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(Ericrocidini) and its Host Centris flavofasciata 

(Centridini) (Apidae: Apinae)

JEROME G. ROZEN, JR.,1 S. BRADLEIGH VINSON,2 ROLLIN COVILLE,3

AND GORDON FRANKIE4

Appendix: A New Species of Mesoplia (Hymenoptera: Apidae) from Mesoamerica,

by Gabriel A.R. Melo and Léo C. Rocha-Filho

ABSTRACT

This paper investigates the bionomics of the cleptoparasitic bee Mesoplia sapphirina Melo 

and Rocha-Filho, sp. nov. (described in the appendix), and of its ground-nesting host Centris 

flavofasciata Friese found along the Pacific coast of Guanacaste Province, Costa Rica. We 

explore the host-nest searching behavior, egg deposition, and hospicidal behavior of M. sap-

phirina. Anatomical accounts of its egg, first, second, and fifth larval instars are presented and 

compared with published descriptions of other ericrocidine taxa. Nests of the host bee as well 

as its egg and method of eclosion are also described.

INTRODUCTION

Here we explore the mode of parasitism and other aspects of the biology of the cleptopara-

sitic bee Mesoplia (Mesoplia) sapphirina Melo and Rocha-Filho, sp. nov. (fig. 1) (description 

appended), a representative of the totally cleptoparasitic New World tribe Ericrocidini, species 
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2 AMERICAN MUSEUM NOVITATES NO. 3723

of which attack nests of Centridini (Apidae: Apinae) (Rocha-Filho et al., 2009). Because egg 

and larval anatomy (especially of the first instar) are functionally associated with cleptoparasit-

ism, they are described in the final section of this paper, as is the second larval instar. The host 

of M. sapphirina at the study site was Centris (Centris) flavofasciata Friese (fig.. 2), although 

other large-bodied Centris may nest close by and host the same cleptoparasite. In the first sec-

tion of this paper we present an overview of its nesting biology including new information 

stemming from the current investigation. 

Gabriel A.R. Melo and Léo Rocha-Filho are currently revising the genus Mesoplia. After 

examining specimens from the study site, Melo recognized them as belonging to an unde-

scribed species and kindly prepared the appended description validating the name.

Vinson et al. (1987) initially detailed the biology of C. flavofasciata and its parasite 

Mesoplia sapphirina. They recognized the peculiar habit of first-instar Mesoplia sp. (here 

assumed to be M. sapphirina) of carrying the vacated chorion on its abdominal apex (ibid.: 

fig. 7E). They reported that M. “regalis” i.e., sapphirina), M. (Eumelissa) decorata (Smith), 

and M. (Mesoplia) rufipes (Perty) were collected, and four specimens of M. “regalis” were 

reared and identified from the nests of Centris flavofasciata. Their study site was in the same 

general area as the current one. However, host and parasite then nested on the land edge of 

the open sandy beach under and among patches of the creeping vine Ipomoea pes-caprae

(L.) R. Br. (Convolvulaceae), a pantropical beach morning glory that occurred just seaward 

of the row of wind-shaped bushes followed inland by the forest consisting of Gliricidia 

sepium (Jacq.) Kunth ex Walp. that was our site. Their site covered a much larger area than 

our current one.

Our study site was at Playa Grande, Guanacaste Province, Costa Rica, N10°19.63′ W85°50.59′,
elevation 20 m, on the Pacific coast of Costa Rica. It was recognized in February 2009, but not 

studied until the following year, from February 13–28, 2010. Because of the paucity of data at the 

end of this trip, J.G.R. and S.B.V. returned the following year, February 8–21, 2011. 

FIGURES 1, 2. Macrophotographs of Mesoplia sapphirina and its host, Centris flavofasciata, taken live by R.C. 
at nesting site at Playa Grande, respectively. 
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2011 ROZEN ET AL.: MESOPLIA SAPPHIRINA 3

FIGURES 3–8. Nests of Centris flavofasciata. 3. View of nesting area looking westward. 3. Open nest; note 
track of tumulus. 5. Partly excavated nest with pen pointed to cell and with pointer head on horizontal ground 
surface 6. Two cells showing closure ends. 7. Recently closed nest entrance. 8. Nest entrance (in area upon 
which the front of the pen rests in the picture) closed a day earlier.
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Playa Grande is a 3 km long, curved sandy beach that is bordered inland first by a narrow 

vegetated strip consisting of mostly grasses behind which is an open forested area with pedes-

trian footpaths. The study site (fig. 3) is in a segment of that forest. According to S.B.V., who 

has carried out bee investigations in Costa Rica for more than a quarter century, the study site 

had been cleared of low vegetation and hosted a youth camp previously. No longer used for 

that purpose, the site now consists mostly of moderate-sized trees with a partly open canopy, 

allowing considerable sunlight to reach the horizontal ground surface. Except for widely spaced 

trees, there is only spotty, low herbaceous vegetation (mostly dried by the time of the study 

periods); the ground is open and peppered with crab burrows. Although the prevailing breeze 

accumulates extensive, ground-obscuring masses of dried leaves in various places, most nesting 

activity of female Centris flavofasciata and Mesoplia sapphirina takes place where there is open 

sand spotted with small clumps of leaves and scattered loose dead twigs and branches. In these 

areas host bees establish nests and cleptoparasite females search for them. At the time of the 

study few other bee species were evident in the forest.

During the two-week field investigation in 2010 we noticed a daily decline of adult bee 

activity in terms of bees in flight and pace of nest establishment. Because of drought conditions 

in the province since 2007, this decline was probably influenced by a reduction of floral 

resources in combination with the end of the flight/breeding season. A similar decline was not 

evident the following season, possibly because of an increase in rainfall and associated tem-

perature changes in the area starting in April 2010 that resulted in a longer or delayed flowering 

season (Frankie et al., 2005).

Previous studies on the biology and immatures of Ericrocidini are as follows. Rozen (1969) 

described the mature larva of Acanthopus palmatus (Olivier) (as A. splendidus urichi Cockerell) 

from Trinidad, recovered from brood cells of Centris (Ptilotopus) derasa Lepeletier, which nests 

in arboreal nest of Microcerotermes arboreus Emerson (Isoptera). In the same paper he com-

pared the cast exoskeletons of the last larval instar of Mesoplia rufipes taken from the cells of 

both C. (Trachina) carrikeri Cockerell and Epicharis (Epicharoides) albofasciata Smith (Centri-

dini) also from Trinidad. Vinson et al., (1987) published their account of Mesoplia sp. and 

illustrated the first instar with the chorion attached to its posterior end. Rozen and Buchmann 

(1990) described the mature larva and male and female pupa of Ericrocis lata (Cresson) from 

nests of C. (Paracentris) caesalpiniae Cockerell from Arizona, and Rozen (1991) gave an account 

of first instars of three species: Aglaomelissa duckei (Friese), Mesoplia rufipes, and Ericrocis lata

(or E. pintada Snelling and Zavortink), the latter based on a cast skin. The first instar of A.

duckei was from an egg found attached to the inner surface of a cell closure of C. carrikeri in 

Trinidad,5 suggesting that it had been introduced through a hole in the closure. A first-instar 

skin of M. rufipes from a nest of Epicharis albofasciata in Trinidad was still attached to its 

chorion, and two parasitized cells of the host had small openings in the closures through which 

the eggs had been introduced. 

Alexander and Rozen (1987) and Rozen (2003) presented descriptions of eggs/mature 

5 Rocha-Filho et al. (2009) questioned this host association.
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2011 ROZEN ET AL.: MESOPLIA SAPPHIRINA 5

oocytes of Ericrocidini for the following: Epiclopus gayi Spinola, Ericrocis lata, Mesoplia prob-

ably rufipes, and M. rufipes. Pupal descriptions of only M. rufipes and an unknown species of 

M. (Eumelissa) were recorded (Rozen, 2000). Confirmed and suspected host associations of 

Ericrocidini, all with Centridini, were summarized and listed by Rocha-Filho et al. (2009).

Vinson and Frankie (1977) and Vinson et al. (2010) have described the nests of other spe-

cies of Centris found in Guanacaste Province, Costa Rica.

METHODS

The most difficult part of this investigation was finding nests of Centris flavofasciata, which 

were widely scattered throughout the area. Initially this was accomplished by observing adults 

searching for nesting sites or while they were excavating, provisioning, or closing nests. Our 

recognition of a nest entrance, i.e., an open burrow obliquely entering the ground and a tumu-

lus spread in the opposite direction, was a worthy landmark that we could flag on one day and 

excavate a day or two later, by which time the ground surface was altered due to nest closure, 

described below. 

Our nest excavations were performed with trowels and penknives and with aspirators used 

to blow away loose sand that obscured descending tunnels and cells. Cells were retrieved intact 

and taken indoors to be opened under the microscope. There we examined and photographed 

them with a Canon PowerShot SD880 IS handheld to the ocular lens of a Leitz stereomicro-

scope, vintage 1960. 

Preserved larvae were examined closely before being cleared in an aqueous solution of 

sodium hydroxide, after which they were stained with Chlorazol Black E and examined on 

glycerin-filled well slides. Specimens to be examined with an Hitachi S-5700 scanning electron 

microscope were critical-point dried and coated with gold/palladium. All specimens studied 

came from Playa Grande on the dates recorded in the Material Studied sections.

NESTING BIOLOGY OF CENTRIS FLAVOFASCIATA

As indicated above, Centris flavofasciata has been reported nesting along the northwestern 

shores of Costa Rica for many years (Vinson et al., 1987; Vinson and Frankie, 1999). In the 

current study we found nesting only in the adjacent forested area, partly shaded by overhead 

trees (fig. 3). Here the substrate is primarily sand with fine, shredded pieces of marine mollusk 

and crab shells, often loose and dry though with slight traces of moisture at the cell level below 

12 cm. Richard K. Shaw conducted a textural analysis and determined, using USDA particle-

size classification, that the soil is in the sand textural class, with 96.5% sand and 3.5% silt and 

clay. He commented that the sand was composed of a high percentage of shell fragments.

