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ABSTRACT—The mitochondrion-rich cells (MRCs) in teleost gill and equivalent tissues are important osmo-
regulatory sites in maintaining ionic balance. These cells express a variety of ion pumps, transporters, and
channels, which play central roles in ionic regulation. Recently, two types of MRCs have been identified in
euryhaline fishes: seawater (SW)-type MRCs extrude Na and Cl ions in SW conditions; freshwater (FW)-type
MRCs take up at least Cl–. Long-term development/differentiation of the two types of MRCs during adapta-
tion to different salinities appears to be regulated mainly by endocrine factors. Osmolality, Ca2+, neurotrans-
mitters, and fast-acting hormones rapidly regulate the SW MRCs. Recent information is assembled in this
review and suggests the functional plasticity of highly specialized MRCs.
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INTRODUCTION

Mechanisms of teleost osmoregulation have been de-
scribed in several reviews (e.g., Silva et al., 1977; Evans, 1979,
1993). Briefly, SW fishes lose water and gain ions through the
body surface, mainly through the gills. In order to compen-
sate for the osmotic loss of water, they drink the surrounding
SW and absorb both ions and water from the intestine.
Excess Na+ and Cl– ions, which enter the body through the
surface as well as via the intestine, are excreted by the gills.
In contrast, FW fishes continuously need to dispose of water
that enters through the body surface. The latter type of fish
produces a large amount of hypotonic urine and they drink
very little water. The passive loss of ions in the urine and across
the body surface is compensated for by active ion uptake
through the gills. Thus, the ionic exchange required for teleost
osmoregulation is mainly located in the gill epithelium.

About 50 years ago, Keys and Willmer (1932) suggested
that a certain type of gill epithelial cell might be responsible
for Cl– excretion in the SW-adapted eel. Later, Copeland (1948)

described such cells, presumably for the first time, and re-
ferred to them as “chloride cells” in the killifish, Fundulus
heteroclitus. These cells contain elaborate basolateral
infoldings that produce an extensive intracellular tubular
system associated with the ion-transporting enzyme Na+,K+-
ATPase (Karnaky et al., 1976) and numerous prominent mito-
chondria (e.g., Laurent, 1984). Therefore, these cells are
also often referred to as “mitochondrion-rich cells (MRCs)”.
Mature MRCs that come into contact with their external water
via the apical membrane are involved in ion transport, though
the tubular system is already developed in immature MRCs
(Wendelaar Bonga and van der Meij, 1989; Goss et al., 1998).
MRCs are interspersed among pavement cells which occupy
more than 90% of the gill surface (Perry and Walsh, 1989).
Tight junctions between MRCs and adjacent pavement cells
are also considered to be “deep junctions” because of their
multi-strand connections (Sardet et al., 1979; Sardet, 1980;
Karnaky, 1992).

MRCs are found especially in the interlamellar epithe-
lium and in the trailing edge of the filament epithelia of the
gills. In some species, a considerable number of MRCs are
observed in the gill lamellar epithelia (e.g., Laurent, 1984).
MRCs are not necessarily confined to gill epithelia; they are
also found in the inner surface of the operculum of the killifish

Downloaded From: https://complete.bioone.org/journals/Zoological-Science on 30 Jun 2024
Terms of Use: https://complete.bioone.org/terms-of-use



T. Sakamoto et al.1164

Fundulus heteroclitus (e.g., Degnan et al., 1977), tilapia
Oreochromis mossambicus (Foskett et al., 1981), and gold-
fish (Fujimoto, personal communication), and in the skin of
gobies (Marshall and Nishioka, 1980; Yokota et al., 1997). In
the embryos and larvae of several teleost species, MRCs have
been detected in the epithelia covering the yolk and body
surface (see Kaneko et al., 2002 for review). Most of these
extrabranchial MRCs are found in the vascularized epithelia
of the body surface; they may compensate for insufficient ion-
transport in undeveloped or vestigial gills.

Regulation of MRCs is critical for euryhaline fish during
movement between FW and SW. Reviews on this general
topic have appeared previously (Foskett et al., 1983; McCor-
mick, 1995; Marshall, 1995; Perry, 1997; Marshall and Bryson
1998; Evans et al., 1999). However, recent advances in mo-
lecular biology methods have allowed the determination of
the function and regulation of MRCs. Such techniques involve
the use of antibodies and molecular probes for ion-transport-
ing proteins and hormonal factors. This review first considers
current models of NaCl transport systems in MRCs in teleosts,
especially those at the molecular and cellular levels, and then
focuses primarily on recently obtained important evidence
regarding the regulation of MRCs when teleost fish are
exposed to different osmotic environments. Possible involve-
ment of the gill MRCs in acid-base regulation, nitrogen excre-
tion, and Ca2+ regulation will not be addressed here; these
topics have been reviewed in detail elsewhere (Flik et al., 1995,
1996; Claiborne, 1998; Walsh, 1998; Evans et al., 1999).

