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Abstract

Bionomic features of blowflies may be clarified and detailed by the deployment of appropriate 

modelling techniques such as artificial neural networks, which are mathematical tools widely 

applied to the resolution of complex biological problems. The principal aim of this work was 

to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial 

Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System 

(ANFIS), to ascertain whether these tools would be able to outperform a classical statistical 

method (multiple linear regression) in the prediction of the number of resultant adults 

(survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: 

Calliphoridae), based on initial larval density (number of larvae), amount of available food,

and duration of immature stages. The coefficient of determination (R
2
) derived from the RBF

was the lowest in the testing subset in relation to the other neural networks, even though its R
2

in the training subset exhibited virtually a maximum value. The ANFIS model permitted the 

achievement of the best testing performance. Hence this model was deemed to be more 

effective in relation to MLP and RBF for predicting the number of survivors. All three 

networks outperformed the multiple linear regression, indicating that neural models could be 

taken as feasible techniques for predicting bionomic variables concerning the nutritional 

dynamics of blowflies.
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Introduction

Being a mechanical vector of pathogenic 

microorganisms, Chrysomya megacephala 

(F.) (Diptera: Calliphoridae) is a blowfly of 

considerable medical and veterinary 

importance (Guimarães et al. 1978; 

Furlanetto et al. 1984; Laurence 1986; Lima 

et al. 1991; Gabre et al. 2005). C.

megacephala is able to cause facultative 

myiasis in humans and animals, has an 

expanding geographic distribution, and was 

unintentionally introduced in Brazil in the 

1970s (Zumpt 1965; Guimarães et al. 1983; 

Laurence 1986; Gabre et al. 2005). 

Moreover, the genus Chrysomya has been 

increasingly deployed in forensic studies 

for the determination of human postmortem 

intervals (Greenberg 1991; Catts and Goff 

1992; Arnaldos et al. 2005; Gomes and Von 

Zuben 2005). 

The larval phase of C. megacephala is 

deemed to be a critical developmental 

period in which intense limitation of 

resources frequently occurs (Levot et al. 

1979; Goodbrod and Goff 1990; Reis et al. 

1994). This limitation is conducive to 

dynamic competitive processes, wherein 

each larva attempts to feed off the available 

resources, scrambling to exploit the feeding 

substrate before the depletion of the food

resource (Ullyett 1950; de Jong 1976; 

Lomnicki 1988; Von Zuben et al. 2001). 

Therefore, such exploitative conditions are 

embedded in interrelated processes that take 

place at the individual and population levels 

(Wijesundara 1957; Herzog et al. 1992; 

Von Zuben et al. 2001; Tammaru et al. 

2004).

Regarding the nutritional ecology of 

immature blowflies, it has been suggested 

that the competition for food is influenced, 

concomitantly, by larval density and 

availability of food. Hence it is very useful 

and important to investigate the crowding 

level of immature individuals on the 

feeding resources by means of simultaneous 

variations of larval densities and amounts of 

food (Von Zuben et al. 2000; Ireland and 

Turner 2006).

The length of the larval stage of C.

megacephala represents a useful variable 

for the adequate comprehension of its 

nutritional ecology as a whole. The 

importance of this parameter is strongly 

connected with the fact that individuals that

require relatively long periods of larval 

development in order to reach their adult 

phases may undergo harsh feeding 

conditions (Von Zuben et al. 2001). 

Moreover, the accurate measurement of the 

larval phase duration may substantially 

contribute to the determination of the most 

cost-effective relationships between initial 

larval density and amount of available food 

in relation to feasible mass rearing 

techniques (Von Zuben et al. 2001; 

Tammaru et al. 2004).

The outcomes of exploitative competition 

for feeding resources determine the 

dynamics of population parameters such as 

survival, fecundity, weight, and size of the 

emergent adults (Von Zuben et al. 1993; 

Papandroulakis et al. 2000; Von Zuben et 

al. 2000; Ireland and Turner 2006). In 

relation to the resultant individuals, Von 

Zuben et al. (1993) regard the number of 

emerging adults as a variable that tends to 

decrease with an increase in the number of 

immature individuals of C. megacephala.

Under natural environmental conditions, 

there are several difficulties in conducting 

experiments and collecting suitable data on 

population bionomic features of C.

megacephala (Gabre et al. 2005). Most 
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natural situations do not allow researchers

to obtain representative sample sizes or 

detailed descriptions of every 

developmental phase, whereas in laboratory 

conditions, immature specimens of C.

megacephala feeding on a wide variety of 

substrates are able to develop into more 

advanced stages in an effective manner 

(Roy and Dasgupta 1971).