Nest entrances (best observed on nests under construction; figs. 4, 5) slant obliquely into 

the ground as described above. Tumuli consist of one or several excavation tracks leading away 

from the surface opening. A track is created as the female slowly backs out of the opening 

pushing excavated soil backward and sideways with her hind legs while the front legs rapidly 
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6 AMERICAN MUSEUM NOVITATES NO. 3723

FIGURES 9–12. SEM micrographs of egg of Centris flavofasciata. 9. Anterior end showing micropyle at ante-
rior pole. 10. Close-up of micropyle. 11, 12. Chorion from left and right rectangles in figure 9, respectively, 
both to same high magnification showing differences in microtexture.

flip soil beneath her body toward her hind legs. Midlegs seem to stabilize her body and provide 

body motion forward and backward. In some cases the furrow created by the repetitive action 

of the female can become deeper than the surrounding surface.

Each nest (fig. 5) is an obliquely descending tunnel and a single vertical brood cell at the 

lower end. Tunnels tend to continue in the direction of the entrances. The tunnel descent rate 

varies from approximately 1 cm for every 2 cm horizontal distance from the burrow opening 

to nearly a 45° angle. Descent rates tend to increase just above brood cells. The extent to which 

the tunnel is filled by the female after cell closure is uncertain because during our study we 

used an insect aspirator to blow away the soft fill from the slightly more compact substrate. 

Tunnels are approximately 12–13 mm in diameter and uniformly wide except at cell entrances, 

where they widen presumably enabling females to construct cell walls and closures. 

Brood cells of C. flavofasciata (figs. 5, 6) are oriented vertically and occur at depths of 12–17 

cm. Each is large, approximately 22.5 mm long and 15 mm in maximum diameter measured on 

the outside of the wall and thus reflecting the thickness of the wall as well as its internal diameter. 
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Wall thickness varies with soil particle size and 

ranges from 1 mm to rarely as much as 4 mm thick. 

The cell’s external shape is slightly constricted toward 

the upper end where the closure is attached, and the 

wall extends above the closure by as much as 4 mm, 

thus providing a rim to the closure. The wall is rough 

and dullish on the outside, composed of substrate 

material embedded in a dark matrix. On the inside 

the wall is smoother but uneven where the slightly 

darker surface reveals a reflective, transparent coat-

ing, which no doubt affords moisture-proof protec-

tion. The finished wall is hard and tough, so that a 

completed cell is in little danger of physical destruc-

tion. The closure externally is a slightly domed surface bearing a conspicuous central projection 

that on one side bears two small openings (occasionally interconnected by a narrow slit) allowing 

gas exchange between the cell chamber and exterior. The projection is variable in height, some-

times considerably higher than the rim of the closure, but other times distinctly lower, with the 

paired openings completely obscured. The inner surface of the projection is transparent and 

glistens like the visible cell wall, so that one can easily see the substrate particles within it. The 

coating is so clear that it gives the impression of having been thickly varnished. In general cell 

structure closely resembles that of Centris caesalpiniae Cockerell (Rozen and Buchmann, 1990: 

figs. 15–18) as well as that of Centris aethyctera Snelling (Vinson and Frankie, 1977: fig. 3). The 

central projection is a unique feature, found in brood cells of only Centris, though some species 

lack the projection.

Cells are obviously constructed in two phases. The first involves forming the bottom and 

vertical walls of the cell including the eventual rim of the closure. Then the female imports 

provisions and deposits her egg. The second phase is closure construction. Further details of 

cell construction were given by Vinson and Frankie (1999).

The initial step of nest closure appears to be filling or partly filling the tunnel with fine, dry 

substrate material. The final steps of nest closure are more obvious: the female backs surface 

sand (fig. 7) over the entrance thereby obscuring the characteristic shape of the tumulus and 

obliquely descending tunnel. While a former nest entrance can be obvious for a short period 

because of surface impressions created by the female’s closure manipulations, these soon smooth 

through costal breeze action and through the female’s grooming sand to remove ridges (fig. 8).

Two partly provisioned cells had masses of hard-packed pollen adhering to the curved 

lower surfaces of the cell wall. However, completed provisions were a soft, semiliquid orange 

mass (figs. 19, 20) filling about one-third of the lower end of the cell. At least four live, curved 

eggs of C. flavofasciata were discovered in different cells in 2010 mostly (one was considerably 

off center) toward the middle of the surface of the provisions, touching the provisions with 

only front and rear ends while the midsections of eggs arched upward. In 2011, the number of 

host eggs found in similar positions was 20.

FIGURES 13, 14. Diagrams of mature oocytes 
of Centris flavofasciata and Mesoplia sapphi-
rina, lateral view, with anterior ends at right, 
drawn to same scale, respectively.
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8 AMERICAN MUSEUM NOVITATES NO. 3723

All host eggs were faintly yellow with nonreflective chorions, and four were 4.0–4.8 mm long 

(a presumably mature oocyte6 was 3.4 mm long), with the rounded rear end larger than the 

rounded front end and a maximum diameter of 0.8–1.0 mm at midbody. They were strongly 

curved; the outcurve was dorsal as determined by the orientation of the hatching larva (fig. 15). 

Under SEM examination the micropyle was a tight cluster of apertures at the anterior pole with 

low ridges radiating outward (figs. 9, 10). Elsewhere, the chorion appeared featureless except that 

under very high SEM magnification (10K) it consisted of massive, variable-sized projections (figs. 

11, 12), no doubt accounting for its nonreflectiveness under stereomicroscopic examination. 

However, we were surprised to discover that in some regions the chorion (figs. 9, 11, 12) had a 

pattern consisting of smaller projections than in other regions, a matter that deserves future 

6 As discussed by Iwata and Sakagami (1966), there are difficulties in determining when an oocyte is mature. 
The somewhat smaller size of this oocyte might suggest that it was not mature even though the nurse cell 
chambers were no longer evident.

FIGURES 15–18. SEM micrographs of eclosion of Centris flavofasciata. 15. Entire first instar shedding its 
chorion, anterolateral view, anterior end to the right. 16. Close-up of anterior end showing rent in chorion 
made by mandibles; note micropylar ornamentation dorsal to mandibles. 17. Close-up of spiracle identified 
by right rectangle in figure 15, showing row of spicules above atrial opening. 18. Close-up of spiracle identified 
by left rectangle in figure 15, showing continuation of row of spicules above spiracle.
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2011 ROZEN ET AL.: MESOPLIA SAPPHIRINA 9

investigation. The strongly curved, yellowish host egg contrasted with the nearly straight, white 

egg of M. sapphirina (figs. 21, 23, 29), described below. Mature oocytes of the two (figs. 13, 14) 

differed not only in degree of curvature but also in the direction of curvature; the outcurved 

surface is dorsal in C. flavofasciata but ventral in M. sapphirina, and in shape and robustness.

Several observations provide insight into eclosion of first-instar C. flavofasciata. First, an 

SEM examination of a first instar preserved as it was beginning to eclose from the egg chorion 

(fig. 15) revealed the chorion starting to split along the spiracular line on each side of the body. 

A tear almost certainly caused by the mandibles had also occurred in the chorion at the head 

end (figs. 15, 16). Close-up SEM micrographs of the spiracular line show a row of sharp-pointed 

spicules that lead to the tearing of the chorion along the sides of the body (figs. 17, 18).

FIGURES 19, 20. Microphotographs of hatching of egg of Centris flavofasciata, anterior end at right. 19. First 
instar/embryo with dull chorion still intact. 20. Shiny second instar of same individual next day partly 
emerged so that dull chorion and first instar skin sliding from posterior end. Figures 21–23. Close-up micro-
photographs of eggs and egg insertionsof Mesoplia sapphirina. 21. Live egg with anterior end attached to cell 
closure while the rest of the egg dangles motionless. 22. Inner surface of cell closure showing small hole 
(arrow) through which egg of Mesoplia sapphirina had been inserted into cell. 23. Assassinated egg showing 
similar form to that of figure 29, anterior at top.
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10 AMERICAN MUSEUM NOVITATES NO. 3723

Second, a live egg had developed slight body constriction visible when observed through 

a microscope (fig. 19). The egg was allowed to develop and shortly before noon the next day 

liquid was seeping onto the surface of the chorion along the spiracular lines on each side of 

the first instar and invading intersegmental lines. By 2:20 pm, the first-instar exoskeleton with 

chorion attached had slipped backward, so the shiny integument of the anterior end of the 

second instar was free (fig. 20). The chorion and first-instar integument crumpled at the rear 

as it came loose from the larva, and faint highlights on a fine line of spicules above the spiracu-

lar lines were evident on parts of the first instar’s crumpled exuviae. Where the chorion and 

first-instar integument were still taut along the rear of the live second instar, the tracheae of 

the first instar could be seen as they were pulled from those of the second instar. Subsequent 

SEM examination of the sides of the second instar revealed no sequence of sharp spicules 

immediately above the spiracular line, as found along this line of the first instar.

These two observations made in 2010 were repeated by others in 2011 and are consistent 

with the following scenario: hatching of the first instar results from the embryo/first instar 

initially ingesting amniotic fluid and afterward (or simultaneous with) tearing the chorion at 

the anterior end with its mandibles, ingesting fluid (presumably floral oils; see Vinson and 

Frankie, 1999) from the surface of the provisions. These actions cause the body to swell result-

ing in rupturing the chorion against the sharp spicules on each side just above the spiracular 

line. This interpretation explains the strong curvature of the egg: the lower part of the emerging 

head is positioned to ingest fluid from the provisions. This information has never been recorded 

before for any Centridini but is in agreement with observations on Eucerini (Rozen, 1964), 

Tapinotaspidini (Rozen et al., 2006), and on at least some Megachilidae (Baker, 1971; Torchio, 

1989; Rozen and Özbek, 2004; Rozen and Kamel, 2007; Rozen and Hall, 2011).

We originally thought that nests of C. flavofasciata were initiated in the morning and com-

pleted late in the same day. We soon discovered that some nests were not completed so quickly, 

perhaps due to decreasing larval food supply. Also, many nests were abandoned after being 

started, in some cases because of underground obstructions such as roots or crab burrows. 