MITOCHONDRION-RICH CELLS EXTRUDE NaCl IN SW

In marine teleosts, and euryhaline species acclimated to
SW, the mucosal surface of MRCs is usually invaginated
below the pavement cells; this forms “apical crypts” between
pavement cells. The MRCs usually display multicellular com-
plexes and a well-developed intracellular tubular network
(Hossler et al. 1979; Laurent 1984). Adjacent MRCs share an
apical crypt and a single-stranded shallow junction. The same
paracellular pathways are also observed between MRCs and
accessory cells which is considered to be partially differenti-
ated MRCs (e.g., Laurent, 1984). These “leaky” paracellular
pathways are thought to be the morphological basis for the
relatively high ionic permeability of gills in SW teleosts (e.g.,
Karnaky, 1992).

Inhibition of the efflux of Na+ and Cl– by basolateral appli-
cation of ouabain (an inhibitor of Na+,K+-ATPase) suggests
that Na+,K+-ATPase generates an electrochemical gradient for
Na+ from the plasma to the cytoplasm of the MRC to drive Na+

inward across the basolateral membrane (Silva et al.; 1977:
Degnan et al.; 1977). Studies with the opercular membrane
demonstrated that, under short-circuited conditions, the net
Cl– extrusion rate (serosa to mucosa) was equal to the short-cir-
cuit current, but there was no net extrusion of Na+. Basolateral
application of furosemide (an inhibitor of the Na+-K+-2Cl–

cotransporter family) inhibited the net extrusion of Cl- (e.g.,
Degnan et al., 1977; Eriksson and Wistrand, 1986; Marshall,

1995; Payne and Forbush, 1995; Kaplan et al., 1996). Using
the vibrating probe technique, Foskett and Scheffey (1982)
demonstrated that the MRCs are the definite site of active Cl–

extrusion. An apical Cl– channel seems to be a member of the
cystic fibrosis transmembrane conductance regulator (CFTR)
family because of its electrical characteristics and stimulation
by cyclic AMP (Marshall et al., 1995). Ba2+ sensitivity of the
serosal surface suggests the presence of a basolateral K+

channel (Degnan, 1985). Apical K+ secretion was also observed
in short-circuited skin (Marshall and Bryson, 1998). The fine-
tuned current model for NaCl extrusion by the teleost gill epi-
thelium resulting from these studies is best described in detail
in a review by Marshall (1995): The Na+ gradient, which is
produced across the basolateral membrane by Na+,K+-
ATPase, drives the Na+-K+-2Cl– cotransporter; K+ enters via
the basolateral Na+,K+-ATPase and Na+-K+-2Cl– cotransport,
and the K+ is thought to be recycled from the cell via K+ chan-
nels; Cl– exits the cell via an apical Cl– channel and K+ via
a basolateral K+ channel, resulting in a serosa-positive trans-
epitherial potential that moves Na+ through the leaky para-
cellular pathway between adjacent cells (see also Fig. 2,
SW-type).

Recent reports have shown that Na+-K+-2Cl– cotransporter
immunoreactivity is localized on the basolateral membrane of
the MRCs; such studies have also demonstrated the pres-
ence of a CFTR-like anion channel in the apical crypt (Singer
et al., 1998; Wilson et al., 2000b). A cDNA for an inward rec-
tifier K+ channel in the basolateral membrane has been iden-
tified in SW-adapted eels as an inducible mRNA (Suzuki et
al., 1999). Miyazaki et al. (1999) have cloned two Cl– chan-
nels (CLC-3 and 5) as intracellular Cl- channels from the
tilapia gill.

