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ABSTRACT

Tin, H.; Garcia, R.; O’Leary, M., and Fotedar, R., 2016. Identification and Mapping of Marine Submerged Aquatic 
Vegetation in Shallow Coastal Waters with WorldView-2 Satellite Data. In: Vila-Concejo, A.; Bruce, E.; Kennedy, 
D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). 
Journal of Coastal Research, Special Issue, No. 75, pp. 1287 - 1291. Coconut Creek (Florida), ISSN 0749-0208.

Marine submerged aquatic vegetation (MSAV) naturally occurs on rubble and dead coral substrates in temperate and 
tropical coastal regions. During the growing season, MSAV develops to form dense canopy seaweed beds that play a 
vital role in coastal marine ecosystems and offer great potential to chemical, pharmaceutical, and bio-energy 
industries. At present, the total biomass and the distribution of the MSAV beds along the coast of Western Australia 
(WA) are not fully identified and quantified. Therefore, the application of satellite remote sensing data with high 
spatial resolution for examining the MSAV beds is required. The main objective of the present study was to assess 
and map the distribution of MSAV at two sites; Rottnest Island and Point Peron, Rockingham, WA, using 
WorldView-2 (WV2) satellite data. These study sites are important marine protected areas in WA waters with 
extraordinary documented biodiversity. By means of quantitative quadrat techniques, the MSAV canopy covers and 
fresh biomass data from the ground truth observations were assessed from September 2012 to December 2014. At Point 
Peron, the fresh biomass of Sargassum in the inter-tidal zone reached 5651.7±754.5, 5218.9±192.6, 1136.6±526.4, and 
3472.2±434.2 g m-2 for spring, summer, fall, and winter, respectively. The overall accuracy of the minimum distance 
method was employed 
0.96) for Rottnest Island and Point Peron, respectively. The Mahalanobis classification with overall accuracy yielded 

Rottnest Island and Point Peron, respectively. The study results revealed 
that WV2 satellite data provided evidence of the high accuracy of MSAV classification.

ADDITIONAL INDEX WORDS: clear shallow waters, marine habitat mapping, satellite remote sensing.

INTRODUCTION
High spatial resolution satellite remote sensing is an effective 

tool for monitoring, evaluating and mapping biodiversity and 
natural resources in coastal areas (Green et al., 1996; Gibbons et 
al., 2006). There are numerous studies that have used high-
resolution satellite images for identifying and mapping coastal 
habitats such as coral reefs (Benfield et al., 2007), sea grass
meadows (Guimarães et al., 2011), mangroves (Heenkenda et 
al., 2014; Ibrahim et al., 2015), macroalgae (Garcia et al., 2015; 
Tin, O’Leary, and Fotedar, 2015), and freshwater/ salt marsh 
(Carle, Wang, and Sasser, 2014). However, these studies mostly 
utilized sensors with fewer than four spectral bands in the 
visible domain, which limited the detailed classification of 
vegetation (Feilhauer et al., 2013). To overcome the limitations, 
in October 2010, a WV2 satellite was successfully launched into 

orbit and began to acquire high spatial resolution images, 0.5-m 
for panchromatic and 2-m for multispectral images, and high 
spectral resolution (eight bands) including four additional 
spectral bands with additional near-infrared, coastal-blue, 
yellow, and red-edge bands (Updike and Comp, 2010).

Evaluation and validation of the feasibility of the new 
spectral bands of WV2 satellite data on identifying and mapping 
MSAV in coastal habitats are a necessity. This work not only 
contributes to scientific research but also provides useful 
information for managers, conservationists, and coastal 
planners, and is particularly relevant for marine conservation 
parks’ authorities. The main objectives of the present study 
were: 1) validating the feasibility of the WV2 satellite data for 
identifying and mapping MSAV in coastal habitats; 2) 
evaluating three machine learning algorithms/classification 
methods, Mahalanobis distance (MDiP), supervised minimum 
distance (MiD), and spectral angle mapper (SAM), for mapping 
the diversity of MSAV.
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METHODS
In this section, we present a description of the study area, 

spectral reflectance measurements, WorldView-2 images 
acquired, processing methods, and the accuracy assessment used 
in this study.
Study area

Rottnest Island and Point Peron, Rockingham are recognized 
as biodiversity hotspots of the WA coast and have been selected 
as pilot study sites for the region. The tidal range of the WA 
coast is relatively low (± 1 m). Rottnest Island is located off the 
WA coast approximately 19 km from the port of Fremantle, 
while Point Peron is a large limestone region at Shoalwater
Islands Marine Park on the Rockingham coast (Figure 1). The 
study sites are dominated by canopy forming macroalgae such as 
Sargassum sp., Ecklonia sp., sea grass (Amphibolis sp., Posidonia
sp.), and other associated MSAV species such as Ballia sp., 
Metagoniolithon sp., Asparogopsis sp., Gracilaria sp., and Ulva
sp. 