BIOLOGY OF MESOPLIA SAPPHIRINA

In searching for nests of C. flavofasciata, female M. sapphirina fly swiftly over large areas, 

tightly circling a suspected spot of interest before dashing to the next one, making an unpre-

dictable zigzag pattern across the landscape from one inspection point to the next. One sus-

pects that they can quickly detect through sight or odor when a nest is present, because only 

rarely do they briefly land. We noted in 2010 when they found a nest where a female host bee 

was present, they showed great persistence in trying to scout the site and enter the nest. They 

repeatedly returned, each time either to be chased by the much larger host or to be blocked 

from the entrance where the host female stood guard. In 2011, we observed female M. sap-

phirina searching for nests as in the previous year, but they were fewer in number, and we were 

rarely present when they attempted to enter.
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2011 ROZEN ET AL.: MESOPLIA SAPPHIRINA 11

In 2010 female M. sapphirina entered nests that were still open as well as those that had 

been closed. Some visits were brief, perhaps less than 1 min, and almost certainly did not result 

in egg deposition, while others may have lasted for some minutes and thus were thought to 

result in parasitism. In one case a host female returned and entered while the cleptoparasite 

was still inside, resulting in the host rapidly chasing the cleptoparasite from the entrance. In

2011 we observed a female M. sapphirina take 8–10 min to enter a nest, the entrance to which 

we capped with a plastic tumbler. An hour later the female finally emerged. Thus it had taken 

her approximately 1 hr to penetrate the nest, successfully introduce her egg through the cell 

closure, seal the hole, and emerge. This observation casts doubts on the success of all presumed 

introductions of the previous year.

Our data on the number of nests (i.e., cells) containing recent instances of parasitism dur-

ing six visits to the site over a 10-day period in February 2010 are limited because of the dif-

ficulty of finding nests. A total of 10 nests containing fresh inhabitants were discovered and 

studied. Cells from a number of older nests representing earlier generations were uncovered 

by chance. Some were cells from which adults had emerged, as shown by cocoon fragments, 

and others contained remnants of immatures that perished during development.

The 10 cells from the then current generation are listed in table 1 with features that varied 

among nests. As indicated (table 1: first row) nine cells had been parasitized by at least one female 

of M. sapphirina as evidenced by eggs or larvae found therein. Only one cell, discovered on the 

last day, had not (yet) been parasitized. This suggested an extremely high rate of parasitism, plac-

ing into jeopardy survival of the local population of C. flavofasciata if the rate was continuous 

through the entire adult breeding season (assuming that C. flavofasciata is univoltine). Not only 

were all but one cell attacked, but half of them (five of 10) had been visited by more than one 

cleptoparasite, and one was presumably visited by as many as six cleptoparasites (assuming that 

a cleptoparasite inserts only one egg per visit and visits a cell only once). The high rate of parasit-

ism presented in these figures was supported by our casual observations of the rapid, thorough 

TABLE 1. Active cells of Centris flavofasciata, their contents including Mesoplia sapphirina,
and other varying characteristics, February 2010.

                    Cell
   Characteristic

1 2 3 4 5 6 7 8 9 10

Total M. sapphirina present 3 6 3 1 1 1 1 5 4 0

Total live M. sapphirina 1 1 0 1 0 0 1 0 1 0

Holes in cell closure 1 3 3 ? Large 1 0 1 1 0

Live eggs of C. flavofasciata 0 0 1 0 0 1 1 0 0 1

Total cell contents dead 0 0
All but 

host
0 All 0 0 All 0 0

Ants detected No No No No Yes No No Yes No No
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12 AMERICAN MUSEUM NOVITATES NO. 3723

searching behavior of female M. sapphirina. The study by Vinson et al. (1987) reported a parasit-

ism rate of 59% based on a sample of 22 cells. Although somewhat lower than the rate suggested 

by the 2010 study, it still demonstrated a very successful cleptoparasite. 

By returning to this study in 2011, J.G.R. and S.B.V hoped to ascertain what effect the heavy 

parasitism rate the previous year had on the host population. We also wanted to better understand 

how Mesoplia sapphirina attacks its host and how C. flavofasciata defends itself from such attacks.

On returning both authors were surprised to discover (1) the host population active and 

roughly as abundant as in the previous year and (2) the parasite population substantially reduced 

in numbers and seemingly far less aggressive, in that both authors only rarely observed female 

Mesoplia digging into closed host nests in nine visits to the site. During these visits, we uncovered 

36 active host nests, which were excavated a recorded number of days after they were discovered 

for most trips. The most interesting statistics are as follows: 11 cells were parasitized by Mesoplia

giving a parasitism rate of 30% (contrasting with 90% for 2010); no cell contained more than a 

single Mesoplia egg or early instar (contrasting with half of all nests of previous year parasitized 

by 3–6 cleptoparasites); 20 cells had live host eggs and 7 others contained early larval host instars 

(contrasting with 4 cells with live host eggs in 2010); no cells found where all bees had been killed 

(contrasting with 30% of all bee inhabitants had failed a year before); no ants were found to have 

invaded cells (whereas ants were associated with at least 2 nests in 2010).

Although we recognize that the small size of the 2010 sample is less than a reliable measure 

of the population for that year, the samples of both years show striking differences. We suspect 

that the activities of 2010 may have resulted from an overly large population of Mesoplia (for 

reasons unknown) relative to the host population resulting in multiple egg depositions in host 

cells and an extremely high rate of parasitism. Nests in which all bee inhabitants had died may 

have resulted from Solenopsis invasions. As table 1 indicates, most cells in 2010 exhibited small 

irregular holes (ca. 0.5–0.6 mm in diameter) in the cell closure through which M. sapphirina 

eggs are inserted (fig. 22), as also reported by Vinson et al. (1987). One cell also exhibited a 

small hole in the upper cell wall. As indicated in the 2011 study, most holes are probably egg 

insertion holes of M. sapphirina. However, in 2010 there was lack of congruence between the 

number of such holes and the number of cleptoparasites in a cell: generally fewer holes than 

parasites. Some evidence suggested that a female M. sapphirina sealed the oviposition hole 

afterward, as was affirmed in 2011. Some oviposition holes may have been reopened and even 

enlarged by ants (e.g., table 1, cell 5), as is suggested by the 2011 study, which revealed no ant 

infestations and, in general, showed a one-hole-to-one-cleptoparasite ratio.

The 2011 study helped resolve questions stemming from the previous year. Are Mesoplia

eggs introduced into the brood cells only after cell closure? Some observations in 2010 indi-

cated that M. sapphirina females enter host nests before nest closure, thereby suggesting that 

the brood cells may also be open and available to the parasite. Not only did we not observe any 

cleptoparasites entering open nests in 2011, but of nine parasitized cells only one did not reveal 

any parasite egg insertion holes, which are hard to detect because of their small size and seal-

ing. We conclude that M. sapphirina probably attacks only closed host cells. Further, we reason 

that if parasite eggs were deposited before cell closure, any egg as large as that of M. sapphirina
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2011 ROZEN ET AL.: MESOPLIA SAPPHIRINA 13

would be easily detected and eliminated by a returning female C. flavofasciata, as has been 

discussed for other cleptoparasitic bees (Rozen, et al., 2006: 24, 25).

In 2010, it was uncertain how many eggs a single female cleptoparasite deposits in a cell 

per visit. Limited data favored only one, but the high rate of parasitism in some cells, particu-

larly when there was only a single hole in the closure, could indicate more. This matter was 

resolved from data gathered in 2011: 8 of 9 parasitized cells (10th cell destroyed in excavation) 

each exhibiting a hole, usually stoppered with sand grains, and each containing only a single 

M. sapphirina. The lack of numerous fully formed oocytes in dissected females also strongly 

points to only one egg being deposited per visit.

Partway through our examination of the collected cells in 2010, we examined provisions 

of cell 8 (table 1) submerged in water and discovered a large number of extremely small ants 

identified as Solenopsis sp. that had been totally overlooked in provisions not examined in 

water. Although it was impossible to review cells examined earlier, this discovery may well 

explain why in some cells, all M. sapphirina were dead, e.g., table 1, cell 3 (although why all 

parasite eggs were attacked, whereas the host egg was not, remains unexplained). Data from 

2011 revealed that ants had not attacked a single cell among the 36 examined, possibly because 

most nests had been excavated by us within three days after closure.

In the 2010 study, evidence was unclear why cleptoparasite eggs in some cases hung by one 

end from the cell closure as was the situation in cell 3 where two eggs hung by one end next to 

the hole through which each had been deposited (before presumably being attacked by Solenop-

sis). An egg attached by one end to a closure had been reported for Aglaomelissa duckei (Friese) 

from Trinidad (Rozen, 1991: 32). In all other cases, eggs in the 2010 investigations were found 

on the provisions. With the 2011 study three eggs were attached by their anterior ends about 1–2 

mm from the hole through which they were inserted. Since all five first instar Mesoplia were 

accompanied by holes through the cell closure, there is little doubt that M. sapphirina eggs are 

normally attached presumably always by their anterior ends to the cell closure. How the female 

attaches her egg to the inner surface of the closure 1–2 mm from the hole remains unknown, 

although possibly some Mesoplia egg detachments in 2010 resulted from numerous visitations by 

conspecific cleptoparasites that dislodged attached eggs while attempting to oviposit or by ants.

The egg incubation period for M. sapphirina clearly seemed brief, for an open nest was 

identified two days before a first instar was recovered from the cell in 2010, and in 2011, five 

first instars were removed from cells that had been closed within the last two or three days. 

