
is underreported.

CS2 is a component of sour natural gas and occurs natu-
rally in the environment from the degradation of organic mate-
rial, including geologic deposits of oil and natural gas; it is a 
waste gas emitted from the processing of sour natural gas.5,6 
In natural gas extraction, CS2 is used as a paraffin solvent for 
sulfur, phosphorous, selenium, bromine, resins, and rubber.7  

It is also a component of mercaptan, an odorant added to nat-
ural gas.8 Mercaptans may also be removed from a gas stream 
by oxidation to disulfides, which are then easily separated 
from the gas stream by absorption.9 It can be produced from 
the interaction of natural gas with hydrogen sulfide at high 
temperatures. CS2 is also known to be released in fossil fuel 
combustion, including natural gas combustion. During the 
extraction of natural gas, venting and flow-back operations 
release large amounts of gases, including CS2, directly to the 
atmosphere.10,11

Recent ambient air monitoring studies have identified CS2 
and other associated sulfide compounds present in emissions 
emanating from natural gas exploration and production 
(E&P).12–15 As CS2 is present in many geologic formations 
and aspects of energy extraction, residential communities 
experiencing the trend of “urban drilling” – ie, extraction and 
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processing of natural gas in populated urban communities – 
may be exposed to higher concentrations of CS2 in ambient 
air when compared to other residential areas not experiencing 
extraction and processing.16

CS2 is categorized as a non-methane volatile organic 
compound (NMVOC) and classified, along with carbonyl 
sulfide, as a hazardous air pollutant (HAP) according to the 
Clean Air Act Amendment of 1990 (CAAA). NMVOCs are 
a category of chemicals commonly used as solvents in indus-
trial processes with the ability to vaporize at room temper-
ature.17 NMVOCs may be classified as a direct or indirect 
GHG, and can be involved in indirect radiative reactions 
that form CO2.14 NMVOCs indirectly contribute to global 
climate change by producing GHGs, such as CO2, through 
reactions with other compounds, through their own chemical 
transformation influencing atmospheric lifetime of other 
GHGs, and by affecting the absorptive characteristics of 
the atmosphere such as cloud formation.18,19 In an indirect 
radiative reaction, a chemical breaks down in the atmosphere 
producing a GHG, or interacts with other chemicals in the 
atmosphere changing atmospheric concentrations of GHGs. 
The size of the indirect effect is dependent upon when and 
where the gas is emitted.20,21 CO2 is a GHG that is trans-
parent to incoming solar radiation but with the capacity to 
easily absorb and trap infrared radiation. This allows heat to 
be retained at the Earth’s surface, contributing to ground-
level ozone and global climate change.22 Ground-level ozone 
can damage crops and human health, and can lead to reduced 
crop production.23,24

This study is the first to identify five direct and/or indirect 
mechanisms by which CS2 contributes CO2 to the atmosphere 
and exhibits its capacity as a GHG and contributor to global 
climate change. This study is also one of the first to identify 
the presence of CS2 and other sulfide compounds in emissions 
from unconventional shale gas E&P operations.

Materials and Methods
A literature review was performed examining previous work 
related to occupational exposure to CS2 and any mechanism 
by which CS2 contributes to CO2 atmospheric concentra-
tions and to CS2 use or presence in emissions from natural gas 
extraction or processing operations.

Key words searched included CS2, CS2 and CO2, CS2 
occupational exposure, natural gas E&P emissions, and CS2 
mechanism of CO2 formation. Databases searched included 
MEDLINE, TOXLINE, Scopus, Science Direct, TOX-
NET, and PubMed. Although many articles were found 
identifying CS2 exposure in occupational settings, they were 
mostly published prior to 1980. Recent publications on ambi-
ent air monitoring in regions experiencing energy extraction 
analyzed air samples collected for CS2, but failed to identify 
the potential CS2 has as a GHG and contributor to global cli-
mate change. No article to date was found identifying all five 
potential mechanisms by which CS2 might form CO2 in the 

atmosphere or the potential for COS and SO2 to be contribu-
tors to CO2 formation.

Results
The five potential mechanisms by which CS2 may form CO2 
either directly or indirectly and contribute to GHG atmo-
spheric concentrations are described in this paper (Fig. 1).

Mechanism 1 – Chemical interaction. The interaction 
of CS2 and natural gas with hydrogen sulfide (H2S) at high 
temperatures can form CO2.25

CS2 + H2S → CO2

In the document Report to Congress on Hydrogen Sulfide 
Air Emissions Associated with the Extraction of Oil and Gas, gas 
processing operations were identified as potential sources of 
H2S releases. Impurities present in natural gas (produced 
water, H2S, and CO2) are removed prior to the gas being 
compressed and shipped in pipelines. This removal process is 
often performed at pad sites located in residential areas where 
extraction occurs and may be a source of H2S.26

Mechanism 2 – Combustion. Combustion of CS2 in the 
presence of oxygen produces CO2 and SO2.

CS2 + 3O2 → 2SO2 + CO2

CS2 is highly flammable and can ignite easily. When 
exposed to spark or friction, it is known to easily combust. 
Contact with steam pipes or even light bulbs have been known 
to initiate the combustion of CS2.27–31

Mechanism 3 – Photolysis. Photolysis of CS2 leads to 
the formation of carbonyl sulfide (COS), CO, and SO2.