Figure 1. Map showing the selected study locations along the Western 
Australian coast, Australia. The dashed lines symbolize marine 
protected areas’ boundaries.

Field surveys and vegetation classes
The purpose of mapping mainly focuses on the abundance of 

habitats. Consequently, broad-scale field surveys were 
conducted as much as possible. We used a combination of both 
scuba and free diving methods to collect ground truth data of the 
dominant habitat types. Ten and three survey transects were 
carried out at Rottnest Island and Point Peron, respectively 
(Figure 1). Along the transects, MSAV samples, in the depth 
range between 0.2 and 3.5 m, were collected and underwater 
photographs taken. 

The classification of benthic habitats at the two study sites 
was based on a hierarchal classification scheme that included 
three levels and five classes (Figure 2). Classification at level 1 
was based on the pixel reflectance value that best separated 
vegetated and non-vegetated benthos. The non-vegetated level 1 
substrates were subdivided into sandy and limestone substrates 
by means of reflectance characteristics. Likewise the vegetated 
level 1 substrates were classed as either macroalgae and sea 

grass by means of spectral reflectance and the ground truthing 
from the field survey data. Level 3 classification, including five 
different habitat classes, largely depended on the characteristics 
of spectral reflectance to divide them into two groups of canopy 
algae and algae turf. The group of sea grass, sand, and limestone 
was also similar to level 2.
Spectral reflectance measurement and processing 

Twenty-two MSAV samples that included macroalgae, sea 
grass, sand and limestone substrates were collected at Point 
Peron (32.2715 oS, 115.6865 oE), WA on August 22, 2014. The 
MSAV samples were preserved in cold containers and 
transported to the Curtin Aquatic Research Laboratory within 
four hours of collection. The samples were then identified to 
species level and their spectral reflectance was measured by an 
ASD Hi-Res FieldSpec® 4 portable spectroradiometer (1-nm 

placed on 
a non-reflective black tray and measured from nadir position 
(~10o). Thirty replicates were measured for each sample.
WorldView-2 image acquistion

Two WV2 scenes covering the Rottnest Island and Point 
Peron, Rockingham regions were acquired for study areas in 
WA coastal waters. The selected WV2 were captured on 
February 7 and October 28, 2013 for Point Peron, Rockingham 
and Rottnest Island, respectively. The captured time of the 
satellite corresponds to Australian mid-spring and late summer, 
coinciding with the most dominant MSAV habitat development, 
particularly the canopy macroalgae such as Sargassum and
Ecklonia (Tin, O’Leary, and Fotedar, 2015; Kendrick and Walker, 
1994).

Figure 2. The conceptual diagram used to classify marine submerged 
aquatic vegetation habitats in clear shallow coastal waters.

 

Remote sensing image processing 
The WV2 digital numbers were first converted to top of 

atmosphere surface reflectance values with the procedure given by 
Updike and Comp (2010). The FLAASH algorithm in ENVI 4.7 
was then used for atmospheric correction. High-resolution 
panchromatic data (0.5-m) were fused with the lower resolution 
multispectral bands (2-m) to create a colorized high-resolution 
dataset. 
Accuracy assessment

Overall classification accuracy was calculated by dividing the 
total number of calculated pixels by the total error pixel in the 
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classification process; overall classification accuracy was 
measured in units of percent. Index error (error matrices) was 
used to calculate the user's and producer's accuracy. In 
particular, the error matrix (user’s accuracy) was used to 
determine the accuracy of the object’s classification and Kappa 

RESULTS
In this section, we describe the marine submerged aquatic 

vegetation types, spectral reflectance characteristics, mapping 
MSAV distribution, and results of accuracy assessment.
Marine submerged aquatic vegetation distribution 
substrates

According to field surveys, the distribution area of MSAV at 
selected sites in WA coast is mainly distributed on the limestone 
substrates within depths ranging from 0.2 to 3.5 m. The major 
subtrates are sandy and limestone rock. 
Spectral reflectance characteristics 