Finally on February 19, 2011, an adult M. sapphirina descended into a host nest after flicking 

away sand at the surface for ca. 8 min. After it had disappeared from sight, we placed a plastic 

tumbler over the entrance and thereafter monitored the site while working the area. One hour 

later (10:45 am) it had emerged and died in the heated tumbler. That day the brood cell was 

excavated, and a Mesoplia egg was found attached to the cell closure. The first instar hatched 

29.5 hrs later. Unfortunately, we missed observing the hatching process, although the ragged 

connection of the chorion with the rear of the abdomen was well documented (fig. 28). We 

placed the larva on the surface of the provisions of another cell containing a host egg. It made 

no obvious efforts to locate the host egg, not surprising considering lack of sight, but reacted 

Downloaded From: https://complete.bioone.org/journals/American-Museum-Novitates on 12 Dec 2024
Terms of Use: https://complete.bioone.org/terms-of-use



14 AMERICAN MUSEUM NOVITATES NO. 3723

FIGURES 24–28. Microphotographs of live first larval instar of Mesoplia sapphirina. 24. Entire larva showing 
egg chorion attached to rear of abdomen. 25. One live larva, with remnants of five conspecific eggs and first 
instars, all in one cell. 26. First instar attacking host egg. 27. Close-up of first instar with pronounced lateral 
prothoracic lobes biting egg chorion of another individual. 28. Close-up showing junction of ragged anterior 
end of chorion attached to first instar.
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2011 ROZEN ET AL.: MESOPLIA SAPPHIRINA 15

FIGURES. 29–35. SEM micrographs of egg of Mesoplia sapphirina, approximate ventral view. 29. Entire egg. 
30–35. Close-ups of chorion from places identified in figure 29.
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with much body twisting and turning when touched with a forceps, perhaps suggesting a 

defense reaction to other cleptoparasites. When placed close to the host egg, it snagged the host 

chorion with one of its mandibles, but did not proceed to attack with both mandibles as if try-

ing to eliminate the host. The larva seemed unable to crawl forward or backward but twisted 

rapidly and with agility, presumably defense tactics. However, when observed two hours later, 

the Mesoplia larva had completely destroyed the host egg. A subsequent observation of another 

first instar revealed that it could indeed slowly crawl forward and backward when not dis-

turbed, e.g., by being touched with forceps.

Some of the assassinated eggs in the 2010 study showed a swelling at the anterior end 

that is slightly wider than the diameter of the rest of the egg (figs. 23, 29). The ventral chorion 

immediately behind the front end was substantially smoother than elsewhere on the egg 

(compare fig. 32 with figs. 30, 31, 33–35). In one egg that had been killed we noticed that 

the length of this anterior part was approximately the same as the length of the mandible of 

the developing embryo within, whereas most of the head of the embryo was posterior to the 

swelling. Furthermore, on some other dead eggs the anterior pole containing the micropyle 

was invaginated (figs. 23, 29, 36). We wonder whether these apparent deformities are real: 

the swelling of the anterior end allows the mandible to open and close and the micropylar 

area invaginates (through some unknown mechanism), permitting the sharp apices of the 

mandibles (fig. 47) to reach and rupture the anterior end of the chorion. Verification of the 

FIGURES 36, 37. SEM micrographs of anterior end of egg of Mesoplia sapphirina, and close-up of micropyle, 
respectively. Figure 38. Photographic sequence of first instar of Mesoplia sapphirina, showing range of rapid 
motion during a 2 min period.
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above speculation should be easily forthcoming by observing an egg that is hatching. The 

role played by the pronounced paired lateral lobes of the prothorax (fig. 27) of the first instar 

is unknown but might be involved with eclosion. 

During both years virtually all live first instars of M. sapphirina and most dead ones had their 

seemingly still-inflated egg chorions (figs. 24–26) attached to the terminal abdominal segments, 

indicating that this is a normal behavior pattern for the species, the possible adaptive function of 

which is discussed below. Although the entire head, thorax, and first seven abdominal segments 

extend freely from the chorion, chorion covers abdominal segments 8–10, and the front end of 

the chorion is shredded (figs. 28, 39). As mentioned in the description of the egg, the chorionic 

surface texture a short distance behind the anterior pole is highly modified on the ventral and 

lateral surfaces. This region of the egg appears to adhere to abdominal segments 8–10 of the first 

instar. It is unclear how this attachment is maintained through the entire first stadium. Might the 

somewhat expanded form of abdominal segments 9 and 10 when viewed dorsally (fig. 43) and 

the declivity between 8 and 9 when viewed from the side (as in Rozen, 1991: fig. 55) play some 

FIGURES 39– 42. SEM micrographs of first-instar Mesoplia sapphirina. 39. Anterior edge of egg with first 
instar removed showing frayed chorion that had been attached to abdominal rear of larva. 40. Head, near 
lateral view. 41. Lower part of head showing mouthparts, anterolateral view. 42. Left antenna, anterolateral 
view.
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role? Two of three first instars that were kept alive in 2011 lost their chorion several hours before 

molting to the second stage; the third kept the attachment until molting.

It is obvious that laterally expanded abdominal segment 10 in this species (and probably 

in all other Ericrocidini) has nothing to do with a pygopodlike function as suggested by 

Rozen (1991), since we now know that that segment 10 is encased in the chorion and cannot 

assist larval crawling. 

First instars of M. sapphirina are extremely agile and feisty. They are capable of bending 

their entire body from where it is attached to the egg chorion sideways or overhead, so that 

the head is pointed completely backward in the same direction of the tail of the body. By reach-

ing backward it can quickly defend itself against any adversary that might be attacking its 

attached empty chorion. This agility is demonstrated in figure 38, a sequence taken in a 2 min 

period. Second instars, though no longer carrying chorions, also display considerable agility 

and combativeness, features that fade in successive instars.

Data suggest that all larval stadia are brief, for one larva collected in 2010 as a second 

instar had reached the fifth instar within a period of four to five days, and started defecating 

two days later. Soon thereafter it started spinning a cocoon, but when preserved, it was 

removed from its cocoon while still feeding on a large mass of food and with its digestive tract 

still containing food, perhaps a developmental artifact resulting from being reared under 

artificial conditions. In 2011, an egg of M. sapphirina that hatched at 10:45 am on February 

20 was preserved as a third instar at 4:49 am on February 25. The same year a first instar col-

lected on February 21 was observed as a second instar at 4:30 pm on February 22, and as a 

third instar at 6:45 am on February 24. Clearly, developmental behavior and timing need 

further detailed investigation.

FIGURES 43–45. Microphotographs of Mesoplia sapphirina. 43. Abdomen of cleared first instar, dorsal view. 
44. Spiracle of second larval instar, side view. 45. Spiracle of fifth larval instar, side view.
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DISCUSSION OF BIOLOGIES

One compelling reason to investigate M. sapphirina was to try to understand the adaptive 

function involved with its first instar carrying the eclosed chorion attached to the rear of its abdo-

men. In advance, three hypotheses occurred to us: (1) chorion serving as a flotation device allow-

ing M. sapphirina to search for a host egg under a layer of nectar (holdover hypothesis suggested 

by a previous study of a Centris that floods larval food with nectar; Rozen et al., 2010); (2) chorion 

serving as air reservoir, allowing larva to submerge in search of host egg (hypothesis supported 

by enlarged spiracles of abdominal segment 8); and (3) chorion attached to cell closure giving 

larva at opposite end long reach to attack host egg from above. Since our current studies show 

that the provisions of the host are not protected by a layer of nectar, hypotheses (1) and (2) fail, 

though enlarged spiracles of abdominal segment 8 remain unexplained. Since the length of first 

instar plus chorion is roughly 8 mm and the distance from closure to provisions is probably 10 

mm, hypothesis (3) fails because the host egg is out of reach, and in any event the parasite egg is 

attached by its anterior end, not its posterior end, to the closure.

Our current hypothesis formulated from all information on hand is that the chorion attached 

to the rear of the first instar is a shielding device that protects a larva from first-instar sibs that 

may be in the cell. This is suggested by the numerous instances where we found more than one 

first-instar M. sapphirina in a cell in 2010 and our observing the extreme agility of a larva to reach 

around and aggressively attack other first instars, or forceps, pinching its egg chorion. The larva 

first attacked from behind by a conspecific sibling has a greater chance of leaving the battle unin-

jured since the attacker is likely to continue biting an empty chorion while its adversary reaches 

around and clamps its mandibles on the unprotected anterior party of the attacker. 

It is instructive to evaluate evolved strategies that allow success of a cleptoparasite to para-

sitize a host and conversely those that allow a host to successfully defend itself from a clepto-

parasite. In the case of M. sapphirina, the rapid, aggressive behavior of the female looking for 

host nests and its first instar’s mandibular shape, heavily sclerotized, prognathous head capsule 

with strong muscular development, and crawling ability are obvious features required for 

FIGURES 46–50. Diagrams of Mesoplia sapphirina. 46. Head of second larval instar, lateral view. 47–50. 
Diagrams of right mandible, all to same scale, dorsal views, of following larval instars: first, second, third or 
fourth, and fifth, respectively; mandible of third or fourth instar from single cast skin in cell from which fifth 
instar retrieved. ATP = anterior tentorial pit; PTP = posterior tentorial pit.
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attacking host immatures. The short egg-incubation period of the parasite contrasting with the 

longer one of the host (as evidenced by host egg deposited before cell closure whereas parasite 

egg introduced after cell closure) seems to assure the parasite has to deal only with the totally 

inactive egg of the host. Obvious if not fully understood, is the ability of the Mesoplia female 

to identify a nest that is appropriate to attack (there would be no point in inserting a clepto-

parasite egg into a closed cell if a host larva had already consumed the food), and a mechanism 

to insert her egg into a cell that has already been closed. 

It is more difficult to identify defense strategies of C. flavofasciata, although the single-celled 

nest is a good defense against cleptoparasitic trap-liners whose females travel from one multi-

celled nest to another waiting for the next cell in each nest to reach the appropriate condition to 

be attacked. There is a strong tendency for C. flavofasciata to initiate nests under dried leaves on 

the ground or next to dead branches, thus partly hiding the nests from searching parasites. Other 

possible defenses, such a closing the brood cell with a hard cover did not work in the case of M. 

sapphirina since we know it is able somehow to penetrate the cell closure. Piling sand over nest 

entrances obviously helps to obscure detection by Mesoplia, but fails frequently. Defenses, such 

as removal of parasite eggs from the cell by a returning host female is not likely since, after she 

closes the cell, she does not return to it. However, if a host female detects a Mesoplia female 

attempting to enter the nest, the much larger host will chase or block the parasite from entering. 

Finally, after working a restricted area for several weeks we were left with the impression that an 

adult C. flavofasciata may continue to nest in the same restricted area, and thus guard the area 

by chasing large bodied bees (Centris or Mesoplia) that attempt to explore the same area. 

The differences in early developmental biologies of host and cleptoparasite are remarkable. 