INVOLVEMENT OF MITOCHONDRION-RICH CELLS IN
NaCl UPTAKE IN FW CONDITIONS

In FW teleosts, MRCs in the gill filament epithelium are
as abundant as in SW fish, but they may also appear on the
lamellar epithelium in several species (e.g., Uchida et al., 1996;
Perry, 1997; Hirai et al., 1999; Sasai et al., 1999). The MRCs
observed in FW fish generally have apical microvilli, which
presumably increase the mucosal surface area and exten-
sive tight junctions between adjacent cells (Hwang, 1988;
Perry et al., 1992; Marshall et al., 1997). In addition, MRCs in
FW fish contain a moderately developed tubular system in
the cytoplasm. Despite several exceptions, FW MRCs are
often reported to be singular with their mucosal surface above
the adjacent pavement cells (Hwang, 1988; Van Der Heijden
et al., 1997; Marshall et al., 1997). Accessory cells are also
found in several species in FW, although they are more typi-
cally found in SW fishes (Pisam et al., 1989; Cioni et al., 1991).

It is generally accepted that Cl– uptake occurs via the
MRCs because the morphological characteristics of the MRCs
correlate well with Cl– uptake rates (e.g., Perry and Laurent,
1989; Goss et al., 1994; Wood and Marshall, 1994; Marshall
et al., 1997). Apical Cl–/HCO3

– exchange is assumed to medi-

Downloaded From: https://complete.bioone.org/journals/Zoological-Science on 30 Jun 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Chloride Cells and Osmoregulation 1165

ate Cl– uptake across the gill in FW conditions; inhibitors of
the Cl–/HCO3

– exchanger reduce Cl– uptake and produce a
metabolic alkalosis in fish, as does the removal of external Cl–

(reviewed in Perry, 1997; Goss et al., 1998). Furthermore, the
Cl–/HCO3

– exchanger was shown to be localized in MRCs us-
ing in situ hybridization and immunocytochemical staining
(Sullivan et al., 1996; Wilson et al., 2000a). It remains unclear
what drives this exchanger, since the Cl– gradient between
the cytoplasm and FW does not favor uptake of Cl– ions from
FW, and the true apical HCO3

– gradient is unknown. Presum-
ably, net Cl– movement across the gill may be mediated via a
basolateral Cl– channel, driven by the inside-negative mem-
brane potential for regular cells. The intracellular generation
of H+ and HCO3

– necessary for these apical extrusion mecha-
nisms is probably derived from the hydration of CO2, since
carbonic anhydrase has been localized in the opercular epi-
thelium MRCs in the killifish (Lacy, 1983), and inhibition of
carbonic anhydrase by acetazolamide reduced proton excre-
tion (Lin and Randall, 1991).

Branchial uptake of Na+ is most probably via the apical

Na+ channel, and down an electrochemical gradient gener-
ated by an apical vacuolar H+-ATPase, although the Na+/H+

exchange mechanism cannot be ignored (see Evans et al.,
1999; Fenwick et al. 1999). There is some debate about the
cellular localization of H+-ATPase and Na+ channels. With in
situ hybridization and/or immunocytochemistry, the H+-ATPase
has been reported to be localized in the pavement cells of the
gill epithelium of rainbow trout (Sullivan et al., 1995, 1996)
and of the yolk-sac membrane of the tilapia (Hiroi et al., 1998).
Recently, immunoreaction for H+-ATPase and Na+ channel in
both tilapia and rainbow trout were co-localized in the pave-
ment cells (Wilson et al., 2000a), although apical labeling was
also found in the MRCs of FW trout whose environmental pH
and ionic strength are lower than those reported by Sullivan
et al. (1995, 1996). The amiloride-sensitive Na+/H+ exchanger
immunoreactivity is associated with the accessory cells and
with a small population of pavement cells in tilapia (Wilson et
al., 2000a) and with MRCs in Japanese dace (Kaneko, per-
sonal communication).

In order to determine the cellular site of Na+ uptake, and

Table 1. Time course of adaptations to different salinities and regulations of mitochondrion-rich cells (MRCs)

Adaptation to SW

Time course Related events Mitochondrion-rich cells

Minutes ~ Environmental osmolality and Ca2+ ↑

hours Plasma osmolality ↑
Apical pit open

Plasma cortisol, angiotensin II and ANP↑ Na+,K+-ATPase ↑

Cl– secretion ↑

c-Jun modification

Hsps ↑

mRNA of CFTR and K+ channel↑

Days ~ Plasma GH/IGF-I ↑ IGF-I mRNA ↑

weeks Plasma PRL ↓ Na+-K+-2Cl– cotransporter and cytoskeletons ↑

Plasma osmolality SW MRC ↑

FW MRC ↓

Adaptation to FW

Time course Related events Mitochondrion-rich cells

Minutes ~ Environmental osmolality and Ca2+ ↓

hours Sympathetic nerve stimulation
Apical pit close

Plasma osmolality ↓ Cl– secretion ↓

c-Jun modification

Days ~ Plasma PRL ↑ Cl– uptake and FW MRC ↑

weeks Plasma osmolality SW MRC ↓

Note: Reports using several euryhaline species (see text) are assembled, and the universality is uncertain.

