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The identification of biomarkers predictive of neoadjuvant
chemotherapy response in breast cancer patients would be an
important advancement in personalized cancer therapy. In
this study, we hypothesized that due to similarities between
radiation- and chemotherapy-induced cellular response
mechanisms, radiation-responsive genes may be useful in
predicting response to neoadjuvant chemotherapy. Murine
p53 null breast cancer cell lines representative of the luminal,
basal-like and claudin-low human breast cancer subtypes
were irradiated to identify radiation-responsive genes across
subtypes. These murine tumor radiation-induced genes were
then converted to their human orthologs, and subsequently
tested as a predictor of pathologic complete response (pCR),
which was validated on two independent published neo-
adjuvant chemotherapy datasets of genomic data with
chemotherapy response. A radiation-induced gene signature
consisting of 30 genes was identified on a training set of 337
human primary breast cancer tumor samples that was
prognostic for survival. Mean expression of this signature
was calculated for individual samples on two independent
published datasets and was found to be significantly
predictive of pCR. Multivariate logistic regression analysis
in both independent datasets showed that this 30 gene
signature added significant predictive information indepen-
dent of that provided by standard clinical predictors and
other gene expression-based predictors of pCR. This study
provides new information for radiation-induced biology, as
well as information regarding response to neoadjuvant
chemotherapy and a possible means of improving the
prediction of pCR. � 2014 by Radiation Research Society

INTRODUCTION

Neoadjuvant chemotherapy has been widely used in

recent years as part of the standard of care for locally

advanced breast cancer patients. Although neoadjuvant and

adjuvant chemotherapy have similar efficacy in terms of

disease-free and overall survival rates (1), neoadjuvant

chemotherapy has been shown to improve breast-conserv-

ing operability in locally advanced breast cancers (2, 3).

Another advantage of neoadjuvant chemotherapy is that it

allows for the direct and timely observation of tumor

treatment response. Twenty to thirty percent of breast cancer

patients who receive neoadjuvant chemotherapy achieve a

pathologic complete response (pCR) (4), which has been

correlated with improved long-term, disease-free and

overall survival (1–3, 5–9) and thus is a valuable surrogate

end point for survival.

The prediction of neoadjuvant chemotherapy response (i.e.,

pCR) is an active area of research. Since patients who

achieve pCR after neoadjuvant chemotherapy are more likely

to experience excellent cancer-free, long-term survival (1–3,
5–9), the accurate prediction of pCR would be of significant

value. It would serve to identify those patients who could

benefit most from neoadjuvant chemotherapy and identify

those unlikely to benefit from therapy and thus be spared

treatment-associated toxicities and be selected to receive

alternative therapeutic approaches. Rouzier et al. (10)

published in 2005, a nomogram consisting of clinical

variables including tumor size, histologic grade and estrogen

receptor (ER) status to predict pCR to neoadjuvant FAC

(fluorouracil, doxorubicin and cyclophosphamide) or T/FAC

(paclitaxel, FAC) chemotherapy. This same group reported in

another study (11) that intrinsic breast cancer subtype as

determined by gene expression profiling of tumors prior to

treatment, was associated with pCR. In this study, basal-like

and HER2-enriched (HER2-E) intrinsic subtypes were

associated with the highest rates of pCR (45%) while luminal

A and luminal B tumors showed the lowest rate of pCR (6%).

Building on these studies, we sought to determine whether

we could identify a novel biomarker that could add predictive

Editor’s note. The online version of this article (DOI: 10.1667/
RR13485.1) contains supplementary information that is available to
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information independent of that provided by known clinical
variables and other gene expression-based predictors of pCR.

Cellular responses to radiation and chemotherapy involve
multiple overlapping pathways. Both therapies involve
cytotoxic agents that can ultimately induce apoptosis in
target cells (12, 13). Radiation therapy and many chemo-
therapeutics result in DNA damage, activating multiple
overlapping proteins/pathways, such as the ATM and ATR
protein kinases, TP53 and TP53-independent pathways
including CHK2-mediated signaling (14). Other proteins/
pathways induced by both radiation and chemotherapy
includes the extracellular signal-regulated kinase (ERK)
pathway, Jun-N-terminal kinase (JNK) pathway, p38
MAPK family, NK-kB, AKT, mTOR and the checkpoint
proteins (14–18). We hypothesized that due to the
similarities in the cellular response mechanisms to radiation
and chemotherapy, radiation-responsive genes may be
useful in predicting response to neoadjuvant chemotherapy
for breast cancer.

MATERIALS AND METHODS

Cell Culture

To identify radiation-responsive genes, we used cell lines derived
from the T11, 2225L and 2250L murine mammary tumors described
by Herschkowitz et al. (19). Briefly, these tumors were produced by
removal and transplantation of 6-week-old BALB/c p53–/– mammary
tissues into 3-week-old wild-type BALB/c recipients. This was
necessary to circumvent the appearance of other tumor types that
occurred with short latency in mice homozygous for p53 loss. As
described by Herschkowitz et al. (19), based on murine-intrinsic gene
list expression analysis, the T11 tumor had characteristics of the
claudin-low human breast carcinoma subtype; the 2225L tumor had
characteristics of the basal-like human breast carcinoma subtype; the
2250L tumor had characteristics of the luminal human breast
carcinoma subtype. Respective tumor samples stored in liquid nitrogen
were thawed and placed into appropriate media to allow cell line
formation as follows: for the T11 cell line, the media used was RPMI
1640 containing 10% FBS, 100 U/ml penicillin and 100 lg/ml
streptomycin; for the 2225L and 2250L cell lines, media used were
HMEC media containing 5% FBS, 100 U/ml penicillin and 100 lg/ml
streptomycin and HMEC supplement (Gibcot Life Technologies,
Grand Island, NY). Cells were incubated in a humidified incubator at
378C in 95% air/5% CO2. Genomic DNA was harvested from cell lines
using QIAGEN DNeasy Kit (QIAGEN, Valencia, CA), and presence
of the p53 null transgene was verified using polymerase chain reaction.