The complexities of the nutritional ecology 

of blowflies could be clarified and detailed 

by the deployment of appropriate modelling 

techniques such as artificial neural 

networks, which are mathematical tools 

widely applied to the resolution of complex 

biological problems. A notable feature of 

artificial neural networks is their 

independence from any assumptions about 

the theoretical distribution shape of the data 

used. Also, the performance of artificial 

neural networks over linear or non-linear

regression-based statistical models is at 

least interesting, as the dimensionality 

and/or the non-linearity of the systems 

increase (Schultz and Wieland 1997; 

Haykin 1999; Schultz et al. 2000).

Neural networks algorithms are founded on 

the construction of models that consist of a 

great number of simple processing units 

called neurons (or nodes) that possess 

several connections between them and are 

lined up in layers. The number of neurons 

in the input layer corresponds to the 

variables that will be used to feed the neural 

network and should be the most relevant 

variables to the problem in question (Jang 

1993; Haykin 1999).

Artificial neural networks were conceived 

with the aim of imitating the human brain 

functionality. Thus part of the terminology

used in the area of artificial neural 

networks, namely neurons, synapses, 

learning, layers, etc., is due to such a fact. 

However, it is important to emphasise that 

these terms are only associated with 

mathematical functions or the method of 

utilising them.

Regarding the use of neural networks in 

entomology, considerable improvements 

have been achieved in recent years. Obach 

et al. (2001) predicted the abundance of 

selected water insects in a small stream in 

central Germany by means of neural 

models. Using environmental data that were 

collected as part of a study of microhabitat 

use by butterflies, Bryant and Shreeve 

(2002) highlighted the potential for utilising 

neural networks in developing predictive 

models of microhabitat temperature. 

Several multidisciplinary studies have 

described the development of scale 

independent models, based around coupling 

artificial neural networks with climate-

hydrological process models in order to 

simulate species’ distribution, including 

insect species (Pearson et al. 2002; Pearson 

and Dawson 2003; Harrison et al. 2006). 

Worner and Gevrey (2006) used a self-

organising map, which is an artificial neural 

network model, with the purpose of 

identifying global pest species assemblages 

and potential invasive insects, including

dipteran species. 

Furthermore, neural models were assessed 

in combination with a set of well-known

ecostatistics in order to conduct function 

approximation (function fitting) and 

documentation based on invertebrate data 

(99 invertebrate families), including

immature and adult specimens (Zhang and 

Barrion 2006). Howe et al. (2007) used 

neural networks to describe and predict 

insect body temperatures and insect 

behaviour in relation to environmental 

variables. Zhang and Zhang (2008) 

deployed neural models with the purpose of 

assessing the effectiveness of neural 
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networks in modelling survival process and 

mortality distribution of a holometabolous 

insect (Spodoptera litura, tobacco 

cutworms) at different temperatures. Zhang 

et al. (2008b) utilised various neural

networks in order to fit and recognise 

spatial distribution patterns of grassland 

insects. Nonetheless, apart from the present 

study, neural models have not been directly 

employed in the modelling of the nutritional 

ecology of blowflies.

Therefore, the principal aim of this work is 

to use well-known neural networks to 

ascertain whether these tools are able to 

outperform a classical statistical method 

(multiple linear regression) in the prediction 

of the number of resultant adults of 

experimental populations of C.

megacephala, based on initial larval density 

(number of larvae), amount of available 

food, and duration of immature stages (in 

hours). Results obtained through statistical 

methods were compared with those derived 

from artificial neural networks algorithms 

for the purpose of achieving such a goal. 

Additionally, some basic concepts of neural 

models are outlined in order to permit 

entomologists to assess the potential of 

using artificial networks in the nutritional 

ecology of other insect species.