The first instar of the host remains pharate, i.e., covered by its chorion, essentially inactive while 

the anatomically highly specialized first-instar cleptoparasite squeezes out of the front end of 

its chorion that then remains attached to the end of its abdomen, and the larva itself actively 

moves around and battles everything that might compete for provisions. 

OVARIAN STATISTICS OF MESOPLIA SAPPHIRINA

Of the three females of M. sapphirina examined, each had four oocytes per ovary (ovarian 

formula 4:4), the typical number for Apidae and consistent with reports on other Mesoplia 

(Rozen, 2003). Although they had on average only 0.25 oocytes per ovariole, many other 

oocytes had almost completely lost all nurse-cell material and thus seemed close to being 

mature. Average egg index 0.75 (N = 3) indicates they were well within the median category of 

Iwata and Sakagami (1966: table 2), an unusually high value for many cleptoparasitic bees 

(Rozen, 2003) but entirely in keeping with indices of other Ericrocidini (ibid.).

IMMATURE STAGES OF MESOPLIA SAPPHIRINA

Descriptions of the egg/mature oocyte and of the first and last larval instars are presented 

with brief accounts of the second and third instars. We assume that there are five larval stages, 
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as has been demonstrated for other bees, and accordingly refer to the final instar as the fifth. 

However, because the number of larval instars of no ericrocidine has been demonstrated, this 

information needs confirmation. The pupa of M. sapphirina is unknown.

Egg/Mature Oocyte

Figures 20, 23, 29–35

Diagnosis: Color, comparative lack of curvature, shape, and difference in chorionic orna-

mentation distinguish egg of M. sapphirina from that of its host, as indicated below.

Description: Length approximately 4.01–4.65 mm (N = 9) (about same length as that of 

host); maximum diameter 0.70–0.83 mm; in mature oocytes, diameter uniform for entire length 

except wider at rounded anterior end and abruptly narrowing to narrowly rounded posterior end; 

in at least some eggs, anterior end slightly swollen compared with rest of midsection. Shape (figs. 

21, 23, 29) elongate, parallel sided (aside from some deposited eggs in which front end somewhat 

swollen, figs. 23, 29), circular in cross section, only slightly curved with outcurved surface ventral 

as determined by developing first instar (contrasting with strongly curved host with outcurved 

surface dorsal, fig. 15). Egg color white (not yellowish like host egg); chorion seemingly smooth 

under low magnification, nonreflective but under high stereoscopic examination with distinct 

pattern; micropylar area not evident under stereomicroscope. Under SEM examination micropyle 

(figs. 36, 37) clearly evident as tight cluster of pores (not unlike that of host) at anterior pole; area 

around it fibrous, without radiating ridges but with patterning as in figure 34; elsewhere chorion 

with polygonal patterning (figs. 30–35); each polygon at anterior end of egg with fibrous elongate 

TABLE 2. Active cells of Centris flavofasciata, their contents including Mesoplia sapphirina,
and other varying characteristics, February 2011.

Of the 36 cells recovered, 11 cells had been attacked by Mesoplia sapphirina and are shown here; others containing 17 
host eggs, 9 host larvae, and no M. sapphirina have been removed to fit table to page.

                      Cell
    Characteristic

1 2 4 5 6 7 8 22 30 31 36

February day nest excavated 09 10 12 15 15 15 15 19 21 21 21

February day nest found 09 09 12 13 13 13 13 19 ? ? ?

Stage of M. sapphirina Egg Egg 1st 1st 1st 1st 1st Egg 1st 1st 2nd

Total live M. sapphirina 1 1 1 1 1 1 1 1 ? 1 1

Total M. sapphirina present 1 1 1 1 1 1 1 1 1 1 1

Holes in cell 1 1 1 ? 1 1 1 1 ? 1 ?

Stage of C. flavofasciata Egg Egg 0* 0* 0* 0*
Dead
egg

Egg 0* 0* ?

Total cell contents dead 0 0 0 0 0 0 0 0 0 0 0

Ants detected No No No No No No No No No No ?

*Host remains not found, presumably deteriorated.
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elevations, which becomes almost tuberclelike toward rear of egg (fig. 35), except about 2.8 mm 

from anterior end, polygons losing elevations and becoming nearly smooth on ventral surface 

but not on dorsal and lateral surface of egg; posteriad of smooth polygons, elevations again 

appearing and extending to posterior end of egg.

Material Studied: Three eggs, collected II-09, 19-2011; various, more or less damaged 

eggs (fig. 25), various dates; various mature oocytes from 3 females, collected II-14, 17-2010.

Remarks: The smoothing of the chorionic polygons (fig. 32) appears to coincide with the 

attachment of the chorion to the posterior end of the first instar, thus implying that it might 

functionally pertain to the attachment and that the anterior end of the chorion is lost on hatch-

ing, as discussed in Biology of Mesoplia sapphirina, above.

First Instar

Figures 27, 40–44

Diagnosis: The reader is referred to the tribal description of first instar Ericrocidini 

(Rozen, 1991). Because the head capsule of M. sapphirina is almost identical to that of M. 

rufipes, the diagnosis of first-instar Aglaomelissa duckei (Friese) (ibid.: 30) distinguishes known 

first instars of Aglaomelissa, Ericrocis, and Mesoplia, with the exception of a character on the 

prothorax. Both Ericrocis (ibid.: figs. 64, 67) and M. sapphirina (fig. 27) have a pair of pro-

nounced lateral prothoracic tubercles, whereas such tubercles appear to be missing in the other 

taxa. The most pronounced difference between M. sapphirina and M. rufipes is the presence of 

lateral prothoracic tubercles in the former.

Description: The first instar of M. sapphirina is so similar to that of M. rufipes (Rozen: 1991) 

that a formal description and diagrams are unnecessary, although figures 40–44 show numerous 

features of interest. Slight differences in mandibular length and elevation of antennae could be 

individual variation or species differences. The following details should be noted: antenna bearing 

numerous sensilla (probably 10 or more, fig. 42), as characteristic of all described first-instar 

ericrocidines; sclerotization of head extending short distance behind posterior tentorial pit ven-

trally; dorsally sclerotization ending at posterior constriction of head capsule that lacks defined 

postoccipital ridge; mandible (figs. 40, 41) with numerous sensilla over entire length; hypophar-

ynx membranous, bilobed, surface spiculate (not detected previously on described ericrocidine 

first instars); venters of all body segments with median transverse patch of fine spicules; abdomi-

nal segments 9 and 10 separated dorsally by distinct but faint intersegmental line (fig. 43), con-

trasting with situation in Aglaomelissa duckei (ibid.); anus not detected (fig. 43).

Material Studied: Nine first instars and cast skins of first instars, II-17, 19, 20–22-2010; 

4 first instars, II-14-2011.

Remarks: The body form of M. sapphirina is nearly identical to that of Aglaomelissa duckei 

and no doubt M. rufipes, although the former was more fully described than the latter (Rozen, 

1991: fig. 54). 

By examining numerous specimens of the first instar of Mesoplia sapphirina one is 

impressed with its hospicidal adaptations. Not only is the head heavily sclerotized (and thus 

darkly pigmented), but its entire ventral surface is fused to the cranium above and the maxillae 
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and labium are fused with one another and with the rest of the ventral surface. Palpi, as articu-

lating appendages, are missing although the numerous sensilla are grouped, so their homolo-

gies with the approximate positions of the palpi are easily recognized. However, many of the 

sensilla are from areas surrounding the palpi of the next instar (see below). The labrum is small 

and completely fused with the front of the head. The mandibles are long, massive, and heavily 

sclerotized, and of course articulate with the front of the highly prognathous head capsule. The 

sclerotization of the elongate head capsule extends behind the posterior tentorial pits. With 

such a strongly constructed head, it is not surprising that the tentorium, while complete, is 

extremely thin and delicate and internal head ridges found on most bee head capsules are 

essentially missing (except for the hypostomal ridges, which are faintly represented). These 

features are all interpreted to reflect the great strength of the overall exterior surface of the 

head, required to support powerful mandibular muscles. The numerous mandibular and anten-

nal sensilla may be evidence of the ability of the first instar to quickly detect and attack the 

host egg or conspecific competitors. The opening to the salivary duct is conspicuous as is the 

internal duct itself, but the function (if any) of these structures is unknown. The heavy head 

sclerotization might also suggest that it is protection (armor) against mandibles of competing 

cleptoparasites. Although this might be true to a degree, the lack of any protection immediately 

behind the head suggests the main function is to support musculature.

As already pointed out by Rozen (1991), there exists a notable similarity between the first 

instars of Ericrocidini and Isepeolini that needs additional consideration. He (ibid.: tables 1–3) 

found the similarity between these two tribes to be greater than between any other two tribes 

of the nonnomadine apine cleptoparasitic tribes. Furthermore, two more similarities need rein-

terpretation: (1) The labrum of each is fused to the front of the head, although that of Isepeolus

viperinus (Holmberg), Melectoides tristis (Friese) (unpublished data, from cast skin collected 

by J.G.R. from Chile: Limari Prov.: 5 mi SE Las Breas, XI-6-2000) comes to a single pointed 

apex while that of Mesoplia sapphirina is shallowly bituberculate. (2) The sclerotization of the 

head invades the area behind the posterior tentorial pit, admittedly far more so in Isepeolus 

and Melectoides than in ericrocidines. Although the similarities between heads of the two tribes 

could be convergences driven by both developing extremely sclerotized heads, the similarities 

of enlarged spiracles on abdominal segment 8 that are positioned toward the rear margin of 

the segment would appear to have nothing to do with the head modifications.7 Other similari-

ties of first instars not itemized by Rozen (ibid.) should not be overlooked in future investiga-

tions into phylogenetic relationships of these two tribes, such as the truncate appearance of the 

body from above, the tendency of abdominal segments 9 and 10 to fuse, the similarity (except 

for size) both of labra and of antennae, and the overall fusion of the head into a single elongate, 

thickly sclerotized basically single sclerite. There are far fewer structural similarities shared by 

the last larval instars of ericrocidines and isepeolines than those of first instars (see Remarks 

7 In Rozen (1991: table 1) several features of the Isepeolini were then unknown but have now been deter-
mined: Character 0. The egg is introduced into the cell that is still open (Rozen, 2003). Character 1. The egg 
adheres to the cell lining (Rozen, 2003). These features are not concordant with those of Ericrocidini.
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under Fifth Instar, below), nor are adults notably similar (Michener, 2007) or closely related in 

a morphological analyses by Roig-Alsina and Michener (1993), although the molecular analysis 

by Cardinal et al. (2010) places the two tribes somewhat apart in a single large parasitic clade. 