Cell Irradiation and Collection of RNA

Cells were plated in 150 mm dishes and grown until 50% confluence.
Cells were then irradiated to a dose of 8 Gy using an RS 2000 irradiator
(Rad Source Technologies Inc., Suwanee, GA) operating at a dose rate
of 100 cGy/min. Cells were then immediately returned to the incubator
and harvested at 4, 8, 12, 24 and 48 h after irradiation, at which point
RNA was isolated using the QIAGEN RNeasy Mini Kit. A control
nonirradiated RNA sample for each cell line was collected from cells
harvested immediately after mock irradiation.

Microarray Experiments

Mouse whole-genome 43180,000 features microarrays (Agilent
Technologies Inc., Palo Alto, CA) were hybridized according to

manufacturer’s protocol with Cy3-CTP-labeled cRNA from mock-
irradiated cells (2 ug/sample) and Cy5-CTP-labeled cRNA from
irradiated cells (2 ug/sample), with replicates for a 24 h time point for
each cell line. Microarrays were scanned and image files analyzed as
described previously (19). All primary microarray data are available
from the University of North Carolina (Chapel Hill, NC) Microarray
Database (https://genome.unc.edu) and the Gene Expression Omnibus
[GEO; National Center for Biotechnology Information (NCBI)]
(http://www.ncbi.nlm.nih.gov/geo/) with series number GSE48073.

Analysis of Microarray Data to Identify Radiation-Responsive Genes

Data from microarray experiments were calculated as described
(19), where we used the Lowess normalized log2R/G ratio. To identify
radiation-responsive genes, we used a one-class Significance Analysis
of Microarrays (SAM) to identify genes that changed in all time points
for all three cell lines (as a single class) relative to the mock-irradiated
cells (20). Using a false discovery rate (FDR) of 0%, SAM identified
4,278 radiation-induced genes and 2,689 radiation-repressed genes.
Hierarchical cluster analysis was conducted using Cluster 3.0 (21) and
results were visualized in Java TreeView (22).

To identify genes that were differentially expressed after irradiation
across the cell lines, we used a multi-class SAM analysis to identify
genes that changed in all time points after irradiation, but that were
different between the cell lines (each cell line as its own class) relative
to mock-irradiated cells. Using an FDR of 0%, SAM identified 1,289
genes differentially expressed after irradiation across the cell lines.
Hierarchical cluster analysis was conducted using Cluster 3.0 (21) and
results were visualized in Java TreeView (22).

Analysis of Human Primary Breast Tumor Microarray Data Using the
Radiation-Induced Gene Set

The human primary breast tumor samples used as the training
dataset are described in Prat et al. (23); this training dataset comprised
a total of 337 tumor samples represented by microarray experiments
from breast cancer patients (consisting of 320 breast tumor samples
and 17 normal breast samples) heterogeneously treated in accordance
with standard of care. To analyze this human training dataset with the
radiation-induced murine gene set identified by the above described
SAM, the list of 4,278 radiation-induced murine genes identified from
the cell lines were converted to their human gene orthologs using the
UCSC genome website (http://genome.ucsc.edu/). A total of 1,964
unique human genes present on our human microarrays were
identified. These genes were then used to hierarchically cluster the
Prat et al. 337 human breast sample dataset using Cluster 3.0 to
identify gene sets/clusters composed of genes that are highly
coordinately expressed across these patient samples. We hypothesized
that the mean expression of one or more of these gene sets/clusters
may be useful in predicting an individual tumor’s response to
neoadjuvant chemotherapy. To avoid spurious results that may occur
with small gene clusters or poorly correlated gene clusters, we limited
the analysis to the most correlated gene clusters (node correlation
.¼0.45) and that were greater than 20 genes in size. This identified 23
non-overlapping gene clusters, where we next calculated a mean gene
expression value of each gene cluster, for each of the 337 samples
from the Prat et al. dataset (23).

By matching Entrez gene identifiers (www.ncbi.nlm.nih.gov/gene),
microarray data for as many genes as possible for each of the 23 gene
clusters identified above was obtained on two independent test
microarray datasets (24, 25). Briefly, the Hatzis et al. (24) dataset
consisted of microarray data from 473 HER2-negative breast cancer
tumors taken prior to sequential taxane and anthracycline-based
neoadjuvant chemotherapy. This dataset had associated pCR and
distant relapse free survival (DRFS) data. The Gluck et al. (25) dataset
consisted of microarray data from 95 HER2-negative breast cancer
tumors taken prior to neoadjuvant capecitabine and docetaxel
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chemotherapy; this dataset had associated pCR data and TP53
mutation status data using the AmpliChip TP53 assay. As done for
the Prat et al. dataset, a mean gene expression value of each gene
cluster was calculated for each patient in the Hatzis et al. dataset, and
we validated the most significant gene cluster on the Gluck et al.
dataset.