Materials and Methods

Formation of the laboratory generations
Adult individuals of both sexes were 

collected in Campinas (22º 49’ 9.52” S and 

47º 4’ 12.54” W), São Paulo, Brazil. They

were then identified and kept in nylon net 

cages (30 x 30 x 48 cm). Decaying organic 

matter, such as rodent and fish carrions,

was utilised as bait. Prior to identification,

the individuals were anaesthetised in a

freezer at -18º C for 30 s. These insects 

were provided with water and refined sugar 

ad libitum and taken as the parental 

generation of this study. The cages were 

kept in a controlled temperature room (25 +

1º C) at a relative humidity of 60 + 10% 

and a photoperiod of 12:12 light:dark. In 

order to induce the development of the 

gonotrophic cycle, females were supplied

with fresh macerated beef liver as a source 

of protein. For the formation of the next 

generations, ovipositions were obtained 

using small pots containing macerated 

decaying beef that were put into the cages 

in order to stimulate egg laying. 

Different larval densities were formed using 

glass pots (8 cm in height x 7 cm in 

diameter) that contained four amounts (15, 

30, 60, and 90 g) of an artificial diet 

(feeding resource) proposed and described 

by Leal et al. (1982). Such larval densities 

were based on F2 individuals (second 

laboratory generation), and five different 

proportions of larvae to amount of food 

were considered: 5, 10, 20, 30 and 40 

larvae/g. Thus the larval densities utilised 

were: 75, 150, 300, 450 and 600 larvae, 

each in pots containing 15g of food; 150, 

300, 600, 900 and 1200 larvae growing in 

pots that contained 30 g of food; 300, 600, 

1200, 1800, and 2400 larvae in pots with 60

g of food; and 450, 900, 1800, 2700, and 

3600 larvae in pots containing 90 g of the 

artificial diet.

The larvae counts were done using newly 

hatched individuals. Artificial diet pots 

were covered with organza and kept in a

climatic room at 25 + 0.2º C, 60 + 10% 

relative humidity and 12:12 L:D. After the 

complete exhaustion of the food substrate, 

the pots were put into bigger plastic pots 

(20 cm in height x 12 cm in diameter) with 

a 5 cm-thick sawdust layer (pupation 

substrate). Organza was removed from the 

small pots in order to enable the larvae to 

move through these pots toward the 

sawdust. The bigger plastic pots were 
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covered with organza and kept at identical 

experimental conditions.

Variables
In this study, the number of survivors 

(resultant adults) was the dependent 

variable (output), and the others were 

considered the independent or explanatory 

variables (inputs), namely larval density 

(initial number of larvae), amount of 

Figure 1. Representation of the number of survivors (actual values) as a function of Chrysomya megacephala larval 
density (initial number of larvae), amount of food (in grams), and duration of immature stages (from the first instar larval 
stage to the final pupal stage, in hours). High quality figures are available online.
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available food (in grams), and duration of 

immature stages (from the first instar larval 

stage to the final pupal stage, in hours). 

Such variables were primarily chosen based 

on their biological significance for the 

comprehension of the nutritional ecology of 

blowflies. Combinations of the three input 

variables provided 40 values (sample size) 

concerning the output variable. 

The whole data set (n = 40) provided a 

coefficient of determination of 0.59 (F =

30.94, p < 0.001) prior to splitting the 

original data set into smaller subsets by 

means of neural network techniques. A 

stepwise linear regression (forward 

selection) revealed that the joint 

contribution of larval density and duration

of immature stages to the linear regression 

was equal to 2%. This low value, albeit 

statistically significant (p < 0.001), did not 

represent the practical importance of such 

variables because it is biologically 

inconceivable that the number of resultant

adults could vary only as a function of the 

available amount of food, irrespective of 

variations in larval density and duration of 

immature stages (Levot et al. 1979; Getz 

1984; Von Zuben et al. 1993, 2000; Ireland 

and Turner 2006).

Each independent variable (input) produced 

distinct output responses (Figure 1). On the 

whole, such explanatory attributes 

generated non-linear variation in the 

number of survivors. Additionally, an 

overall lack of strong linear relationships 

between input and output variables was

observed (Figure 2), and the accuracy of 

conventional regression methods may have

been significantly reduced in the presence 

of non-linearity (Neter et al. 1996; Schultz 

and Wieland 1997). Moreover, the p-values

concerning the significance of the input

variables were based on underlying 

statistical assumptions (Neter et al. 1996). 

On the other hand, artificial neural 

networks are able to model complex non-

linear systems, even when the exact nature 

of any relationships is unknown (Schultz 

and Wieland 1997; Schultz et al. 2000; 

Bryant and Shreeve 2002; Howe et al. 

2007; Zhang et al. 2008b). From a 

biological point of view, all the explanatory 

variables are considerably important, and 

neural models permitted the utilisation of 

such variables, irrespective of their 

statistical significance.