 ↓

 ↓
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also to advance our understanding of MRC ion-transport, more
species should be examined under a variety of physiological
conditions using the antibodies and the molecular probes for
ion-transporting proteins described above. Another powerful
tool for the measurement of ion movement includes the use
of ion-sensitive fluorescent dyes in combination with confocal
laser scan microscopy (see Li et al., 1997).

CONTROL OF MITOCHONDRION-RICH CELLS BY DIF-
FERENT SALINITIES

When euryhaline teleosts adaptable to both FW and SW
are transferred to different salinities, they show a sharp change
in the rate of NaCl flux during the first hour of transition. The
initial rapid change is followed by a more protracted change
(hours - days) in the rate and direction of ion movement (e.g.,
Motais et al., 1966; Wood and Marshall, 1994). Therefore, the
above-mentioned two functions of MRCs are likely to be skill-
fully regulated during adaptation to different salinities (see
Table 1).

Rapid Regulation (minutes to hours)
Euryhaline teleosts, especially intertidal species, need to

regulate the rate of NaCl transport in the MRCs within several
hours. River mouth intertidal habitats are subject to extreme
tidal changes that result in rapid and frequent alternations in
environmental salinity.

Marshall (1995) has reviewed the role of neurotransmit-
ters and classical rapid-acting hormones on MRC function.
Urotensins, eicosanoids, glucagon, and vasoactive intestinal
polypeptides influence Cl– secretion by MRCs, although it is
not clear whether or not the MRCs are exposed to these hor-
mones during adaptation to different salinities. Marshall et al.
(1993, 1998) have shown that a portion of the stress-induced
rapid reduction in Cl– secretion may be mediated by the
α2-adrenergic receptor activated by the sympathetic nervous
system in killifish. This adrenergic receptor acts via phospho-
lipase C, inositol triphosphate and intracellular Ca2+. Scheide
and Zadunaisky (1988) showed that atrial natriuretic peptide
(ANP), recognized as a SW-adapting hormone (Takei, 2000),
directly increases Cl– secretion. The role of other natriuretic
peptides should be examined, since three types of natriuretic
peptide receptors have been identified in the gills of eels (see
Takei, 2000). Angiotensin II is also a SW-adapting hormone;
it increases gill MRC Na+,K+-ATPase in the eel within 30 min.
and receptors for angiotensin II are present in the MRCs
(Marsigliante et al., 1997; Russel et al., 2001). There are also
several instances where rapid activation of gill Na+,K+-ATPase
has been reported after transfer of the killifish, mullet, or tila-
pia to conditions of higher salinity (Towle et al., 1977; Hossler,
1980; Hwang et al., 1989; Mancera and McCormick, 2000).
The activation of the Na+,K+-ATPase in killifish is induced 3
hr. after SW transfer by hyperosmolality in vitro, and is depen-
dent on transcriptional and translational processes (Mancera
and McCormick, 2000). Cortisol, which increases rapidly fol-
lowing exposure to SW (see Shreck, 1981; Wendelaar Bonga,

1997), seems to directly activate gill MRC Na+,K+-ATPase in
the eel within 2–6 hr. (Marsigliante et al., 2000). Borski et al.
(2000) have suggested that cortisol may act on teleost target
cells through membrane-associated effector systems, as well
as more slowly via changes in gene expression. Cyclic AMP-
mediated phosphorylation by the activity of protein kinases
seems to play a role in the rapid modulation of Na+,K+-
ATPase (Tipsmark and Madsen, 2001)

Furthermore, both increases and decreases in the os-
molality of the basolateral side of the opercular epithelia in
vitro (simulating early events during adaptation) evoke imme-
diate increases and decreases, respectively, in the rate of Cl–

secretion in killifish from SW (Zadunaisky et al. 1995; Marshall
et al., 2000). This regulation seems to be mediated by tyrosine
phosphorylation of the CFTR upon MRC shrinkage and swell-
ing, accompanied by epithelial conductance changes (see also
Daborn et al., 2001).