Statistical and Survival Analysis

Kaplan-Meier survival plots were compared using the Cox-Mantel
log-rank test in WinSTATt (R. Fitch Software, Staufen, Germany) for
Excel (Microsoft Corp., Redmond, WA). Univariable and multivar-
iable logistic regression analysis were used to assess the significance
of gene cluster mean values to pCR. All statistical tests were two-
tailed and P , 0.05 were declared significant. Analyses were
performed using JMP Pro 9.0 (SAS Institute, Cary, NC) and R version
2.13.1 (R Development Core Team, Vienna, Austria).

RESULTS

Identification of Radiation-Responsive Genes

To identify radiation-responsive genes, we used cell lines
derived from three different mouse p53-deficient tumors,
including the T11 (claudin-low), 2225L (basal-like) and
2250L (luminal) tumors described by Herschkowitz et al.
(19). A one-class SAM with a false discovery rate (FDR) of
0% identified 4,278 radiation-induced and 2,689 radiation-
repressed genes in microarray experiments on the combined
T11, 2225L and 2250L cell lines at 4, 8, 12, 24 and 48 h
after a single radiation dose of 8 Gy. Hierarchical clustering
of the radiation-induced genes is shown in Fig. 1 and that of
the radiation-repressed genes is shown in Fig. 2.

Many genes identified as radiation induced in our analysis
were previously known to be radiation responsive in humans
including CREM, BNIP3, FAS, TNFRSF11B, IFITM1,
LGALS3PB, COX7B and SESN1 (26–29), indicating the
conservation of the radiation responsiveness of many genes
in this p53-deficient mouse model. Using the program
DAVID [Database for Annotation, Visualization and
Integrated Discovery (30, 31); http://david.abcc.ncifcrf.
gov], the gene ontology categories that were significantly
over-represented relative to chance in the set of all radiation-
induced genes included: ‘‘protein catabolic process’’ (P ¼
3.403 10�9); ‘‘apoptosis’’ (P¼3.45 3 10�5); ‘‘cell death’’ (P
¼ 1.17 3 10�4) and ‘‘macromolecule catabolic process’’ (P¼
8.24 3 10�8). Kyoto Encyclopedia of Genes and Genomes
[KEGG (32); http://www.genome.jp/kegg/] pathways
(which are graphical diagrams representing knowledge on
molecular interaction and reaction networks for a wide
variety of cellular processes) that were significantly over-
represented relative to chance included: ‘‘pyruvate metabo-
lism’’ (P ¼ 3.65 3 10�5); ‘‘ubiquitin mediated proteolysis’’
(P ¼ 0.003); ‘‘VEGF signaling pathway’’ (P ¼ 0.003),
‘‘mTOR signaling pathway’’ (P¼ 0.004); and interestingly,
‘‘p53 signaling pathway’’ (P ¼ 0.02). Since the cell lines
used in our experiments were p53 null, the enrichment for
members of the KEGG pathway ‘‘p53 signaling pathway’’ in
the radiation-induced gene set suggested that these members

known to be activated by p53 [such as Scotin (33) and the
sestrins SESN1 and SESN2 (34, 35)] can also be activated
independent of p53; Scotin has been confirmed indepen-
dently by Terrinoni et al. to be able to be activated
independent of p53 (36).

Subclusters of radiation-induced genes, as opposed to the
complete list, showed enrichment of many distinct ontolo-
gies in the various gene clusters. For example, cluster A in
Fig. 1, which consisted of genes whose expression was
induced at a relatively constant level with respect to time
across all cell lines, was significantly enriched for members
of the gene ontology categories ‘‘mitochondrion’’ (P¼ 6.24
3 10�9) and ‘‘cellular protein catabolic process’’ (P¼ 0.02).
In addition, cluster C in Fig. 1, which consisted of genes
whose expression increased with time across all cell lines,
was enriched for members of gene ontology categories
‘‘positive regulation of programmed cell death’’ (P ¼
0.002), ‘‘antigen processing and presentation’’ (P¼ 6.40 3

10�7), ‘‘lysosome’’ (P ¼ 3.71 3 10�5) and ‘‘immune
response’’ (P ¼ 2.44 3 10�4). Other clusters of radiation
induced genes and the respective gene ontologies enriched
in those clusters are shown in Fig. 1.

Gene ontology categories significantly over-represented
relative to chance in the set of all radiation-repressed genes
included ‘‘spliceosome’’ (P ¼ 3.19 3 10�14), ‘‘cell cycle’’
(P ¼ 2.03 3 10�11), ‘‘cell division’’ (P ¼ 3.33 3 10�7) and
‘‘mitosis’’ (P ¼ 3.98 3 10�5). KEGG pathways signifi-
cantly over-represented relative to chance in the set of
radiation-repressed genes included ‘‘ribosome’’ (P ¼ 5.45
3 10�22), ‘‘cell cycle’’ (P ¼ 5.24 3 10�4) and ‘‘spliceo-
some’’ (P ¼ 3.78 3 10�19). The enrichment of genes
involved in apoptosis in the radiation-induced gene set,
and enrichment of genes involved in mitosis in the
radiation-repressed gene set, is consistent with prior
studies examining radiation-responsive genes in humans
(26–29) indicating conservation of the radiation respon-
siveness of these gene ontology categories/pathways in our
mouse model. As for the radiation-induced genes, clusters
of radiation-repressed genes showing highly correlated
expression were observed (Fig. 2) and gene ontology
analysis of these gene clusters showed enrichment. For
example, cluster A in Fig. 2, which consisted of genes
whose expression was more repressed in the 2250L cell
line than in the other cell lines, was enriched for the gene
ontology category ‘‘Zinc ion binding’’ (P ¼ 0.01), while
cluster G in Fig. 2 that consisted of genes whose repression
increased with time across all cell lines, was enriched for
the gene ontology categories ‘‘cell cycle’’ (P ¼ 2.93 3