Figure 2.Representation of the whole data set (n = 40) prior to neural network procedures. Samples (x-axis): each 
combination of input values is shown. The y-axis shows the number of survivors (dependent variable) and the three input 
variables (independent variables).  is the number of survivors (output variable).  is the larval density (initial number of 
larvae).  is the amount of food (in grams).  is the duration of Chrysomya megacephala immature stages (from the first 
instar larval stage to the final pupal stage, in hours). Values concerning the larval density were divided by 100 for ease of 
presentation. High quality figures are available online.
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Basic concepts of the utilised neural 

network models 

Neural networks technology utilises a 

multilayered approach to approximating 

complex mathematical functions in order to 

process data. It consists of many processing

elements (nodes or neurons) that work in a 

parallel manner. Neurons are connected to 

each other in layers that are interconnected. 

The connections between neurons weight 

the data transformation process of each 

neuron, sending the information to the next

node or output layer. Such connections are 

known as synaptic strengths or weights. 

The training process starts by furnishing the 

neural network with a variety of examples 

(called training sets). The data sets 

normally contain input and output data. The 

neural model creates connections and is 

able to learn patterns based on the 

relationship between input and output data 

sets via the adaptation of the synaptic 

weights to changing inputs.

Three well-known neural networks, namely

Multi-Layer Perceptron (MLP) (Haykin

1999), Radial Basis Function (RBF)

 (Wasserman 1993), and Adaptive Neural 

Network-Based Fuzzy Inference System 

(ANFIS) (Jang 1993), were used to

compare their outcomes with those derived 

from the deployment of multiple linear 

regression (a classical statistical method).

The coefficient of determination (R
2
),

which lies within the interval 0  R
2

1,

was utilised for comparing such outcomes. 

A zero R
2
 indicates that the predictive 

model does not explain the variance of the 

actual data set.

The statistical assumptions of the multiple 

linear regression model and its feasibility 

followed the detailed descriptions in Neter 

et al. (1996). A basic description of the 

neural models will be made in the following 

sections.

Multi-Layer Perceptron (MLP)

MLP is the most widely employed type of 

feed-forward neural network (Haykin 

1999). MLP networks consist of an input 

layer, one or more hidden layers, and an 

output layer (Figure 3). 

Figure 3. A typical three-layer feed-forward Multi-Layer Perceptron network architecture with i, j, and o neurons in the 
input, hidden, and output layers respectively. fi represents the activation function. w stands for the weights. Xi represents 
the input variables. Yi stands for the output variables. High quality figures are available online.
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 Each layer has a number of processing 

units, and each of them is fully 

interconnected with units in the subsequent 

layer by means of weighted connections in 

a “cascade” manner, without any 

connections between neurons in the same 

layer. The number of neurons in the input 

layer (X) is equal to the number of variables 

of the problem in question. Also, there is an 

output layer (Y) in which the network 

response is made available and the number 

of neurons is equal to the desired number of 

quantities derived from the inputs. With 

respect to a regression-based analysis, there 

is a single neuron in the output layer. The 

layers between input and output layers are 

called hidden layers (H).

The computation of final output values is 

conducted in a layer-by-layer manner. 

Accordingly, each neuron of a specific 

layer other than the input layer computes a 

linear combination of outputs of the 

previous layer. Secondly, the resultant 

values are multiplied by the weight of the 

connection (w). Finally, such products 

arrive at each hidden neuron and are 

summed. Furthermore, there is a possibility 

of incorporating a shift called bias (b) into 

the neuron inputs. Each neuron calculates 

its output value by means of the 

corresponding activation function (ƒ). Then,

those values are continuously propagated 

toward the next layer, thereby reaching the 

output layer. Activation and output 

functions that are used frequently 

encompass linear (identity) functions,

sigmoidal (S-shaped) functions, such as the 

logistic function, and the Heaviside 

thresholding function. 