The results of the PCA analysis measuring the surface 
spectral reflectance of 19 MSAV groups and three substrate 
types showed that all MSAV groups in shallow coastal waters 
(<3 m) can be divided into four main groups: brown 
macroalgae, red macroalgae, green macroalgae, and benthic 
substrate groups. The sea grass group has two dominant species, 
Posidonia sp. and Amphibolis sp. The results from in-air 
spectral measurements showed that the sand and limestone 
substrates were completely different from the reflectance 
spectra of the other MSAV species (Fearns et al., 2011). The 
peak spectral reflectance values of brown macroalgae species 
were usually at 550 nm. Brown and red macroalgae usually 
have longer wavelengths and could have more than one 
maximum point (580 and 650 nm) (Figure 3). Regression 
between in situ and WV2 satellite-derived spectral reflectance, 
based on the classification results PCA and we found that all 
species of MSAV and substrates can be classified into/divided 
into four main groups. Therefore, in this present study, four 
major substrate habitats including sea grass, mixed MSAV, turf 
algae, canopy algae, and two main benthos substrate types 
including bare limestone and sand were selected for habitat 
mapping.
Mapping the distribution of MSAV 

The results of the MDiP, MiD and SAM classification 
methods revealed that the distribution area differed with each 
method (Figures 4 and 5). The MDiP classifier showed that the 
mixed SAV was in deep waters. Sea grasses were identified as 
the dominant habitat and were usually distributed in the shallow 
waters where a sandy bottom is the most dominant. With the 
MiD classifier, sea grass was also identified as the highest 
distributed habitat that included the deep water areas. Canopy 
algae, algae turf, and sand were also interpreted similarly to the 
results of the MDiP method. Likewise, the SAM classifier 
expressed the sketchy interpretation results and unclear pattern 
of some sea grass, mixed SAV, and sand. Canopy algae and 
algae turf were not presented clearly either. At Point Peron, 
fresh biomass of Sargassum at the inter-tidal zone reached 
5651.7±754.5, 5218.9±192.6, 1136.6±526.4, and 3472.2±434.2 

gram per square meter (g m-2) for spring, summer, fall, and 
winter, respectively.
Accuracy assessment

In Rottnest Island, the confusion matrix showed that the 
highest overall accuracy was achieved with the MiD 
classification method (90.93%), followed by the MDiP 
classification method (90.66%). The lowest overall accuracy 
was found in the SAM classification method with a value of 
49.93%. In particular, the MiD classification methods had user’s 
accuracy ranging from 86.9% for mixed MSAV to 100% for the 
bare limestone class. In the MiD classification methods, all 
identified classes had a user’s accuracy greater than 70%.

Figure 3. The in-air spectral signatures of the main inter-tidal 
submerged aquatic vegetation species and substrates in WA. Note: Sal =
Sargassum linearifolium, Sas = S. spinuligerum, Ecr = Ecklonia 
radiata, Cos = Colpomenia sinuosa, Asa = Asparagopsis armata, Hyr 
= Hypnea ramentacea, Bas = Ballia sp., Amp = Amphiroa anceps, Eua
= Euptilota articulata, Bac = Ballia callitrichia, Mes =
Metagoniolithon stelliferum, Ula = Ulva australis, Ens = Entermorpha 
sp., Cod = Codium duthieae, Cag = Caulerpa germinata, Caf = C. flexis,
Brv = Bryopsis vestita, Ama = Amphibolis antartica, Pos = Posidonia 
sp., Sed = Sediment, Ser = Sediment/Rubble, Lir = Limestone rocks 
with red coralline algae covering.

Producer’s accuracy ranged from 43.8% for the canopy algae 
class and 100% for both sea grass and sand classes. Five out of 
six classes had a producer's accuracy greater than 70%, 
excluding the canopy algae class with 43.8%. User's accuracy of 
the MDiP classifier gave only the sea grass class less than 70% 
(66.6%), while the remaining classes were greater than 70%. 
Producer's accuracy of canopy algae was 45.7%, while the 
remaining classes had values greater than 70%. The user's 
accuracy of SAM had an accuracy value greater than 70%. Two 
out of the six classification classes had producer's accuracy of 
less than 70%,  including canopy algae and sand.
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Figure 4. Comparison of classification results from three different 
classifier methods, MDiP, MiD, and SAM, at Rottnest Island study 
sites.

At Point Peron, the overall accuracy of the MiD classifier 

The MDiP classifier with general accuracy value reached 

coefficient = 0.74). In the classification results of 
the MiD classifier, only the producer's accuracy of the bare 
limestone class was 68.58%’ none of the classes had 
classification results less than 70% in terms of both user's and 
producer's accuracy. Similarly to the MDiP classifier, only the 
user's accuracy of the canopy algae class was valued at 66.7%; the 
remaining classes in terms of both user’s and producer’s accuracy 
were greater than 70%. The SAM classifier gave two out of six 
classes user’s accuracy values lower than 70% including canopy 
algae and sand. The remaining results for both user’s and 
producer’s accuracy were above 70%.