10�5), ‘‘RNA processing’’ (P ¼ 1.20 3 10�21), ‘‘cell
division’’ (P¼ 0.003), ‘‘mitosis’’ (P¼ 0.02) and ‘‘nuclear
division’’ (P¼ 0.02); the repression of these gene clusters
likely reflect reduced cell proliferation, which is a known
cellular response to radiation. Other clusters of radiation-
repressed genes and the respective gene ontologies
enriched in those clusters are shown in Fig. 2.
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FIG. 1. Hierarchical clustering analysis of genes determined by one-class significance analysis of microarrays (SAM) to be radiation-induced
(4,278 genes) when testing three different mouse mammary tumor cell lines. Colored bars and/or letters indicate various gene clusters as discussed
in this article. To the left of the diagram are the gene ontology categories significantly enriched in the corresponding gene clusters indicated by the
colored bars and/or letters.
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FIG. 2. Hierarchical clustering analysis of genes determined by one-class significance analysis of microarrays (SAM) to be radiation-repressed
(2,689 genes) when testing three different mouse mammary tumor cell lines. Colored bars and/or letters indicate various gene clusters as discussed
in the text. To the left of the diagram are the gene ontology categories significantly enriched in the corresponding gene clusters indicated by the
colored bars and/or letters.

RADIATION-INDUCED GENE SIGNATURE PREDICTS RESPONSE TO NEOADJUVANT CHEMOTHERAPY 197

Downloaded From: https://complete.bioone.org/journals/Radiation-Research on 30 Jun 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Differential Response to Radiation among the Cell Lines

To identify genes that were differentially expressed after
irradiation between the T11, 2225L and 2250L cell lines,
we used a multi-class SAM analysis with each cell line as its
own class. Using an FDR of 0%, SAM identified 1,289
genes differentially expressed after irradiation between the
cell lines (hierarchical clustering of these genes is shown in
Fig. 3), indicating that while the cell lines do share common
genes that respond similarly to radiation (as discussed above
and shown in Figs. 1 and 2), there are also clear differences
in the cell lines’ radiation response. These data suggest that
the different intrinsic subtypes of breast cancer may have
differences in their response to radiation.

Figure 3 shows that the genes found by SAM to be
differentially expressed after irradiation between the cell
lines fall into distinct gene clusters that differ in terms of
how they respond across the three cell lines. For example,
cluster A in Fig. 3 (Supplementary Fig. S1; http://dx.doi.
org/10.1667/RR13485.1.S1) consists of genes that are
repressed in the 2225L basal-like cell line, but that are
induced in the other 2 cell lines in response to radiation.
Gene ontology categories significantly enriched in this
cluster according to DAVID include ‘‘response to wound-
ing’’ (P¼ 0.005) and ‘‘inflammatory response’’ (P¼ 0.02).
This gene cluster was also significantly enriched for
members of the KEGG pathway ‘‘MAPK signaling’’ (P ¼
0.01). Cluster B in Fig. 3 (Supplementary Fig. 2; http://dx.
doi.org/10.1667/RR13485.1.S1) consists of genes observed
to be repressed in the T11 claudin-low and 2225L basal-like
cell lines, while less repressed in the 2250L luminal cell line
in response to radiation. Gene ontology categories signif-
icantly enriched in this cluster include ‘‘M phase’’ (P ¼
0.006), ‘‘mitotic cell cycle’’ (P¼ 0.01) and ‘‘ribosome’’ (P
¼ 1.25 3 10�4). Cluster C in Fig. 3 (Supplementary Fig. 3;
http://dx.doi.org/10.1667/RR13485.1.S1) consists of genes
repressed in the 2250L and 2225L cell lines while less
repressed or slightly induced in the T11 cell line in response
to radiation; gene ontology categories significantly enriched
in this cluster include ‘‘myofibril assembly’’ (P ¼ 0.002),
‘‘muscle contraction’’ (P ¼ 0.02) and ‘‘muscle cell
development’’ (P¼ 0.02). Cluster E in Fig. 3 (Supplemen-
tary Fig. 5; http://dx.doi.org/10.1667/RR13485.1.S1) con-
sists of genes induced in the 2250L and 2225L cell lines
while repressed or less induced in the T11 cell line in
response to radiation; gene ontology categories significantly
enriched in this cluster include ‘‘zinc ion binding’’ (P¼5.76
3 10�4) and ‘‘DNA binding’’ (P ¼ 0.006).

Cluster D in Fig. 3 (Supplementary Fig. 4; http://dx.doi.
org/10.1667/RR13485.1.S1) consists of genes induced in
the 2225L basal-like cell line while repressed or less
induced in the other 2 cell lines in response to radiation.
Gene ontology categories significantly enriched in this
cluster include ‘‘blood vessel development’’ (P ¼ 0.003),
‘‘positive regulation of mesenchymal cell proliferation’’ (P
¼ 0.008) and ‘‘cell motion’’ (P ¼ 0.02). Interestingly this