In this regard, we have shown that the MRC apical crypts
of the estuarine mudskipper close 30 min. after transfer from
SW to FW in order to shut down salt secretion and passive
ion loss. Such responses are reversible when fish are returned
to SW (Sakamoto et al., 2000c). This morphological oscilla-
tion seems to be triggered by differences in osmolality and
Ca2+ concentration between FW and SW. Increases and
decreases in osmolality of the basolateral side of killifish oper-
cular epithelia in vitro also evoke similar morphological
changes, and the actin cytoskeleton is required to maintain
crypt opening (Daborn et al., 2001; Yasunaga et al., 2001).
Via these morphological alterations, generally, MRCs seem
to control the availability of ion channel/transporters at the
apical membrane to the external water; hence, MRCs appear
to affect the rate of ion transport (see Goss et al., 1998; Pisam
et al., 1990).

The combination of these events, both the regulation of
active ion transport and the modification of ion diffusion, could
account for the full regulation of NaCl flux during rapid adap-
tation. It is of note that cross-talk between intracellular mecha-
nisms of these regulations occurs. In addition to physiological
approaches involving inhibitors of the signal transduction and
the measurement of the secondary messenger levels, new
approaches of molecular and cellular biological should be used
to elucidate the candidate protein kinases and other related
enzymes (e.g., Sakamoto et al., 2000b; Hashimoto et al., 1997,
1998, 2000). Surprisingly, phosphorlylation of these proteins
has not been widely analyzed in MRCs. However, antibodies
against phosphorylated amino acids and the mammalian en-
zymes are currently available. Breakthroughs may proceed
from studies involving the rapid, simultaneous measurement
of ion transport and morphological or biochemical changes in
MRCs. Caged second messengers may also be useful in this
regards.

Importantly, such rapid regulation suggests the functional
plasticity of highly differentiated MRCs, not only at the mo-
lecular level but also at the morphological level. It should be
noted that most of these rapid regulatory processes have been
observed in intertidal species.
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Long-term Regulation (days to weeks)
For most teleost species examined to date, Cl–-secretory

MRCs in hyperosmotic environments increase in number (e.g.,
Shirai and Utida, 1970; Foskett et al., 1983) and size (e.g.,
Shirai and Utida, 1970; Pisam, 1981; Pisam et al., 1988). The
apical area of the MRC is enlarged, and accessory cells gradu-
ally intrude into the MRCs and form a multicellular complex
(e.g., Shiraishi et al., 1997; Hiroi et al., 1999). These morpho-
logical changes are accompanied by increased expression
and activity of Na+,K+-ATPase (Kirschner, 1980; McCormick,
1995; Seidelin et al., 2000; Cutler et al., 2000; Sakamoto et
al., 2001), several days after transfer of the fish from FW to
SW. The Na+,K+-ATPase α -subunit gene is considered to be
AP-1 responsive (Shull et al., 1990). Moreover, Kültz (1996)
has reported the modification of the AP-1 transcriptional fac-
tor c-Jun in the gills after transfer of a goby Gillichthys mirabilis
to different salinities. Expression of the CFTR, Na+-K+-2Cl–

cotransporter and cytoskeletal elements (e.g., actin-binding
protein and a member of the Rho family known to control ac-
tin) was also shown to be elevated and seems to be involved
in MRC function in SW conditions (Singer et al., 1998; Suzuki
et al., 1999; Pelis et al., 2001; Yasunaga et al., 2001). It has
recently become clear that actin directly regulates Na+,K+-
ATPase, the Cl- channel, and the Na+-K+-2Cl– cotransporter
in various cells (Nelson and Hammerton, 1989; Suzuki et al.,
1993; Mills et al., 1994; Shapiro et al. 1991; Matthews et al.
1992).

Pisam and coworkers (1987) have described two types
of MRCs, α - and β, present in the gill filament of FW species
(loach and gudgeon) and euryhaline species (salmonids,
guppy, and tilapia) in FW. The α -type MRCs are activated in
the filamental epithelium of euryhaline fishes acclimated to
SW and are thought to be the homologue of the Cl–-secretory
SW MRCs (Pisam et al., 1987, 1995). On the other hand, the
β -type MRCs are observed only in FW-adapted fish, and these
cells disappeared during SW adaptation. Two different types
of MRCs were also identified in the gill filament and lamellar
epithelia of salmonids (Uchida et al., 1996, 1997; Seidelin et
al., 2000), guppy (Shikano and Fujino, 1998), seabass (Hirai
et al., 1999), and eel (Sasai et al., 1999), on the basis of their
location and response to SW/FW transfer. Filament MRCs
were activated after exposure to SW, and inactivated in FW
conditions. The incorporation of 5-blomo-2’-deoxyuridine into
filament MRCs increased after SW transfer, suggesting that
filament MRCs play important roles in SW conditions (Uchida
and Kaneko, 1996). In contrast, lamellar MRCs were mainly
observed in FW conditions and practically disappeared by
apoptosis during SW adaptation. Fish exposed to low ion con-
centrations in FW displayed extensive proliferation of the
MRCs on the lamellar epithelium (e.g., Perry and Laurent,
1993; Perry, 1997). These results suggest that lamellar MRCs
are the possible site of ion uptake in FW conditions. Although
the relationship between the β -type MRCs in the filament and
lamellar MRCs is unclear, Hirai et al. (1999) suggest that the
latter originates from the filament and migrates to the lamel-
lae during FW adaptation. Recently, Wong and Chan (1999)