The training process is conducted as 

follows (Haykin 1999): a pattern is 

presented to the inputs. This pattern is 

transformed during its passage through the 

layers of the network toward the output 

layer. Then, the outputs of the network, as 

they are in this phase, are compared with 

the outputs that ideally would have been 

encountered if this pattern had been exactly 

stated. Based upon such comparisons, all 

the connection weights (w) are modified to 

some degree to ensure that the same pattern 

could be presented to the inputs. The 

differences (errors) between the actual 

outputs and the desired outputs are 

propagated backward from the top layer to 

lower layers in order to modify the 

connection weights. Generally, steepest 

descent techniques would achieve a suitable 

performance if local minima were relatively 

distant. On the other hand, they require a lot 

of iterations to converge when minima are 

near. A number of different types of back-

propagation learning algorithms have been 

proposed, such as the Levenberg-Marquardt

(Hagan and Menhaj 1994), with the aim of 

finding an optimum solution to a 

minimisation problem. It utilises an 

approximation to the Hessian matrix 

updating Newton-like weight.

Radial Basis Function (RBF)

RBF networks were introduced into the 

literature in the late 1980s (Broomhead and 

Lowe 1988; Poggio and Girosi 1990). Such 

neural models are non-linear hybrid 

networks that represent an approach to 

universal function approximation, and they 

were first used to solve multivariate 

interpolation problems (Poggio 1994). 

Furthermore, they are able to approximate a 

wide class of non-linear multidimensional 

functions. These neural networks are 

deemed to be a special class of multilayer 

feed-forward networks. They consist of a 

fully connected architecture with an input 

layer, a hidden layer, and an output layer 

(Figure 4). 

There is one neuron in the input layer for 

each predictor variable. The input neurons 
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(Xi) act as an input data buffer and do not 

execute any processing. The hidden layer 

has a variable number of neurons that 

should be determined by the training 

process. The neurons in the hidden layer 

contain the gaussian function as an 

activation function, and their outputs are 

inversely proportional to the distance from 

the centre of the neuron. Each neuron 

consists of an RBF centred on a specific 

point that possesses a number of 

dimensions that should be equivalent to the 

quantity of predictor variables. The spread 

(radius) of the RBF function may be 

different for each dimension. When this 

network is presented with the X vector of 

input values derived from the input layer, a 

hidden neuron computes the Euclidean 

distance from the test case to the central

point of the neurons and then applies the 

RBF kernel function to this distance, using 

the spread ( ). The resultant value is 

transferred to the output layer. A hidden 

neuron is more sensitive to data points near 

its centre. Regarding the gaussian RBF,

such neuron sensitivity may be tuned by 

adjusting the spread, whereby larger 

spreads indicate less sensitivity. In the 

output layer, the neurons implement a 

weighted sum of hidden unit outputs (linear 

combination of hidden functions). 

During the training process, the parameters 

of the RBF are the number of neurons in the 

hidden layer, the coordinates of the centre 

of each hidden-layer RBF function, the 

radius (spread) of every RBF in each 

dimension, and the weights that were 

applied to the RBF function outputs in the 

summation layer. 

There are several training algorithms for the

RBF networks. In contrast to other 

networks, the training process is divided 

into two phases: (1) determination of the 

parameters of the basis functions, and (2) 

computation of the output weights. During 

the first phase, clustering methods for 

finding central positions of the radial basis 

function can be used with a specific number 

of hidden units. Regarding fixed basis 

functions in the second phase, the weights 

have been traditionally optimised by the

least mean square algorithm or by other 

Figure 4. A typical Radial Basis Function network architecture with i and j neurons in the input (X) and hidden (H)
layers, respectively, and a single neuron in the output layer (Y). An activation function (drawn inside the circles) depicts 
what happens at a given neuron. Wis represent the weights. High quality figures are available online.
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optimisation methods. The number of 

hidden layers is dynamically adapted in 

response to the output error. Further 

information concerning RBF learning

algorithms may be found in Schwenker et 

al. (2001).

Adaptive-Network-based Fuzzy 

Inference System (ANFIS)

A fuzzy inference system is a framework 

that entails fuzzy logic, fuzzy decision 

rules, and fuzzy reasoning (Takagi and 

Sugeno 1985). It consists of a left-half side 

(also called "if" or "antecedent" side) and a

right-half side (also called "then" or 

"consequence" side). Conventionally, each 

linguistic state variable has one or more 

fuzzy sets that are represented by a 

linguistic "value." Such fuzzy sets are 

characterised by associated membership 

functions  over the Universe of Discourse 

of a specific variable. A state membership

value (μ(X)) represents the "degree of 

membership" of the state variable x in a 

fuzzy set (linguistic value), or the "degree 

of truth" of x, taken as an actual value. The 

outcome is a number within the interval 

[0,1], in which 1.0 signifies a full 

membership. Each rule may include every 

combination of state (μ(x)) and input 

memberships (μ(u)) on the left-half side

and must incorporate a state membership 

value calculation (μ(x)) into the right-half

side, indicating how an alteration in a 

specified state could occur.