gene cluster contained the genes SESN3 and TCF4 found to
be regulated by the transcription factor YBX1 by Evdoki-
mova et al. (37). In the experiments done by Evdokimova et
al. the enforced expression of YBX1 in noninvasive breast
epithelial cells was found to directly activate translation of
mRNAs encoding Snail1 and other transcription factors
such as SESN3 and TCF4 that are implicated in activation
of mesenchymal genes, resulting in induction of an
epithelial-mesenchymal transition (EMT) accompanied by
enhanced metastatic potential. Other genes in cluster D in
Fig. 3 such as DDR1, FLT1, NOTCH3 and PDZRN3 have
been identified as candidate YBX1-regulated genes through
chromatin immunoprecipitation (ChiP)-on-chip analysis
performed by Finkbeiner et al. (38). Also included in
cluster D is the gene STAT3, the prosurvival pathway of
which has been shown to be engaged by YBX1 to protect
cells from apoptosis (39). Another study has suggested that
STAT3 may indirectly activate transcription of YBX1 by
activating transcription of TWIST, which in turn activates
transcription of YBX1 (40). In summary, our multiclass
SAM analysis has identified genes differentially expressed
after irradiation between the cell lines, suggesting that
differences in radiation response exist within the various
breast cancer intrinsic subtypes and further, suggests
possible biological bases for these differences in radiation
response.

Analysis of Human Breast Tumors Using the Radiation-
Induced Gene Set

We hypothesized that due to similarities between the
cellular response mechanisms to radiation and chemother-
apy, expression differences of radiation-induced genes may
be useful in predicting response to neoadjuvant chemother-
apy. To test this hypothesis, first we hierarchically clustered
a training set of 337 human primary breast samples
(consisting of 320 breast tumor samples and 17 normal
breast samples) published by Prat et al. (23), using the
murine radiation-induced gene set of 4,278 genes (shown in
Fig. 1) converted into their human orthologs (complete
cluster diagram shown in Fig. 4A); this was done to identify
gene sets/clusters composed of genes that are highly
concordantly expressed within human breast samples.

We hypothesized that the mean expression of one or more
of these gene sets/clusters may be useful in predicting an
individual tumor’s response to neoadjuvant chemotherapy.
To avoid spurious results that may occur with small gene
clusters, or poorly correlated gene clusters, we limited
analysis to the most correlated gene clusters (node
correlation .¼0.45) and those nodes that were greater than
20 genes in size. This identified 23 non-overlapping gene
clusters. We then tested the ability of the mean expression
of each of these 23 gene sets to predict response to
neoadjuvant chemotherapy by using a dataset published by
Hatzis et al. (24), which consisted of microarray data from
473 HER2-negative breast cancer tumors taken prior to
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FIG. 3. Hierarchical clustering analysis of genes determined by multi-class significance analysis of microarrays (SAM) to be differentially
expressed across the three murine-derived mammary tumor cell lines T11, 2225L and 2250L in response to radiation (1,289 genes). Colored bars
and/or letters indicate various gene clusters as discussed in this article. To the left of the diagram are the gene ontology categories significantly
enriched in the corresponding gene clusters indicated by the colored bars and/or letters.
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FIG. 4. Hierarchical cluster analysis of the Prat et al. (49) 337 primary human breast sample dataset (consisting of 320 breast tumor samples
and 17 normal breast samples) using the radiation-induced murine gene list converted into human orthologous genes. Panel A: Scaled down
representation of the complete cluster diagram. Panel B: 30 gene set found to be significant in predicting pCR and survival.
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sequential taxane and anthracycline-based neoadjuvant

chemotherapy; this dataset had associated pCR and distant

relapse-free survival (DRFS) data. Using univariate logistic

regression modeling, only 4/23 of the tested gene clusters

had a significant Bonferroni-corrected P value in predicting

pCR. To determine which of these 4 gene clusters could be

useful in predicting pCR, we then performed multivariate

logistic regression modeling with each of these 4 gene sets

in a model that included the standard clinical variables and

other gene expression based predictors including those used

by Hatzis et al. (24, 41). Only 1 gene cluster (consisting of

30 genes, Fig. 4B and Table 1) was significant in

multivariate analysis (Table 3). As seen in Tables 2 and 3,

a higher mean expression of this 30 gene set was associated

with a higher likelihood of pCR. As shown in Table 2B, this

30 gene set was not only able to significantly predict pCR in

univariate logistic regression modeling on the entire Hatzis

et al. patient dataset, but was also able to significantly

predict pCR within individual clinical subsets of patients,

including the clinically relevant triple-negative subset and

the more biologically relevant basal-like patient subset.

We next tested the ability of the 30 gene cluster to predict

pCR on a second and completely independent test dataset

published by Gluck et al. (25), which consisted of

microarray data from 95 HER2-negative breast cancer

tumors taken prior to neoadjuvant capecitabine and

docetaxel chemotherapy. This dataset had associated pCR

data and TP53 mutation status data using the AmpliChip

TP53 assay. As shown in Table 4, the 30 gene set

significantly predicted pCR in univariate logistic regression

modeling on the entire dataset as well as on the biologically

relevant basal-like patient subset. In multivariable logistic

regression modeling (Table 5) that included the standard

clinical parameters, intrinsic subtype and TP53 mutation

status, the 30 gene set again remained a statistically

significant predictor of pCR.

As both the Prat et al. and Hatzis et al. datasets had

associated survival data, we also tested the prognostic value

of the 30 gene set to predict survival. To achieve this goal,

we grouped patients from each dataset into halves or tertiles

based on rank order mean expression value of the 30 gene

set. Kaplan-Meier analysis showed significant differences

among patients when divided into halves or tertiles for

distant relapse-free survival (DRFS) in the Hatzis et al.
dataset (P¼ 2.48 3 10�7 and 0.0002, respectively), and for

overall survival (OS; P ¼ 1.45 3 10�6 and 1.18 3 10�7,

respectively) and relapse-free survival (RFS; P ¼ 2.08 3

10�5 and 7.95 3 10�5, respectively) in the Prat et al. dataset.