confirmed by flow cytometry the heterogeneity of MRCs and
they hypothesized that stem cells, but not FW MRCs, differ-
entiate into SW-type MRCs in the adult eel gill. On the other
hand, Hiroi et al. (1999) observed in vivo sequential changes
in the MRCs of the tilapia yolk-sac membrane, and indicated
that FW-type MRCs are transformed into SW-type MRCs dur-
ing SW adaptation, thus suggesting the plasticity of MRCs.
Further research using these sequential observations may
show the inverse transformation of SW-type cells into FW-type
cells and should also address the functional plasticity of the
MRCs using ion-sensitive dyes. However, the plasticity of
MRCs may be a characteristic of those cells in the transient
yolk sac during early development.

Although Shiraishi et al. (2001) have recently showed that
the MRCs of this yolk-sac membrane can differentiate inde-
pendently of endocrine factors, they have been believed to
mediate most of the above-mentioned slow responses of
MRCs to different salinities. Since McCormick (1995) provides
an excellent review of the hormonal regulation of MRCs, only
the more recent research will be considered here.

Prolactin (PRL)
Prolactin, a FW-adapting hormone in teleosts (see Hirano

et al., 1986), inhibits the development Cl--secretory SW-type
MRCs and promotes the development of FW-type MRCs.
Foskett et al. (1982) have postulated that PRL reduced MRC
numbers and active transport of ions in SW-adapted fish. PRL
treatment of SW-adapted tilapia resulted in a reduction of MRC
size (Herndon et al., 1991). Pisam et al. (1993) reported that
PRL injection into SW-adapted tilapia resulted in the appear-
ance of the putative FW-type β MRCs, whereas the SW-form
α MRCs were reduced in size. Although mammalian PRL
sometimes increased gill Na+,K+-ATPase activity possibly
through growth hormone (GH) receptors, homologous PRLs
decrease the activity of Na+,K+-ATPase in tilapia (Flik et al.,
1994; Sakamoto et al., 1997). Prolactin receptors have been
found in gill MRCs (Auperin et al., 1994; Weng et al., 1997;
Sandra et al., 2000; Prunet et al., 2000; Santos et al., 2001),
suggesting the direct action of PRL on MRCs.

Growth hormone/insulin-like growth factor (IGF) axis
Despite being structurally related to PRL, GH, one of the

essential SW-adapting hormones in salmonids, activates gill
Na+,K+-ATPase activity and SW MRCs (see Sakamoto et al.,
1993; Prunet et al., 1994; Seidelin and Madsen, 1999). This
GH role may be a common feature of euryhaline teleosts such
as killifish, tilapia, striped bass, silver seabream and
mudskipper (see Sakamoto et al., 1997, 2000a, 2002; Mancera
and McCormick, 1998; Kelly et al., 1999).

One important pathway for the GH action is through its
major influence on IGF-I secretion. IGF-I, especially plasma
IGF-I from the liver, seems to be primarily induced by GH
(see Moriyama et al., 2000). In the gill epithelium, IGF-I seems
to be localized in the interlamellar epithelium (Fig. 1; Richard-
son et al., 1995), and it is also induced by GH after transfer of
trout and tilapia to SW (Sakamoto and Hirano, 1993; Sakamoto
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Fig. 1. Localization of IGF-I mRNA at interlamellar space of the gill
filament of rainbow trout, presumably in some of the MRCs (arrows).

et al., 1995). The GH receptor has been characterized in
rainbow trout gills, although there is no evidence for a direct
action of GH on gill MRCs (Sakamoto and Hirano, 1991). IGF-
I has been shown to increase Na+,K+-ATPase activity, SW
MRCs, and/or salinity tolerance in salmonids and killifish (see
Mancera and McCormick, 1998; Seidelin et al., 1999; Seidelin
and Madsen, 1999). When coho salmon were pretreated with
GH, IGF-I directly stimulated gill Na+,K+-ATPase activity
(Madsen and Bern, 1993). Thus, at least among salmonids,
GH may stimulate differentiation of MRCs via the local pro-
duction of IGF-I, whereas systemic IGF-I may act on the dif-
ferentiated cells. This hypothesis is similar to the dual effector
model for the promotion of growth (Green et al., 1985; Gray
and Kelley, 1991).