This matter deserves further study.

Second Instar

Figures 44, 46, 48

The second instar (fig. 46) begins to assume many features of the last instar: head capsule 

more globose, with sclerotization reduced so that internal ridges more evident, antennal papilla 

reduced and less flattened, and labrum apparently differentiated from clypeus. The tentorium is 

more robust than that of the first instar, as might be expected with the decrease in cranial sclero-

tization. The mandibles (figs. 46, 48), however, are still large, apically curved, sharply pointed but 

not as thin basally relative to length. Because of this anatomy and observations of this instar’s 

agility, there is every reason to suppose this larva capable of battling other inhabitants of the 

brood cells, although none were found alive in cells containing second instar Mesoplia.

The sclerotization of the ventral head surface between the hypostomal ridges is now nearly 

absent. The mouthpart components are clearly differentiated lobes. The maxillary and labial 

palpi are clearly recognizable as small sensilla-bearing protrusions shorter than their basal 

diameters. Each maxilla is apically lobelike, as is the labial apex, but the largest, most forward-

directed protrusion is the weakly bilobed, spiculate hypopharynx. Maxillary and labial sclerites 

are weakly defined and faintly pigmented. A thin articulating stipital arm is evident branching 

from the anterior end of the almost nonexistent stipital rod. A dominant feature of the 

prelabium is the large transverse salivary opening (wider than the distance between labial 

palpi) to which is connected a large, noncollapsed salivary duct (fig. 46). 

The postcephalic region is broadened, becoming slightly physogastric posteriorly, but the 

lateral pronotal tubercles are still evident. Body segmentation is featureless (except for spira-

cles), and abdominal segment 10 is much narrower compared with that of first instar, with the 

anus identified by a dorsally positioned integumental scar with attached tissue but no intima 

to indicate a proctodaeum. The last pair of spiracles are still enlarged compared with the others 

that are subequal in size. All have a wide, shallow atrium with concentric faint ridges, to which 

is connected a chamberless, straight subatrium (fig. 44).

Material Studied: One first instar collected II-19-2010, preserved as second instar II-22-

2010 (because head capsule larger than that of following, this specimen possibly third instar); 

one second instar II-21-2011.

Other Larval Instars

We had insufficient material to develop an understanding of all larval instars or even to 

determine whether there are five larval stages. However, from a cast skin, we recognize an 

intermediate stage between the second instar and the fifth instar. This instar obviously repre-

sented either the third or fourth instar. It has a darkly pigmented mandible (fig. 49) that is 

shorter compared with its basal width than that of the second instar described above. The inner 

apical surface is now slightly concave and curved apically with sharp upper and lower apical 
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edges. Thus, it is approaching the scoop-shaped apical concavity of the last larval instar. How-

ever, viewed dorsally or ventrally the mandibular apex was strongly curved and ended in an 

acute point. Viewed from above or below, the mandible tapered gradually toward the apex, 

giving little hint of an incipient oblique apical truncation as in the fifth-instar mandible.

Material Studied: One cast skin, II-17-2010.

Fifth Instar

Figures 45, 50–54

The shed skin of a last larval instar of Mesoplia rufipes was previously compared with that 

of Acanthopus palmatus (as A. splendidus urichi) (Rozen, 1969), but the following is the first 

account of a complete last larval instar of any species in the genus. 

Diagnosis: In general, known last larval instars of this tribe show close agreement in 

features pertaining to head capsules and mouthparts. However, the large, darkly pigmented 

articulating arms of the stipes immediately distinguishes this species from Acanthopus palma-

tus (Rozen, 1969) and Ericrocis lata (Rozen and Buchmann, 1990), neither of which reveals 

evidence of such arms. A reexamination of the cast exoskeleton of Mesoplia rufipes from Trini-

dad clearly shows darkly pigmented articulating stipital arms.

Although the oldest of the three specimens described here is clearly the fifth instar, it is 

not postdefecating. As discussed in the biology of this species, the larva was preserved before 

reaching postdefecating status, making anatomical comparisons with postcephalic bodies of 

postdefecating larvae of related taxa difficult. 

Head: Scattered sensilla nonsetiform; integument mostly nonspiculate, except dorsal sur-

face of maxilla weakly spiculate and most of hypopharynx heavily spiculate with large, regularly 

spaced spicules. Sclerotized integument faintly pigmented except following areas moderately 

to darkly pigmented: postoccipital, hypostomal, and pleurostomal ridges, anterior and poste-

rior tentorial pits, mandible, particularly at apex, articulating arm of stipes.

Head size small compared with large, elon-

gate body. Head capsule at least 1.5× wider 

than length from top of vertex to lower clypeal 

margin. Tentorium complete, robust, with dor-

sal tentorial arm; distance between anterior 

mandibular articulation and anterior tentorial 

pit about equal to distance between pit and 

antennal papilla; posterior tentorial pit in nor-

mal position; postoccipital ridge not bending 

forward at midline as seen in dorsal view; coro-

nal ridge well developed above, fading slightly 

before meeting epistomal ridge; postoccipital, 

hypostomal, and pleurostomal ridges well 

developed; epistomal ridge between anterior 

mandibular articulation and anterior tentorial 
FIGURE 51. Feeding live fifth instar of Mesoplia 
sapphirina, showing paired dorsal tubercles.
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pit well developed; hypostomal ridge without dorsal ramus; median section of epistomal ridge 

slightly weaker, straight, directed dorsomedially, so that each half forming right angle with one 

another at juncture with coronal ridge seen in maximum profile; that junction point somewhat 

above level of antennae. Parietal bands evident. Antennal prominences not developed; basal ring 

of antenna projecting; papilla distinctly shorter than basal diameter, bearing numerous sensilla. 

Vertex evenly rounded in lateral view; frontoclypeal area not projecting beyond labrum in lateral 

view (fig. 54); clypeus not as strongly projecting as that of Acanthopus palmatus (Rozen, 1969: 

fig. 47). Labrum short, its lower margin not projecting forward; apical margin weakly, narrowly 

bituberculate; each tubercle pigmented apically, bearing small cluster of sensilla.

Mandible (fig. 50) (similar to that of Mesoplia rufipes, Rozen, 1969: figs. 54–56) massive, 

FIGURES 52–54. Diagrams of fifth larval instar of Mesoplia sapphirina. 52. Entire larva with proctodaeum 
illustrated, lateral view. Scale = 2.0 mm. 53, 54. Head front and lateral views, respectively. ATP = anterior 
tentorial pit; PTP = posterior tentorial pit.
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short, obliquely truncate apically with most apical angle rounded, with large, scoop-shaped 

apical concavity; outer surface with numerous, scattered, nonsetiform sensilla; mandible with-

out projecting cusp, teeth, or denticles. Labiomaxillary region strongly projecting. Maxillary 

apex not bent mesad but inner apical angle with slight bulge probably homologue of apex; 

palpus thus apical; cardo and stipes well defined; maxillary rod nonpigmented except articulat-

ing arm of stipes large, darkly pigmented (see Remarks); palpus large, darkly pigmented, taper-

ing from broad base, thus conical, about twice as long as basal diameter. Labium divided into 

pre- and postmentum, bearing transverse, projecting salivary lips; premental sclerite present 

but weakly pigmented; palpus tapering, about one-half size of maxillary palpus. Hypopharynx 

exceedingly large, dorsally projecting, bilobed, spiculate.

Body: Much of integument very finely spiculate, without setae; body without sclerotized 

spines; integument of paired dorsal tubercles nonsclerotized although thoracic ones perhaps 

faintly so. Form (as probably characteristic of predefecating larva) (fig. 52) extremely elongate; 

intersegment lines weakly incised; intrasegmental lines not evident; thoracic segments and 

abdominal segment 1–9 with low, paired dorsal tubercles on caudal annulets (fig. 52), though 

demarcation of annulets sometimes vague; venter of abdominal segment 9 with median swelling; 

segment 10 attached to segment 9 centrally in lateral view (fig. 52); anus positioned dorsally on 

segment 10. Spiracles (fig. 45) small, subequal in size, not surrounded by sclerites; peritreme flat; 

atrium projecting slightly beyond body wall, with pronounced rim; atrium globose, with outside 

diameter distinctly greater than outside depth; atrial wall with concentric rows of evenly spaced 

small denticles; primary tracheal opening guarded by long projections all directed toward single 

point near center of atrium; each projection covered by mass of fine barbs; hence tracheal opening 

similar to but denser (darker in value) than that of Ericrocis lata; subatrium consisting of 4–6 

chambers of approximately equal outside diameter, to which is attached a section of trachea 

somewhat wider in diameter with fine taenidia obviously corresponding to optically dense area 

of Ericrocis lata (Rozen and Buchmann, 1990: fig. 56) (see Remarks, below); this section con-

nected to trachea with larger taenidia. Male sex character a transverse integumental scar on apex 

of median ventral swelling of abdominal segment 9; female characters unknown.

Material Studied: One second instar collected II-17-2010, preserved as fifth instar II-26-

2010; one first instar collected II-19-2010 preserved as early fifth instar II-26-2010; one first 

instar collected II-21-2011, preserved as fifth instar II-25-2011.

Remarks: Paired dorsal body tubercles of late stage fifth instar (fig. 52) were less exagger-

ated than those of the early fifth instar (fig. 51).

The articulating arm of the stipes in cocoon-spinning bee larvae is a cuticular process that 

branches from the anterior end of the stipital rod at the point where the inner surface of the 

maxilla branches from the hypopharyngeal/labial column, and its apex articulates with the 

premental sclerites (Rozen and Michener, 1988). Because the stipital rod of M. sapphirina is 

nearly pigmentless and very thin just before branching and the articulating arm is darkly pig-

mented, we were able to clearly see the connection only after removing the mandible.