TABLE 1
Radiation-Induced 30 Gene Signature List, Which Was Predictive of Pathologic Complete

Response (pCR) to Neoadjuvant Chemotherapy in Breast Cancer Patients

Gene symbol Gene name Entrez gene ID

ADORA2B adenosine A2b receptor 136
AQP5 aquaporin 5 362
ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4 50649
ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 23229
ASS1 argininosuccinate synthase 1 445
C1orf198 chromosome 1 open reading frame 198 84886
CCDC93 coiled-coil domain containing 93 54520
COL4A4 collagen, type IV, alpha 4 1286
CPNE2 copine II 221184
DAB2IP DAB2 interacting protein 153090
DUSP22 dual specificity phosphatase 22 56940
GFOD1 glucose-fructose oxidoreductase domain containing 1 54438
LDHB lactate dehydrogenase B 3945
MCCC1 methylcrotonoyl-Coenzyme A carboxylase 1 (alpha) 56922
NFIB nuclear factor I/B 4781
PDE9A phosphodiesterase 9A 5152
PDHA1 pyruvate dehydrogenase (lipoamide) alpha 1 5160
PLA2G4A phospholipase A2, group IVA (cytosolic, calcium-dependent) 5321
PNRC1 proline-rich nuclear receptor coactivator 1 10957
PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 10891
PRKX protein kinase, X-linked 5613
SCPEP1 serine carboxypeptidase 1 59342
SEC14L1 SEC14-like 1 (S. cerevisiae) 6397
SLC25A27 solute carrier family 25, member 27 9481
SLC25A37 solute carrier family 25, member 37 51312
SOX9 SRY (sex determining region Y)-box 9 6662
TANK TRAF family member-associated NFKB activator 10010
VASN vasorin 114990
VLDLR very low density lipoprotein receptor 7436
WNT6 wingless-type MMTV integration site family, member 6 7475
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In the Hatzis et al. dataset, patients with tumors of the basal-

like subtype, when grouped into halves or tertiles based on

rank order mean expression value of the 30 gene set,

showed significant differences in DRFS (Fig. 5), with

patients having higher expression of the 30 gene set having

better DRFS.

Gene ontology analysis of the 30 gene set using DAVID

revealed significant enrichment for the following categories:

TABLE 2
Univariate Logistic Regression Analysis to Predict Pathologic Complete Response (pCR) Using the
Radiation-Induced 30 Gene Signature for (Part A) All Patients and (Part B) Select Patient Subsets

of the Hatzis et al. (24) Dataset

Part A
Number of

patients
Number with

pCR (%)
Odds ratioa (95% CI) of

pCR vs. no pCR P AUC

Patient set

All patients 473 96 (20%) 8.313 (4.64–15.47) ,0.0001 0.735

Part B

Patient subset

ER– 192 66 (34%) 8.86 (2.98–29.78) ,0.0001 0.687
ERþ 280 30 (11%) 3.47 (1.17–10.16) 0.0258 0.593
Triple negative 167 56 (32%) 8.16 (2.51–30.20) 0.0003 0.684
Basal-like subtypeb 133 54 (41%) 7.51 (2.10–31.07) 0.0016 0.672
Claudin-low subtype 73 17 (23%) 11.90 (0.83–271.22) 0.089 0.658

Notes. Bold numbers indicate statistical significance (P , 0.05). AUC ¼ area under curve from receiver
operating characteristic (ROC) curve for logistic regression model, pCR¼ pathological complete response, CI¼
confidence interval.

a Odds ratio defined for per unit increase in regressor variable (i.e., mean expression value of radiation-
induced 30 gene set, defined as a continuous variable).

b Intrinsic subtype defined using PAM50 predictor (43).

TABLE 3
Multivariate Logistic Regression Analysis to Predict Pathologic Complete Response for the Hatzis
et al. (24) Dataset Using Multiple Possible Predictive Factors Including the Radiation-Induced 30

Gene Signature, the Standard Clinical Parameters and Additional Genomic Biomarkers

Variable Odds ratio (95% CI) of pCR vs. no pCR P

Radiation-induced 30 gene seta 4.52 (1.46–14.68) 0.0087
SET index: High vs. Low [Symmans et al. (41)] 0.67 (0.07–4.47) 0.69
SET index: Int vs. Low [Symmans et al. (41)] 1.14 (0.21–4.84) 0.86
Chemosensitivity predictor (Hatzis et al. (24)]:
Rx sensitive vs. insensitive

2.45 (1.23–5.01) 0.010

Excellent pathologic response predictor
[(Hatzis et al. (24)]: RCB–0/I vs. RCB-II/III

6.85 (3.26–15.27) ,0.0001

ER pos vs. neg 0.83 (0.33–2.03) 0.67
PR pos vs. neg 1.13 (0.5–2.61) 0.76
HER2 pos vs. neg 2.21 (0.40–12.59) 0.36
Histologic grade 2 vs. 1 0.80 (0.12–16.0) 0.85
Histologic grade 3 vs. 1 1.61 (0.23–32.7) 0.66
Clinical T stage 2 vs. 1 1.20 (0.10–27.9) 0.89
Clinical T stage 3 vs. 1 1.04 (0.08–24.3) 0.97
Clinical T stage 4 vs. 1 0.62 (0.05–14.9) 0.72
Basal-like vs. LumA intrinsic subtypeb 4.61 (1.01–23.7) 0.049
LumB vs. LumA intrinsic subtype 5.04 (1.35–22.1) 0.015
Normal vs. LumA intrinsic subtype 3.16 (0.59–16.8) 0.17
Claudin vs. LumA intrinsic subtype 4.07 (0.88–20.8) 0.073
Her2 vs. LumA intrinsic subtype 2.80 (0.50–15.8) 0.23