An ANFIS is a first-order Sugeno-type

fuzzy inference system where the 

membership function parameters are fitted 

with a specific data set by a hybrid-learning

algorithm (Jang 1993). Its structure (Figure 

5) consists of a first layer (values layer), in 

which the nodes represent sets of each state 

variable (input). At this same layer, 

membership values are computed, and the 

membership functions are deemed to be 

adaptable. The second layer (rules layer) 

implements the t-norms for modelling the 

logical fuzzy “AND” operator and 

computing the rule matching factor. The 

third layer (normalisation layer) acts to 

scale the firing strengths (matching factors). 

Figure 5. A typical schematic representation of an Adaptive-Network-Based Fuzzy Inference System. 1: “values” layer. 
μ(Xi): membership values. 2: “rules” layer. 3: normalisation layer. 4: function layer. 5: output layer. High quality figures 
are available online.
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The output of the fourth layer (function 

layer) is comprised of a linear combination 

of the inputs multiplied by the normalised 

firing strength w:

Y = w(pX + r)

where p and r are adaptable parameters. 

The fifth layer (output layer) is a simple 

summation of the outputs of the fourth 

layer. The adjustment to modifying 

parameters is a two-step process. First, 

information is propagated forward through 

the network to the fourth layer, where the 

parameters are identified by a least-square

estimator. Then the parameters in the 

second layer are modified using gradient 

descent backpropagation. The number of 

membership functions in the Universe of 

Discourse for each input and the output 

training information must be specified at 

this phase.

Experimental procedures for analysing 

the data set

All the tests and results were derived from 

programming Matlab 6.5 . An optimum 

network and parameter configuration for 

each of the three networks deployed was 

established by trial and error. The input 

layer of every network utilised in this study 

consisted of three input nodes, representing 

the independent variables (initial number of 

larvae, amount of food, and duration of 

immature stages). The output of the 

network models was the dependent variable 

(number of survivors). 

It has been suggested that a one-hidden-

layer MLP permits the approximation of 

any continuous function, provided that an 

adequate number of nodes in this layer are 

found; two hidden layers are sufficient to 

furnish a “best” approximation for any non-

linear mapping (Cybenko 1989; Haykin 

1999). The introduction of additional 

hidden layers in the network architecture 

could allow the resolution of more complex 

problems. Nevertheless, such an 

introduction reduces the generalisation 

ability of the network, while the training 

time increases (Foody 1995). Haykin 

(1999) stated that the number of hidden 

nodes should be as small as possible while

still allowing the network to retain a 

performance close to the optimum. Because

the prediction of the number of survivors 

(output) may be adequately represented by 

a continuous function (Figure 2), the MLP 

network was deployed with one hidden 

layer.

The number of nodes in the hidden layer of 

the MLP network and the stopping criteria 

were optimised with the purpose of 

obtaining precise and accurate output 

values. The hidden layer consisted of five 

neurons. The activation function of the 

hidden layer was the hyperbolic tangent 

sigmoid function, and the linear function 

was used for the output neuron. The

Levenberg-Marquardt training algorithm 

(Hagan and Menhaj 1994) was selected. 

During the training processes, the stopping 

criteria fixed the number of epochs at 2000. 

The target error for this phase was set at 

0.001.

The number of hidden nodes of the RBF 

network was automatically found to be 25. 

The outputs of the hidden layer neurons 

were determined by the Euclidean distance 

between the network input and the centre of 

the basis function. The spread of the 

gaussian function was empirically set at 

0.78. The RBF network output was formed

by the weighted sum of the hidden layer 

neuron outputs and the unity bias. 

Additionally, the target error deployed was 

the same used with the MLP network.
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Regarding the ANFIS model, three bell-

shaped membership functions (low, 

medium, and high) were determined for the 

number of larvae and amount of available 

food, whereas four triangular membership

functions (very short, short, long, and very 

long) were set for the duration of immature 

stages. The optimisation method used in the 

training of the input membership function 

parameters was the Backpropagation 

learning algorithm. The output membership 

functions were linear zero
th

 and first-order

Sugeno-type system. The number of epochs 

was fixed at 500, and 0.001 was taken as 

the target error; the other parameters were 

determined by trial and error in order to 

reach the best performance. The 

membership functions were learned from an 

adaptive neuro-fuzzy inference system. 