The section with fine taenidia (fig. 45) that connects the trachea to the spiracular suba-

trium is wider in diameter than the subatrium but clearly is homologous to the much nar-
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rower, denser section found in the same relative position in Ericrocis lata (Rozen and 

Buchmann, 1990: fig. 56), as evidenced not only by its position but also by the fine taenidia 

in both taxa. This connection between the tracheal system and body wall presumably allows 

flexibility, so that the body wall can bend and twist without straining or collapsing parts of 

the tracheal system. Thus, the different appearance of this feature in these two taxa is an indi-

cation that when preserved the larva of Mesoplia sapphirina was still  active and prediapaus-

ing, whereas that of E. lata was in diapause.

A seemingly unusual feature of this larva is the great length of its proctodaeum (fig. 52) 

easily identified in the cleared specimen because its cuticular lining persisted and retained the 

undigested pollen exines. If straight, the proctodaeum would have extended 18 mm, roughly 

three-quarters of the length of the entire body.

Because we comment above on the many similarities of first-instar Ericrocidini and Isepeo-

lini, we consider here similarities of last larval instars, those of the latter described by Rozen 

(1966) and Michelette et al. (2000). However, most of the shared features are plesiomorphic, 

found in unrelated taxa that have cocoon-spinning larvae. Mature larvae of these two taxa differ 

in many ways, including mandibular shape, spiracular features, and body form. Only two features 

might hint at a relationship: (1) numerous antennal sensilla on each antenna and (2) the close 

approximation of the two apical labral tubercles of Mesoplia could be considered a step toward 

the single projecting apical tubercle of Isepeolus viperinus and Melectoides bellus (Jörgensen).
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APPENDIX

A New Species of Mesoplia (Hymenoptera: Apidae) from Mesoamerica

by Gabriel A.R. Melo,8 and Léo C. Rocha-Filho9

INTRODUCTION

The genus Mesoplia contains medium to large bees and is the most diverse within the 

obligatory cleptoparasitic tribe Ericrocidini. Its species attack nests of Centris, except for M.

rufipes (Perty, 1833) which also attacks Epicharis (Rocha-Filho et al., 2009). Currently a total 

of 20 available names are attributed to Mesoplia, with 16 of them considered to represent valid 

species (Moure and Melo, 2007). 

In an ongoing revision (Melo and Rocha-Filho, unpubl.), 22 species are recognized, one of 

them here described as new. This new species has been cited under the name M. regalis (Smith, 

1854) in Cheesman (1929: 144; as Mesonychium), Michener (1954: 146, 147), Ayala et al. (1996: 

8Universidade Federal do Parana, Dept. Zool., Laboratorio de Biologia Comparada de Hymenoptera, Caixa 
Postal 19020, 81531980, Curitiba, Paraná, Brazil.

9Pós-Graduação em Entomologia, Universidade de São Paulo - FFCLRP, Av. Bandeirantes 3900, 14040-901, 
Ribeirão Preto, São Paulo, Brazil.
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458), Vinson et al. (1987: 258), and Rocha-Filho et al. (2009: 302) and also as M. bifrons (Fabri-

cius, 1804) by Ayala et al. (1996: 458). The studied material belongs to the American Museum of 

Natural History, New York (AMNH); Departamento de Zoologia, Universidade Federal do 

Paraná, Curitiba, Brazil (DZUP); Illinois Natural History Survey, Urbana, Illinois (INHS); Los 

Angeles County Museum, Los Angeles, California (LACM); Snow Entomological Collection, 

Division of Entomology, Natural History Museum, University of Kansas, Lawrence, Kansas 

(SEMK); Instituto de Biología, Universidad Nacional Autónoma de México, México (UNAM).

Mesoplia sapphirina, sp. nov.

Figures A1–A9

Diagnosis: Mesoplia sapphirina, sp. nov., is very similar to M. regalis, both species belong-

ing to a large group whose males have a hind tibia with a conspicuous and dense apical tuft of 

short black setae on its inner surface and a hind femur lacking a basal ventral projection. 

Besides these two species, the group contains M. bifrons, M. insignis (Smith, 1879), M. pilicrus

(Friese, 1902) plus eight undescribed species (Melo and Rocha-Filho, unpubl.) Mesoplia sap-

phirina, sp. nov., differs from M. regalis mainly in the shape of the mammilliform protuber-

ances of the scutellum. In M. sapphirina, sp. nov., the protuberances are weakly developed, their 

surface only slightly convex and their tubercles low and broadly rounded. Also, in this species, 

the carina delimiting the protuberances posteriorly is well developed and runs continuously 

from one side of the scutellum to the other. In M. regalis, the protuberances are stronger, with 

a deep trough between them and with conspicuously pointed tubercles (figs. A10, A11); the 

delimiting carina is most developed only along the tubercles, fading gradually toward the sides.

Description: Holotype female: Approximate body length, 20.5 mm; maximum head width, 

6.1 mm; length of fore wing, 15.3 mm. Integument color: Predominantly dark brown to black; first 

flagellomere light reddish brown; remainder of flagellum, subapical one-third of mandible, pro-

notal lobe, tegula, most of legs and of sterna, dark reddish brown. Wing veins dark brown; mem-

brane lightly brown infumated, except for dark brown infumation on anterior half of marginal 

cell and wing apex along anterior margin. Pilosity: Most of head with dense cover of relatively 

long, white plumose hairs (figs. A1, A2, A4); midportion of frons and hypostomal area with 

abundant brown plumose hairs intermingled; strip in front of ocelli with bluish metallic hairs; 

frontal and dorsal surfaces of scape covered with brown short, decumbent pubescence; lower 

margin of mandible with long, simple brown setae; apex of labrum with a pair of tufts of long 

dark brown simple setae (fig. A4). Dorsal portion of pronotum mostly with white plumose hairs; 

disc of pronotal lobe covered by brown hairs (fig. A6) and a few bluish metallic hairs. Remainder 

of thorax, including legs, mostly with dark brown to black hairs (figs. A1–A2). Posterior two-

thirds of mesoscutum, dorsal surface of axilla, most of scutellum, narrow band along outer sur-

face of mid tibia and most of outer surface of hind tibia and basitarsus with bluish metallic 

decumbent hairs. Anterior and lateral margins of mesoscutum, as well as two sublateral spots on 

posterior margin of pilose band on anterior one-third of mesoscutum, with white hairs (figs. A1, 

A5, A6); scattered white hairs along mesoscutum-scutellum suture and abundant white pilosity 

on posterior margin of scutellum (fig. A5). Lateral portion of mesepisternum with one transverse 
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FIGURES A1–A6. Mesoplia sapphirina sp. nov., female holotype. A1. Habitus, dorsal view. A2. Habitus, lateral 
view. A3. Apex of metasoma, dorsal view. A4. Head, frontal view. A5. Mesosoma, dorsal posterior view. A6.
Upper portion of mesosoma, lateral view.

FIGURES A7–A11. A7–A9. Mesoplia sapphirina sp. nov., male paratype (Panama). A7. Mesosoma, dorsal 
posterior view. A8. Apex of metasoma, dorsal view. A9. Hind leg, view of inner surface. A10–A11. Mesoplia 
regalis, female specimen (Trinidad). A10. Mesosoma, dorsal posterior view. A11. Upper portion of mesosoma, 
lateral view.

and three longitudinal thin stripes of white hairs (fig. A6). Large band along outer surface of 

foretibia and small patches of white hairs on basal one-third of midfemur, apex of midtibia, apex 

of hind femur and of hind tibia. Dorsal surface of terga covered mostly with bluish metallic scaly 

hairs. Anterior margin of dorsal surface of T1 also with a few scattered simple erect setae, most 

of them dark brown; lateral portion of T1 with a narrow dorsal stripe of erect plumose pubes-

cence, composed mainly of dark brown hairs with a few white hairs intermingled; remainder of 
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lateral surface of T1 with dense dark brown decumbent pubescence. Lateral portions of T2–T5 

with mostly decumbent pubescence, composed of a white band dorsally and a brown band ven-

trally, the length and breadth of the bands varying among the terga (fig. A2). Erect simple setae 

on T2–T5 mostly white (fig. A3), except for lateral portion of T2 entirely with brown setae and 

a few brown setae laterally on T3. Lateral portion of T6 with simple dark brown setae; pygidial 

plate covered with decumbent bluish metallic scaly hairs, except for bare apex (fig. A3). Sterna 

covered mostly with decumbent dark brown pubescence; erect simple setae mostly brown, except 

for a few white setae laterally; lateral posterior margins of S2–S5 with white decumbent pubes-

cence. Structure: First flagellomere shorter than second (fig. A4). Vein 3rs-m angled; width of 

submarginal cell 3, along Rs, slightly more than two-thirds length of  submarginal cell 2. Midba-

sitarsus with row of teeth on posterior margin; midtibial spur relatively broad, both apical 

branches with robust teeth, outer branch with two small teeth. Mammilliform protuberances of 

scutellum relatively weak, their surface only weakly convex (figs. A5–A6), protuberances delim-

ited posteriorly by continuous carina, trough between protuberances relatively shallow. Pygidial 

plate well developed, broad, apex broadly rounded (fig. A3). 

Male paratype: Approximate body length, 18.9 mm; maximum head width, 5.8 mm; length 

of forewing, 15.5 mm. Similar to female in integumental color, pilosity, and structure. Base of 

mandible yellowish brown. Clypeus, labrum, gena, frons, and parocular area with yellowish 

white pilosity; erect simple setae on basal portion of dorsal surface of T1 mostly white; lateral 

portion of T1 with a strip of white plumose hairs, white plumosity on lateral portion of T2–T6 

forming oblique rectangular strips; lateral posterior margins of S2–S4 with white decumbent 

pubescence, apical fimbria of S4 and S5 dark brown. Mammilliform protuberances of scutellum 

less developed, posterior carina well developed, conspicuous (fig. A7). Hind tibial spurs rela-

tively short, apex of tibia with conspicuous tuft of dense erect setae (fig. A9). Dorsal surface of 

T7 intumesced, its ventral projecting portion conspicuously excavated; pair of apical projec-

tions of T7 with rounded apices, emargination between projections relatively deep (fig. A8).