Although IGF-II is another member of the IGF family
expressed in gills (Chan et al., 1994; Chen et al., 1994; Duguay
et al., 1996), human IGF-II had no effect on killifish osmo-
regulation (Mancera and McCormick, 1998). Additional
experiments using homologous peptides may be necessary
to demonstrate a possible action of IGF-II on gill MRC func-
tion. IGF-binding proteins play several biological roles along
the GH/IGF axis; IGF-binding proteins have also been identi-
fied in teleosts (see Siharath and Bern, 1993). Although the
growth-inhibiting role of IGF-binding protein 2 in zebrafish has
been reported recently (Duan et al., 1999), there is no report
about the possible functions of IGF-binding proteins in MRCs.
The role of IGF-binding proteins during the adaptation of
teleosts to different salinities should be examined using cDNA
probes and proteins.

Cortisol
In teleosts, cortisol, the major corticosteroid secreted by

interrenal glands, used to be understood as the central hor-
mone for SW adaptation. Cortisol directly stimulates gill Na+,
K+-ATPase activity and differentiation of MRCs (McCormick
and Bern, 1989; McCormick, 1990; Ayson et al., 1995). A min-

eralocorticoid/glucocorticoid response element has been iden-
tified in the human Na+,K+-ATPase α gene (Kolla et al., 1999).
Presence of the cortisol receptor has been demonstrated by
steroid-binding assay in the gill cytosol and nucleus of several
euryhaline species (e.g., Sandor et al., 1984; Chakraborti et
al., 1987). Translocation of the cortisol receptor to the nucleus
seemed to be rapidly stimulated by the plasma cortisol in-
crease (Weisbart et al., 1987) and regulated by a heat shock
protein (Hsp90) (Pan et al., 2000; Yasunaga et al., 2001). By
means of in situ hybridization and immunocytochemical stain-
ing of chum salmon gills, Uchida et al. (1998) found that the
cortisol receptor was expressed in the filament MRCs of the
SW fish more than in the FW fish, suggesting the involvement
of cortisol in the maintenance of their function in SW condi-
tions.

There is a strong interaction between GH and cortisol in
the regulation of SW MRCs. GH/IGF-I and cortisol act in syn-
ergy to increase Na+,K+-ATPase activity, MRC number, and/
or salinity tolerance (see Mancera and McCormick, 1998). GH
stimulated gill cortisol receptor, and directly increased the
sensitivity of the interrenal tissue to adrenocorticotropin
(ACTH) in coho salmon (Young, 1988; Shrimpton et al., 1995;
Shrimpton and McCormick, 1998). On the other hand, corti-
sol stimulates GH release in tilapia (Nishioka et al., 1985).

Cortisol seems to be involved in ion uptake in FW fish as
well. Cortisol treatment of FW fish stimulated the whole-body
uptake of Na+ and Cl– ions, possibly by increasing gill H+-
ATPase activity as well as cell number, apical surface areas,
and/or Na+,K+-ATPase density in MRCs (Perry et al, 1992;
Dang et al., 2000). Cortisol receptors were also localized in
the MRCs in the gill lamellar epithelium of FW chum salmon,
as well as in undifferentiated cells at the interlamellar regions
near the central venous sinus (Uchida et al., 1998). Thus,
cortisol seems to have a dual and fundamental role, acting
not only on SW-type MRC but also on FW-type MRCs.

Other slow-acting hormones
Thyroid hormones have been hypothesized to play a role

in many developmental processes including that of MRCs (see
Hoar, 1988). However, the reported roles of these hormones
on MRCs are equivocal. In salmonids, though still contradic-
tory, thyroid hormones seem to stimulate the activity of gill
Na+,K+-ATPase and MRCs, possibly through their interaction
with the GH/IGF-I axis and cortisol (Miwa and Inui, 1985; Young
and Lin, 1988; Moav and McKeown, 1992; Leloup and Lebel,
1993; Shrimpton and McCormick, 1998). These processes
may be a part of the smoltification process, which may be
essentially regulated by thyroid hormones. However, in tila-
pia and summer flounder, thyroid hormones enhance the
Na+,K+-ATPase and MRCs in FW conditions, favoring
hyperosmoregulatory capacity (Dange, 1986; Schreiber and
Specker 2000; Subash Peter et al., 2000).