Notes. Bold numbers indicate variables found to be significant (P , 0.05) in the logistic regression model.
pCR ¼ pathological complete response, CI ¼ confidence interval, RCB–0/I ¼ pCR or minimal residual cancer
burden, defining excellent response. RCB–II/III¼moderate or extensive residual cancer burden, defining lesser
response.

a Odds ratio defined for per unit increase in regressor variable (i.e., mean expression value of radiation-
induced 30 gene set, defined as a continuous variable).

b Intrinsic subtype defined using PAM50 predictor (43).
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‘‘pyruvate metabolic process’’ (genes LDHB, PPARGC1A,

PDHA1; P ¼ 0.002); ‘‘response to extracellular stimulus’’

(genes ADORA2B, PPARGC1A, PLA2G4A, VLDLR; P¼
0.007); and ‘‘generation of precursor metabolites and

energy’’ (genes LDHB, PPARGC1A, PDHA1, SLC25A27;

P ¼ 0.017). Interestingly, our 30 gene set was also

significantly enriched for members of the KEGG pathway

‘‘vascular smooth muscle contraction’’ (genes PLA2G4A,

PRKX, ADORA2B; P ¼ 0.027). When it was compared

with other gene expression-based predictors, only one

common gene (NFIB) was found between our 30 gene

predictor and the predictors published by Hatzis et al. (24).

There was no overlap with either the 11-gene proliferation

signature developed by Parker et al. (42), the PAM50 gene

signature used by Gluck et al. or Prat et al. (23, 25, 43) or

the 21 gene recurrence score assay developed by Paik et al.
(44), which is known as Oncotype DX.

DISCUSSION

The search for biomarkers that predict pCR to neo-

adjuvant chemotherapy for breast cancer has been an area of

intense research in recent years. pCR is an important clinical

end point, as patients who achieve pCR to neoadjuvant

chemotherapy are more likely to have improved overall and

disease-free survival (3). Gene expression-based analyses

have contributed to this research, with the development of

several predictive gene sets and assays based on selection of

genes that directly correlate with patient/tumor outcomes

(24, 45, 46). We took a different approach and selected

genes using no knowledge of survival outcomes or response

TABLE 4
Univariate Logistic Regression Analysis to Predict Pathologic Complete Response (pCR) Using the
Radiation-Induced 30 Gene Signature for (Part A) All Patients, and (Part B) Basal-like Patient

Subset of the Gluck et al. (22) Dataset

Part A
Number

of patients
Number

with pCR (%)
Odds ratioa (95% CI) of

pCR vs. no pCR P AUC

Patient set

All patients 95 10 (10%) 14.82 (2.00–180.8) 0.0071 0.738

Part B

Patient subset

Basal-like subtypeb 28 6 (21%) 25577 (7.82–2.8 3 109) 0.01 0.82

Notes. Bold numbers indicate statistical significance (P , 0.05). AUC ¼ area under curve from receiver
operating characteristic (ROC) curve for logistic regression model, pCR¼ pathological complete response, CI¼
confidence interval.

a Odds ratio defined for per unit increase in regressor variable (i.e., mean expression value of radiation-
induced 30 gene set, defined as a continuous variable).

b Intrinsic subtype defined using PAM50 predictor (43).

TABLE 5
Multivariate Logistic Regression Analysis to Predict Pathologic Complete Response for the Gluck
et al. (22) Dataset Using Multiple Possible Predictive Factors Including the Radiation-Induced 30

Gene Signature, the Standard Clinical Parameters and Other Possible Biomarkers

Variable Odds ratio (95% CI) of pCR vs. no pCR P

Radiation-induced 30 gene seta 2167 (2.41–4.4 3 107) 0.02
ER pos vs. neg 0.07 0.33
PR pos vs. neg 4.4 3 10�9 0.02
Histologic grade 2 vs. 1 0.83 0.93
Histologic grade 3 vs. 1 1.27 0.90
Clinical T stage 2 vs. 1 0.10 0.26
Clinical T stage 3 vs. 1 9 3 10�11 0.004
Basal-like vs. LumA intrinsic subtypeb 0.0006 0.11
LumB vs. LumA intrinsic subtype 6.4 3 10�8 0.99
Normal vs. LumA intrinsic subtype 1.4 3 10�11 0.01
Her2 vs. LumA intrinsic subtype 0.01 0.25
TP53 mutation by AmpliChip assay: Mutant vs. wild-type 0.28 0.44

Notes. Bold numbers indicate variables found to be significant (P , 0.05) in the logistic regression model.
a Odds ratio defined for per unit increase in regressor variable (i.e., mean expression value of radiation-induced
30 gene set, defined as a continuous variable). b Intrinsic subtype defined using PAM50 predictor (43).
Abbreviations: pCR ¼ pathological complete response; CI¼ confidence interval.
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to therapy; these were instead selected on the basis of

radiation induction and their natural patterns of expression

in primary breast tumors. We objectively identified gene

sets/clusters composed of radiation-induced genes that were

highly concordantly expressed in human breast tumor

samples. We then systematically tested the ability of each

of these gene sets to predict pCR on an independent test

dataset (24). Only one gene cluster consisting of 30 genes

FIG. 5. Kaplan-Meier survival curves of patients with basal-like tumors from the Hatzis et al. dataset (24)

divided into (panel A) halves or (panel B) tertiles according to rank order mean expression value of the radiation-
induced 30 gene set. P values were calculated using the log-rank test.
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was able to significantly predict pCR in both univariate
analysis and multivariate analysis that included standard
clinical variables and breast intrinsic subtype. In addition,
this 30 gene signature was able to predict pCR in both
univariate and multivariate analysis on a second indepen-
dent test dataset (25), and thus it has shown utility on two
different validation data sets.