Type Material: Holotype female (DZUP). PANAMA. “Old Panama, Panama, XII-12-45,

C.D. Michener,” “Mesoplia regalis (Sm.), Det. C.D. Michener, ’51.” Paratypes: COSTA RICA.
1 female (AMNH), “Culebra Bay, CR. I-26-38,” “Zaca Exped., Acc. 37483”; 1 female (LACM), 

“Playa Grande & vicin., Guanacaste Prov., G. W. Franckie Coll., 27 February 1982,” “G. W. 

Frankie Collector,” “LACM ENT 235220”; 1 female (LACM), same data except “LACM ENT 

237763”; 1 female (LACM), “Tamarindo Beach, Guanacaste Prov., Costa Rica IV-2 1984, G. W. 

Frankie coll.,” “LACM ENT 237599”; 1 male (LACM), “Costa Rica, PU Puntarenas, III 1 76, R 

M Bohart,” “LACM ENT 240120”; 1 male (INHS), “INHS Insect Collection 314,814,” “COSTA 

RICA, Parque Manuel Antonio, Quepo, sea level, 8-III-1986, M. E. Irwin, Coastal dunes.” EL
SALVADOR. 1 female (INHS), “INHS Insect Collection 314,816,” “EL SALVADOR: La Liber-

tad, Majagual 10 October 1976, ME Irwin, JR Quezada, beach vegetation on sand Ipomea [sic],” 

“INTSOY.” MEXICO. Jalisco. 1 female (AMNH), “MEXICO, Jalisco: Playa Teopa, 8 km. S. 

Careyes, Oct. 4, 1985, J. G. Rozen”; 1 female (LACM), “MEXICO, Jalisco: Chamela, 9.10 1981, 

S. Bullock, coll., SB #736,” “LACM ENT 235744”; 1 female (LACM), “MEX., Jal.: Chamela, Est. 

Biologia UNAM, 1071 13.9.1982, coll. S. H. Bullock,” “LACM ENT 235995”; 1 female (SEMK), 
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“MEXICO: Jalisco, Playa Careyes (near Chamela) 30 Sept 1985, Charles D. Michener”; 1 female 

(SEMK), “MEXICO, Jalisco: Chamela, 19.10 1985, S. H. Bullock 1949,” “Mesoplia regalis [plus 

female symbol], det. Ayala ’87”; 1 female (SEMK), “MEXICO, Jalisco, Chamela, Fecha 27-IX-

1985, Col. R. Ayala RA220,” “Mesoplia regalis [plus female symbol], det. Ayala ’87”; 1 female 

(UNAM), “MEXICO, Jalisco, Chamela, Fecha 27-IX-1985, Col. R. Ayala RA220”; 1 female 

(UNAM), same data except “Mesoplia grupo bifrons, R. Ayala det.”; 1 female (UNAM), 

“MEXICO, Jalisco, Chamela, Playa Careyitos, Fecha 27-X-1985, Col. R. Ayala RA218”; 2 fema-

les (UNAM), “MEXICO, Jalisco, Playa Careyitos, 6 km S. Chamela, 27 Sept., 1985, (R. B. 

Roberts)”; 1 female (UNAM), “MEX, Jalisco, Est. Biol. Chamela, La Huerta. 18 XII 89, Rodri-

guez G.”; 1 male (UNAM), “MEX., Jal.: Chamela, Est. Biologia UNAM, 1435 20.2.1983, coll. S. 

H. Bullock,” “Mesoplia regalis (F. Sm.) [plus male symbol], det. Snelling ’83,” “Mesoplia group 

bifrons”; 1 female (UNAM), “MEXICO: Jalisco, Careyes, 18-IX-1995, Col. R. Ayala.” 1 female 

(INHS), “INHS Insect Collection 314,809,” “MEXICO, Jalisco, Biol. Sta. nr Chamela, 27-IX-

1985, W.E. LaBerge, on Acacia sp.”; 1 female (INHS), same data except “INHS Insect Collection 

314,810”; 1 female (INHS), “INHS Insect Collection 314,812,” “MEXICO, Jalisco, Playa de 

Careyes, nr. Chamela, 27-IX-1985, W.E. LaBerge, Canabalia [sic] brasiliense [sic]”; 1 female 

(INHS), same data except “INHS Insect Collection 314,813.” Michoacán. 1 female (LACM), 

“56 mi S Tecoman, Mich., MEX., 23 Dec. 1982, Coll. D. Cornejo,” “LACM ENT 240118.” 

Nayarit. 1 female (LACM), “San Blas, Nayarit, Mexico, VI-25-29-1956, W.A. McDonald,” 

“U.C.L.A. COLL., Accessioned L.A.C.M. 1965,” “LACM ENT 238951.” Oaxaca. 1 male 

(AMNH), “Tehuantepec, Oaxaca, Mex., Dec. 13, 47–Jan.23, 48, T. MacDougal.” Sinaloa. 1 

female (SEMK), “MEXICO: Sinaloa, Rio Piaxtla, nr. SIN. Hwy. #04, III-18-1990, Gelhaus, 

Minckley & Calhoun #461”; 1 male (DZUP), “Presidio, Mexico. Forrer.,” “Br. M. N. Hist., 

Mesoplia B, Det. J.S. Moure 1957.” Sonora. 1 female (LACM), “MEXICO, Sonora: Rio Cuchuha-

qui, 8 mi S Alamos, 1–13 Apr. 1975, coll. A. Brewster,” “On flrs. of Parkinsonia sp.,” “LACM 

ENT 240220.” Tamaulipas. 1 female and 1 male (DZUP), “Tampico, Tamps. Mex., VI-10-51,” 

“H. E. Evans Collector”; 4 females and 1 male (SEMK), same data; 1 female (SEMK), same data 

except “Mesoplia spp. bifrons group [plus female symbol], det. Snelling ’82”; 1 female (SEMK), 

same data except “Mesoplia A, Det. J. S. Moure 19”; 1 female (LACM), “Playa Altamira, Tam-

aulipas, Mex, VI 3 1968” “M S Wasbauer, J E Slansky, Colrs,” “LACM ENT 235604”; 1 female 

(LACM), “Cd. Madero, Tamps., MEXICO, July 1 1964, E. Fisher, D. Verity,” “LACM ENT 

235634”; 6 females (SEMK), “MEXICO: Tamps., La Pesca, 1-VII-1981, B. Miller, C. Porter, L.

Stange, Dune Vegetation”; 1 male (SEMK), “Llera, Tamps. Mex., VII-19-54,” “Univ. Kans. Mex. 

Expedition,” “Mesoplia A, Det. J. S. Moure 19.” Veracruz. 1 female (DZUP), “Tecolutla, V.C., 

Mex. VI-19-51,” “H. E. Evans Collector,” “regalis (Sm), Det. J. S. Moure 1957”; 1 female (SEMK), 

“Tecolutla, V.C., Mex., VI-19-51,” “P. D. Hurd Collector”; 1 female (LACM), same data except 

“LACM ENT 237752”; 1 female (LACM), same data except “LACM ENT 235632”; 1 male 

(SEMK), “MEXICO Veracruz, 1.5 mi. N. Tecolutla, 12 June 1961 15 ft., U. Kans. Mex. Exped.”; 

1 female (DZUP). “Vera Cruz, V.C. Mex., VI-20-51,” “H.E. Evans Collector,” “Mesoplia A, Det.

J. S. Moure 19”; 1 female (LACM), “MEXICO, Veracruz, 16 km. ne. Cardel, 2-IX-1975, E.M. 

Fisher, collr.,” “LACM ENT 235218”; 1 male (LACM), “MEX: Ver., Mocambo, 2 mi. S. VI-29-
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62,” “D.H. Hanson Collector,” “LACM ENT 240241”; 1 male (SEMK), “MEXICO: Veracruz, 

8km SE. Bocal Del Rio, 21–22 July 1990, W. Bell, D. Conlon, and R. L. Minckley.” NICARA-
GUA. 1 female (INHS), “INHS Insect Collection 314,817,” “NICARAGUA, Montelimar, 50 km 

W Manágua, 2-X-1998, M. E. Irwin, coastal vegetation.” PANAMA. 1 male (DZUP), “Mojinga 

Swamp, Ft Sherman CZ, 28-VI-1951,” “FS Blanton Collector,” “Mesoplia A, Det. J.S. Moure 19”; 

1 female (AMNH), “Patilla Pt., Canal Zone, Jun 15 1929,” “Collector C. H. Curran,” “Mesoplia 

regalis (Smith), Det. H.F. Schwarz [plus female symbol], see Ckll., 1912, Annals and Mag. 9, 

567”; 1 male (AMNH), “Bruja Pt., Canal Zone, Jun 26 1929,” “Collector C. H. Curran,” “Meso-

plia regalis (Smith) [plus male symbol], Det. H.F. Schwarz, see Ckll., 1912, Annals & Mag., IX,

p. 567”; 1 male (AMNH), “T. Halliman, Balboa, C.Z., Panama, March. 14–15,” “Mesoplia regalis

(Smith), det. H.F. Schwarz, see Ckll., 1912, Ann. & Mag., IX, p. 567.” 1 male (LACM), “PAN-

AMÁ Canal Zone, Fort Kobbe, 11 January 1960, (W. J. Hanson),” “LACM ENT 240212”; 1 male 

(SEMK), “Bruja Pt., Canal Zone, Jun 25, 1929,” “Collector C. H. Curran,” “Mesoplia regalis

(Smith) [plus male symbol], Det. H.F. Schwarz, see Ckll., 1912, Annals & Mag., IX, p. 567”; 1 

female and 2 males (SEMK), “PANAMÁ Canal Zone, Fort Kobbe, 11 January 1960, (W.J. Han-

son)”; 1 male (SEMK), same data except “Mesoplia spp. bifrons group [plus male symbol], det. 

Snelling ’82”; 1 male (SEMK), “Old Panama, Pan., IV-19-45, C. D. Michener,” “Mesoplia regalis

Sm., Det: C.D. Michener.”

Distribution: This species occurs from central Panama and the western coast of Costa 

Rica, in the south, to the Mexican states of Sonora and Tamaulipas, in the north.

Etymology: From the Greek sappheiros, “sapphire,” in reference to the bluish metallic 

coloration of the scaly hairs covering the metasomal terga.
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