DISCUSSION
Rehabilitation and development of MSAV habitats is 

currently one of the priority activities in ecosystem 
conservation, including freshwater ecosystems (Harwell and 
Havens, 2003; Herrera-Silveira and Morales-Ojeda, 2009; Yuan 
and Zhang, 2008). However, assessing the growth and mapping 
the current state of distribution of MSAV on a large scale is very 
time-consuming and labor-intensive not only because of 
geographical issues but also because of seasonal and weather 
variations (Yuan and Zhang, 2008). The results of this study can 
be compared with those of the recent studies that used high-
resolution satellite imagery for mapping of shallow coastal 
vegetation. Fearns (2011) used HICO hyperspectral images in 
mapping marine vegetation that showed the optical model could 
classify 80% of the image pixels. Of those, approximately 50% of 
pixels were distinguished as sea grass and sand and 90% were 
classified as macroalgae (Fearns et al., 2011). Regarding the 
optimum depth for classification satellite remote sensing imagery, 
this present study showed a similar trend to that of Reshitnyk and 
colleagues (2014) as results suggested that WV2 imagery can 
provide the finest interpretation of eelgrass, and brown and green
macroalgae habitats at depths above <3.0 m.

The overall accuracy of the classification outcomes in the 
present study is higher than that of the study by Kumar and 

colleagues (2015) when using support vector machine (SVM), 
artificial neural network (ANN), and SAM classification 
methods for classifying crop and non-crop canopy in India. The 
highest overall accuracy found in SVM and ANN algorithms 
was 93.45% and 92.32%, respectively. Likewise, the SAM 
method has low accuracy among the classification methods
(74.99%) (Kumar et al., 2015). In this study, MDiP and MiD 
methods demonstrated potential for identifying and mapping 
MSAV with WV2 multispectral high-spatial resolution (MHSR) 
satellite imagery. This was validated by the highest overall 
accuracy (greater than 90%) for both study sites in WA. The 
MDiP method showed that mixed MSAV was in deep waters 
rather than shallow coastal waters. 

This study supports the feasibility of previous studies 
suggesting that MHSR satellite data (e.g. QuickBird, WV2) 
would be suitable for mapping benthic macroalgae cover in 
regions of very high heterogeneity (Vahtmäe and Kutser, 2007).
In addition, the MHSR imagery data combined with field 
surveys in coastal shallows are a perfect fit. However, 
hyperspectral airborne imagery (HAI) is an advantageous 
imagery source which have the abundantly information to assess 
coastal marine habitats due to its hyperspectral characteristic 
bands, regardless data acquire price. HAI is still very expensive 
compared with MHSR as it is collected by separate regions for 
each study purpose (Yuan and Zhang, 2008).

Figure 5. Comparison of classification results of three different 
classifier methods, MdiP, MiD, and SAM, at Point Peron study sites.

The similarity of reflectance spectra of sea grass species to 
those of other macroalgae groups is owed to their biological 
characteristics. A study of sea grass distribution by remote 
sensing in Bourgneuf Bay (France) for Zostera marina and Z.
noltii species showed reflectance spectra distinct from micro 
and macroalgae, particularly in the wavelength used NIR band 
(Barillé et al., 2010). Our results for in-air measurement and 
reflectance spectra of 22 MSAV species showed that two sea 
grass species, Posidonia sp. and Amphibolis sp., had reflectance 
spectra characterized by green and red macroalgae groups, 
respectively. As either they can have many different emphytes 
algae on the leaves’ surface or they were on older stages in the 
life cycle when the leaves’ pigments was changing. A similar 

Downloaded From: https://complete.bioone.org/journals/Journal-of-Coastal-Research on 31 Aug 2024
Terms of Use: https://complete.bioone.org/terms-of-use



Identification and Mapping of Marine Submerged Aquatic Vegetation
 

Journal of Coastal Research, Special Issue No. 75, 2016
1291

pattern was found by Yuan and Zhang (2008), who found that 
the spectral reflectance ratios of submerged aquatic species 
decreased with the aging MSAV species (Yuan and Zhang, 
2008). This can be explained by the aging vegetation, decaying, 
and appearing of emphytes organisms on their leaves, branches, 
thallus’ surface. Therefore, spectral reflectance not only reflects 
the host species but is also affected by many other fouling 
organisms.

CONCLUSIONS
This work demonstrates a case study using high spatial 

resolution satellite images in evaluating MSAV identification 
and distribution in shallow coastal waters. The major 
advantages of increasing the number of spectral bands and 
spatial resolution are better detection ability and MSAV 
distribution map with clear water column as WA coastal waters. 
The results revealed that both MDiP and MiD classification 
methods showed better evidence for the greater accuracy of 
MSAV classification results than the SAM classification 
method. Classification results also showed a full representation 
of the distribution of MSAV groups in shallow coastal areas.
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