Furthermore, a set of 36 fuzzy rules was 

implemented, and their weights were 

adjusted in order to feasibly model the 

training data.

The entire data set was split into two 

subsets that were used for training and 

testing each neural network. Accordingly, 

the whole data set (n = 40) was divided 

randomly into two subsets, namely the 

training and testing subsets. Specifically, 

the ratio of training examples to testing 

examples was 30:10. Regarding the 

multiple linear regression, the training and 

testing subsets were established identically.

The ratio of 30:10 was deployed in each 

training procedure with respect to all the 

models. Furthermore, a cross-validation

strategy was not utilised, and the estimation 

errors could vary depending on the data 

subset.

The inputs and targets were normalised in 

order to have zero means and unity standard 

deviations. Moreover, the outputs were 

trained to produce outputs with zero means 

and unity standard deviations. Each 

network converged after reaching the 

maximum number of epochs. The training 

error was 0.0129 for MLP and 0.0409 for

RBF. Then the network outputs were 

restored to their original values (raw data) 

in order to calculate the R
2
 between 

estimated and observed values of the 

training and testing subsets. 

Results

Table 1 shows the coefficients of 

determination (R
2
) and root-mean-square

errors that were obtained from the data 

subsets utilised both in training and in 

testing procedures in every model, 

including the multiple linear regression. As 

a whole, the linear regression exhibited the 

lowest accuracy (the lowest R
2
 and highest 

root-mean-square error values).

Regarding the neural networks, the R
2

derived from the RBF (0.715) was the 

lowest in the testing subset, even though its 

R
2

in the training subset exhibited virtually 

a maximum value (0.999). All the models 

had lower R
2

values (less accuracy) in the 

testing subset compared with the training 

subset.

The ANFIS model permitted the 

achievement of the best testing performance 

(the highest R
2
 and the lowest root-mean-

square error). Hence, this model was 

deemed to be more effective than the MLP

and RBF networks in predicting the number 

of survivors. The output values predicted by 

the ANFIS model fitted the actual data 

(original values) in a satisfactory way 

(Figure 6).

Discussion

The sample size utilised in the present work 

(n = 40) may be sufficient to conduct most 

ecological and biological approaches 
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concerning the nutritional ecology of 

blowflies. Nevertheless it is important to 

note that larval density and amount of food 

(two of the input variables) provided the 

multiple regression model with few distinct

values (Figure 2), because only 11 densities 

(75, 150, 300, 450, 600, 900, 1200, 1800, 

2400, 2700 and 3600 larvae) and four 

distinct amounts of available food were 

utilised (15, 30, 60 and 90g), making up the 

five proportions of larvae per gram of food 

used in this work (5, 10, 20, 30 and 40). 

Therefore, the larger amount of distinct 

values measured for the output variable 

(resultant adults), using the same 

combination of values of those input 

variables, caused a lack of fit that decreased 

the prediction capability of the models.

Nonetheless, the amount of distinct values 

of larval densities deployed in the present 

study was considerably larger than those 

widely used in experimental designs on 

nutritional ecology of blowflies (Mackerras 

1933; Slansky and Rodriguez 1987; 

Goodbrod and Goff 1990; Von Zuben et al. 

2000). Furthermore, owing to operational 

limitations, such studies would be 

impracticable if numerous levels of larval 

density were used (Von Zuben et al. 1993, 

2001). Thus, the use of artificial neural 

networks would be justified in this case, 

since the neural algorithms coped with the 

lack of fit better than the multiple 

regression method did (Table 1).

The RBF network exhibited a less accurate 

performance (lowest R2 and highest root-

mean-square error in the testing subset) in 

the present study, considering only the three 

neural network models that were employed. 

On the other hand, in a study conducted by 

Zhang and Barrion (2006) based on 

invertebrate data sampled in an irrigated 

rice field, RBF was considered an effective 

approach to function approximation and 

documentation of sampling information. 

Such results may serve as a basis for further 

discussions about the feasibility of RBF 

networks in entomology in terms of their 

underlying attributes and robustness.