Sex steroids have been shown to have a negative effect
on the activity of SW MRCs, Na+,K+-ATPase, and salinity tol-
erance of salmonids (see Madsen and Korsgaard, 1991). This
response may be related to the FW migration of sexually
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Fig. 2. Integrated model of regulation of MRCs during adaptation to different salinities. Arrows and letters in red denote the regulations during
SW adaptation, and those in blue during FW adaptation; broken arrows denote possible pathways. There are reports on FW MRCs containing
apical H+-ATPase and Na+ channels. Evidence to date indicates that rapid regulation by osmolality, neurotransmitters, fast-acting hormones,
and Ca2+ occurs in SW MRCs. Long-term development/differentiation of MRCs from immature cells (resting or stem cells) is regulated by
endocrine factors. Cortisol seems to play a basic role in activating both FW and SW-type MRCs. PRL inhibits SW MRCs and promotes FW-type
MRCs, whereas GH/IGF-I stimulates SW MRCs. Receptors for cortisol, PRL, and angiotensin II (Ang II) are localized in MRCs, suggesting direct
action. See text for details.

mature salmonids. Although receptors for thyroid hormones
and sex steroids have been found in the gills (Bres and Eales,
1988; Lebel and Leloup 1989; MacLatchy and Eales, 1992;
Pinter and Thomas, 1995), the cellular localization and direct
action of these hormones are currently unknown; further re-
search similar to the case of cortisol is clearly warranted.

CONCLUSIONS: AN INTEGRATED MODEL FOR REGU-
LATION OF MITOCHONDRION-RICH CELLS DURING
ADAPTATION TO DIFFERENT SALINITIES

Any summary of MRC regulation in teleost fishes must
confront the diverse habitat (FW, SW, estuarine) and life his-
tory (sedentary, anadromous, catadromous, diadromous) of
this large group. Our literature search may have revealed con-
tradictory results among the findings. Nevertheless, we present
an integrated model of salinity regulation of MRCs, although
the universality of the model remains uncertain (Fig. 2). MRCs
possess a suite of transport proteins for salt excretion in SW
conditions and Cl– uptake in FW conditions. The cellular junc-
tions and/or cytoskeletal components such as tight junctions
and actin have been suggested to play a role in the ion trans-

port. However, as there is currently little information on this
topic, future investigations will hope fully shed more light on
their involvement.

Evidence to date indicates that rapid regulations occur
at least in Cl–-secretory SW MRCs. Hyperosmolality, Ca2+,
angiotensin II, ANP, and cortisol rapidly activate the SW MRCs,
whereas sympathetic nerve and hypoosmolality inactivate the
cells at rest. Important advances in this area may come from
the rapid, simultaneous measurement of ion transport as well
as of morphological and biochemical changes in MRCs. Ion-
sensitive dyes and fluorescent probes may be particularly
valuable in this regard.

Long-term development/differentiation of MRCs seems
to be regulated mainly by endocrine factors. Cortisol seems
to play a fundamental role in promoting the development of
both FW and SW-type MRCs. PRL inhibits SW MRCs and
activates FW-type MRCs, whereas GH/IGF-I stimulates SW
MRCs. Receptors for cortisol, angiotensin II, and PRL are
localized in MRCs. FW-type MRCs can be transformed into
SW-type MRCs, suggesting the plasticity of MRCs. One ques-
tion of particular interest for further study would be to deter-
mine the intracellular cues for the de novo development of
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FW and SW MRCs, or for the changeover from one cell type
to another. Transcriptional regulations of ion-transport pro-
teins should be examined in order to answer these questions.
Recently-developed DNA arrays containing cDNAs of vari-
ous transcriptional factors may prove useful for such studies.
Translocation of transport proteins may also be possible (see
Nielsen et al., 1993).

Continued development of preparations with MRCs (e.g.,
Fletcer et al., 2000; Shiraishi et al., 2001), as well as combi-
nations of the various ideas and methods from molecular
biology, histology, and physiology will be especially powerful
approaches to advancing our understanding of MRC regulation.
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