As determined by gene ontology analysis, our radiation-
induced 30 gene signature was significantly enriched for
genes involved in pyruvate metabolism, generation of
precursor metabolites and energy, suggesting that tumors
most sensitive to chemotherapy are those with highest
metabolic activity, consistent with the known mechanisms
of action of several chemotherapeutics used in the datasets
we analyzed, including doxorubicin and capecitabine (47–
53). Genes composing our 30 gene signature include lactate
dehydrogenase B (LDHB), which is a subunit of the lactate
dehydrogenase enzyme, the key glycolytic enzyme catalyz-
ing formation of lactic acid from pyruvate. LDHB has
recently been shown to be a downstream target of mTOR
critical for oncogenic mTOR-mediated tumorigenesis (54).
It was also recently shown to be an essential gene in basal-
like/triple-negative breast cancer metabolism (55). Proteo-
mic analysis done by Cortesi et al. (56) showed that high
expression of the LDHB protein in tumor interstitial fluid
was associated with response to chemotherapy in breast
cancer patients, consistent with our results. Interestingly, the
downregulation of DAB2 interacting protein (DAB2IP),
another member of our 30 gene set and a novel member of
the Ras GTPase-activating protein family, was recently
reported by Kong et al. (57) to result in resistance to
ionizing radiation in prostate cancer cells. Our results
suggest that the low expression of DAB2IP is also
associated with resistance to chemotherapy in breast cancer.

Not only has our analysis of radiation-responsive genes
yielded a useful tool for predicting pCR, it has also
yielded information indicating that the different intrinsic
subtypes of breast cancer may have distinct biological
differences in their response to radiation. As shown in
Fig. 3, the genes found to be differentially expressed after
irradiation between the murine cell lines representative of
the different intrinsic subtypes (claudin-low, basal-like
and luminal) fall into distinct clusters. These clusters
differ not only in how they respond in the cell lines to
radiation but also their biological function, possibly
reflecting differential activation or repression of various
pathways in the different subtypes in response to
radiation. To support this hypothesis, genome wide
sequencing of the 2225L basal-like tumor has shown a
possible YBX1 activating mutation in this tumor, but not
in the T11 or 2250L tumors (unpublished results).
Consistent with the possibility of an YBX1 activating
mutation in the 2225L tumor, we observed induction of
multiple YBX1 known and putative targets in the 2225L
basal-like cell line (Fig. 3, gene cluster D; Supplementary
Fig. S4: http://dx.doi.org/10.1667/RR13485.1.S1) in re-

sponse to radiation, which was not seen in the other cell
lines. Active/expressed YBX1 appears to be an important
feature of the basal-like subtype (58–61). With our
observations, this suggests an important role of this gene

not only in defining the basal-like subtype but also in the
radiation response of this subtype. Experiments are
ongoing in our lab to test this hypothesis.

In conclusion, our radiation-induced 30 gene signature
shows significant promise as a clinically relevant predictor

of pCR in breast cancer patients. We have shown its
efficacy in predicting pCR in two independent test
datasets. Furthermore we have shown by multivariate
analysis that it adds significant information in predicting
pCR beyond what is provided by the standard clinical

parameters, breast tumor intrinsic subtypes, p53 mutation
status and other gene expression-based predictors includ-
ing those published by Hatzis et al. (24). Our results are
hypothesis generating, but based on the analysis presented

here, we feel that our predictor warrants further investi-
gation, including validation in prospectively designed
clinical trials, to confirm the clinical validity and utility
of our 30 gene signature.

SUPPLEMENTARY INFORMATION

Supplementary Fig. S1. http://dx.doi.org/10.1667/

RR13485.1.S1; Gene cluster A shown Fig. 3 (upper left)
significantly enriched for genes involved in wound and
inflammatory response as determined by DAVID.

Supplementary Fig. S2. http://dx.doi.org/10.1667/
RR13485.1.S1; Gene cluster B from Fig. 3 (upper left)

significantly enriched for genes involved in M phase,
mitotic cell cycle and ribosome as determined by DAVID.

Supplementary Fig. S3. http://dx.doi.org/10.1667/
RR13485.1.S1; Gene cluster C from Fig. 3 (upper left)
significantly enriched for genes involved in muscle
contraction, muscle cell development, and myofibril

assembly as determined by DAVID.

Supplementary Fig. S4. http://dx.doi.org/10.1667/
RR13485.1.S1; Gene cluster D from Fig. 3 (upper left)
significantly enriched for genes involved in positive
regulation of mesenchymal cell proliferation, blood vessel

development and cell motion as determined by DAVID.

Supplementary Fig. S5. http://dx.doi.org/10.1667/
RR13485.1.S1; Gene cluster E from Fig. 3 (upper left)
significantly enriched for genes involved in zinc ion and
DNA binding as determined by DAVID.
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