Howe et al. (2007) modelled the body 

temperature and activity of a widespread 

butterfly species (Polyommatus icarus) in 

relation to weather, with the aim of 

predicting how future climate may 

influence its activity. These authors utilised 

a multilayer feed-forward backpropagation 

network in order to accomplish their 

Figure 6. Actual and predicted number of survivors (output). The actual values were derived from the original data set 
(n = 40), and the predicted values were obtained from the Adaptive-Network-Based Fuzzy Inference System network 
(the most accurate model).  represents the original data set (raw data), and  represents the predicted values. 
Samples: each combination of input values is shown. High quality figures are available online.
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objectives, and this neural model was 

deemed to be superior to a generalised 

linear modelling approach to predicting 

body temperature. In the context of 

nutritional ecology, the MLP network 

performed better than two other models,

namely, the linear regression and the RBF

network (Table 1).

Zhang et al. (2008b) investigated the spatial 

distribution pattern of grassland insects by 

means of neural models. They concluded 

from their results that neural networks were 

more flexible than a conventional model. 

Additionally, these authors indicated that 

further research based on more complex 

distribution patterns should be conducted 

with the aim of obtaining more reliable 

conclusions. Similarly, neural networks 

were deemed to be superior to a 

conventional model (linear regression) in 

the current study. Nevertheless, the present 

work utilised simple experimental designs 

and only three explanatory variables 

(input). Therefore, more complex neural 

network studies should be implemented in 

order to explain the portion of the total 

variance that was not accounted for by the 

models. Furthermore, larger sample sizes 

are highly desirable because the number of 

examples (sample size) that is usually

utilised in nutritional ecology may prevent 

the full utilisation of the potential of neural 

networks.

Owing to the relatively small number of 

distinct values, the input variables of larval

density and amount of food did not permit 

the “best” possible fit, including with the

neural models, between predicted and 

collected values. Nonetheless, their 

incorporation into the modelling was very 

important. If duration of immature stages 

were the only input variable, the modelling 

would have considerably lost its biological

meaning (Getz 1984; Arditi and Saïah 

1992; Papandroulakis et al. 2000; Von 

Zuben et al. 2000). Moreover, it would not 

have been possible to establish the suitable 

larval density and amount of food that 

could determine a particular number of 

resultant adults (Von Zuben et al. 2000).

The ANFIS network exhibited the most 

accurate performance in the testing subset, 

although further studies may be necessary 

for corroborating this superiority in other 

practical experiments. On the whole, the 

neural networks outperformed the multiple 

linear regression (Table 1), indicating that 

neural models could be taken as feasible 

techniques for predicting bionomic 

variables concerning the nutritional ecology 

of blowflies. The present study constitutes 

only a first approach, albeit with promising 

applicability, in which the ecology of 

blowflies was effectively analysed by 

means of neural models.

The employment of a simple linear 

regression requires a nontrivial amount of 

statistical expertise. The use of a multiple 

non-linear regression model such as an 

MLP requires more knowledge and 

Table 1. Coefficients of determination (R2) and root-mean-square errors (RMSE) for each model deployed both in the 
training and in the testing subsets. 

Predictive 
model

R2 (training) R2 (testing) RMSE 
(training)

RMSE
(testing)

Multiple regression 0.686 0.463 102.830 135.678
MLP 0.987 0.887 22.224 59.674
RBF 0.999 0.715 0.7317 100.566

ANFIS 0.976 0.959 28.941 51.906

Each R2 value is statistically significant (p<0.001). 
Multiple regression: Multiple Linear Regression (statistical model). 
MLP: Multi-Layer Perceptron.
RBF: Radial Basis Function.
ANFIS: Adaptive Neural Network-Based Fuzzy Inference System.
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experience (Sarle 1994). Therefore, it is 

important to highlight the usefulness of 

multidisciplinary studies with the aim of 

conducting effective investigations of 

bionomic parameters.

Future studies may consider other complex 

variables that were not assessed in the 

current work. Ambient temperature, for 

example, was utilised by Zhang et al. 

(2008a). These authors deployed neural 

network algorithms (functional link 

artificial neural network) in order to model 

the food intake dynamics of larvae of S.

litura (Lepidoptera). Six different 

temperatures were used for measuring the 

food intake, and the neural network 

approach was deemed to be accurate.

It is possible that unresolved problems 

concerning the bionomics of immature and 

adult individuals of blowflies could be 

disentangled and clarified by the use of 

neural models. The employment of such 

complex analytical tools may help 

entomologists to feasibly schematise the 

sort of practical situations in which the 

utilisation of artificial networks is able to 

provide new insights into the nutritional 

ecology of blowflies. 
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