CS2 + (light) → COS + CO + SO2

CS2 may have an indirect effect on global climate change 
through the main transformation product COS. CO is only a 
weak direct GHG but has important indirect effects on global 
climate change. CO reacts with hydroxyl (OH) radicals in the 
atmosphere, reducing their abundance. As OH radicals help 
the atmospheric lifetimes of strong GHGs such as methane, 
CO may indirectly increase the global climate change poten-
tial of these gases from OH radical scourging.32–34

The half-life of CS2 in the atmosphere from photolysis 
is estimated to be 1 week, whereas that of COS is estimated 
at 2  years, which provides the opportunity for long-range 
chemical transport and atmospheric conversions.35,36

Chin reported an additional indirect source of CS2 pres-
ent in sulfur recovery operations in the oil industry, which is 
oxidized COS in the atmosphere.6

Mechanism 4 – One-step hydrolysis. Shangguan iden-
tified two mechanisms of hydrolysis of CS2. In the one-step 
hydrolysis mechanism, CS2 directly reacts with the hydrogen 
atoms in two molecules of water, producing CO2 and H2S.37–39
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CS2 + 2H2O → CO2 + H2S

Mechanism 5 – Two-step hydrolysis. In a two-step 
hydrolysis mechanism, CS2 reacts with a hydrogen atom in a 
water molecule, leading to reactive intermediate COS. COS 
then reacts with an additional water molecule to form CO2 
and H2S.

CS2 + H2O → COS + H2S

COS + H2O → CO2 + H2S

Research has shown that hydrolysis of CS2 can occur at 
room temperature at a slow rate.40

A previous study by the authors identified CS2 and 12 
other sulfide compounds present in ambient air in residential 
communities in the Barnett Shale geologic formation where 
natural gas E&P operations were being carried out.41 CS2 
concentrations and the detection frequency were found to 
vary with distance from the natural gas emission source. Val-
ues ranged from 0.3 to 200 parts per billion by volume (ppbv) 
based on a 24-hour air monitoring period, and from 1.5 to 
980 ppbv based on a 1-hour monitoring period. The results 
presented in Table 1.

The U.S. Environmental Protection Agency’s Urban 
Air Toxcs Monitoring Program (NMP) comprising 52  sites 
around the US reported only CS2 as a monitored sulfide com-
pound comparable to the values in this study. CS2 atmospheric 
concentrations based on a 24-hour air monitoring period 
showed a minimum level for CS2 of 0.005 ppbv and a maxi-
mum of 0.193 ppbv. Sampling period was for up to 12 con-
secutive months.42 CS2 is denser than air (2.62 vapor density 
when compared to air = 1) and can settle close to the ground 
in ground-level breathing zones.43

Discussion
The potential contribution of CS2 to atmospheric CO2 and 
GHG levels warrant further examination due to its unique 
qualities as a NMVOC and HAP. COS, CO, SO2, break-
down products of CS2, and indirect greenhouse gases addi-
tionally contribute to CO2 formation in the atmosphere. The 
transparency of CO2 to incoming solar radiation allows it to 
trap and absorb infrared radiation at the Earth’s surface. This, 
in turn, gives rise to ground-level ozone formation, which is a 
major factor in climate change.

Many urban cities experiencing natural gas E&P are 
designated as nonattainment areas with air quality below 
National Ambient Air Quality Standards (NAAQS). Iden-
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Figure 1. Five mechanisms of CO2 formation from CS2.
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tification of airborne chemicals contributing to CO2 levels 
as well as the sources of those emissions is critical in order 
to manage air quality and achieve NAAQS compliance. The 
quantification of emissions from chemical manufacturing 
facilities producing CS2 in the US may be easy due to the 
major source reporting requirements. Quantification of CS2 
emissions from natural gas E&P operations is more difficult 
due to the lack of required emission reporting and the vast 
number of well sites. Additionally, each pad site may have 
multiple sources of CS2 emission. As CS2 escapes into the 
atmosphere, to quantify secondary atmospheric conversion 
becomes a challenge. While CS2 is a direct contributor to 
atmospheric CO2 levels, it is also an indirect contributor and 
is responsible for intermediates that may also produce CO2 in 
the atmosphere.

Currently, there is a profound lack of information and 
quantification of CS2 emissions from natural gas E&P 
operations. At facilities where combustion takes place, CS2 
may be counted overall in VOC emissions. Quantification 
of CS2 or speciation of sulfide compounds is not currently 
required. Additionally, these data are self-reported and may 
be more qualitative rather than quantitative. Although CS2 
and COS are HAPs, capable of adversely impacting health, 
this chemical has been considered to be primarily an occu-
pational exposure agent. Current peer-reviewed nonoccupa-
tional health studies are lacking and outside the scope of this 
paper.

This study provides additional knowledge to the atmo-
spheric puzzle, but more questions remain. Future studies are 
needed to examine and quantify the direct and indirect contri-
bution of CS2 and intermediates of CS2 to atmospheric CO2 
formation and GHG levels. Quantification of direct source CS2 
emissions from natural gas E&P operations is also required to 

better understand how CS2 originating from energy extraction 
may contribute to local and regional CO2, GHG, and HAP 
levels. With additional knowledge, we can prepare proper mit-
igation strategies for this previously unidentified and underre-
ported chemical that contributes to CO2 concentrations in the 
atmospheric and contributes to global climate change.
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