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Search strategies for conservation detection dogs

Alistair S. Glen and Clare J. Veltman

A. S. Glen (glena@landcareresearch.co.nz), Manaaki Whenua–- Landcare Research, Private Bag 92170, Auckland 1142, New Zealand. – C. J. 
Veltman, Dept of Conservation, c/o Manaaki Whenua – Landcare Research, Palmerston North, New Zealand.

Monitoring rare or cryptic species can be challenging, especially with limited time and resources. Dogs are often used for 
this purpose, but methods are highly variable. There is a need to optimise search methods for dog teams so that time and 
resources are used as efficiently as possible. Some degree of standardisation is also desirable so that search results are compa-
rable between different times and places. The discipline of search theory has developed effective methods to maximise the 
probability of detecting a search object and/or maximise the efficiency of a search. However, these advances have not been 
explicitly applied to the use of dogs to search for plants and animals in the wild. Here, we provide a brief introduction to 
search theory, then discuss how ideas from search theory might be used to standardise and optimise the use of conservation 
detection dogs. We describe approaches that have been used, discuss their strengths and weaknesses, and suggest priorities 
for further research. Standardised methods based on search theory could increase the effectiveness of conservation detection 
dogs, and make search results more comparable across different locations and times. 

A major challenge in wildlife management and conserva-
tion is monitoring the abundance and distribution of cryptic 
species. Many plants and animals can be difficult to detect, 
either because they are scarce (e.g. invasive species early in an 
incursion; Hauser et al. 2015), or because they are intrinsi-
cally cryptic (e.g. small seedlings; Patten and Milne 2008). 
Monitoring cryptic species requires methods that are afford-
able and repeatable (Reed et al. 2011). This means there 
is a need to optimise search strategies for cryptic species 
within the limitations of budget, time and human resources. 
Researchers and managers must decide how many sites to 
search, which ones, and how much effort to allocate to each 
(Baxter and Possingham 2011).

Failure to detect an organism does not necessarily mean 
it is absent, especially when density is low. In deciding what 
level of search effort to apply, managers have to weigh up 
the costs of surveillance against the risk of missed detections 
(Parkes and Nugent 2011).

Dogs are increasingly being used to search for cryptic 
animals and plants (Long et al. 2007a, b, MacKay et al. 
2008, Woollett et al. 2013, Johnen et al. 2017). Searches 
are conducted for a wide variety of purposes; for example, 
to enumerate populations, to determine presence/absence 
of a species, to assist in capturing animals for research, or 

to locate and remove invasive plants or animals. However, 
search methods using conservation detection dogs are not 
standardised, and variation in their performance is not well 
understood or quantified (Clare et al. 2015a). Our aim 
was to collate published studies relating to conservation 
detection dogs (hereafter ‘conservation dogs’), review attri-
butes of search theory relevant to conservation dogs, and 
synthesise lessons for future application by conservation 
managers.

Literature search

We searched Google Scholar and the ISI Web of Science 
database using the keywords: ‘wildlife detect* dog’; ‘scat 
detect* dog; conservation detect* dog; plant detect* dog; 
weed detect* dog’, and; (‘search theory’ AND (dog OR 
canine OR wildlife)). We scanned the resulting titles for 
references to the use of dogs to find wild plants or animals. 
We also searched for review articles on search theory in 
general. Additional articles were located from the reference 
lists of these publications. Our literature search yielded 
152 publications (Supplementary material Appendix 1). 
There was an apparent taxonomic bias in published stud-
ies using conservation dogs: 63 studies related to mam-
mals, 20 to plants, 9 to reptiles, 3 to invertebrates and 1 
to birds. An additional 56 publications had no taxonomic 
focus; these related to methods (e.g. selection and training 
of dogs) or to search theory in general. A database with 
details of each publication is provided in Supplementary 
material Appendix 1.
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Search theory

Initially developed by Koopman (1946, 1980) for naval 
applications, search theory helps determine an optimal 
search strategy, taking into account environmental condi-
tions and resource constraints. It allows the user to estimate 
(and maximise) the probability of detecting a search object 
(e.g. a plant or animal) while explicitly considering charac-
teristics of the search object, the physical environment and 
the capabilities of the searcher (Frost 2000). 

Search theory has applications in such diverse fields as 
computer science (Geem et al. 2009), mineral exploration 
(Kolesar 1982), search and rescue (Cooper 2005), animal 
behaviour (Alpern et al. 2016) and invasive species manage-
ment (Cacho et al. 2007), among others. Excellent syntheses 
are provided by Frost (2000), Frost and Stone (2001) and 
Washburn (2002). Cacho et al. (2007) provide an extremely 
useful introduction to search theory for ecologists. 

Effective sweep width
Search theory allows the user to estimate the probability of 
detecting an object with a given search strategy and level 
of effort (Cacho et al. 2006, Perkins and Lovelock 2008).  
A fundamental concept in this process is ‘effective sweep 
width’ (R), which is a measure of the search object’s detect-
ability (Cooper et al. 2003, Cacho et al. 2007). It is defined 
as the distance either side of the searcher at which the num-
ber of missed detections inside the range equals the number 
of positive detections outside the range (Koopman 1946, 
1980). 

To design an optimal search pattern, it is necessary to 
estimate effective sweep width. This is influenced by char-
acteristics of the search object (how conspicuous is it?), 
the capabilities of the searcher (e.g. speed, sensory acuity, 
ability to negotiate rough terrain), and environmental con-
ditions such as weather and vegetation type (Frost 2000, 
Hauser et al. 2015). Robe and Frost (2002) describe a sim-
ple method to estimate effective sweep width experimentally. 
Search objects are placed at locations known to the observer, 

but not to the searcher, in an environment similar to that 
of a real search. Detections and missed detections are then 
recorded, along with the distance of each search object from 
the search path. This information is used to generate cumula-
tive detection and non-detection curves. The intersection of 
the two curves indicates half the effective sweep width (Robe 
and Frost 2002). To obtain a reliable estimate, a minimum 
of 250 detection opportunities is recommended. This could 
be achieved, for example, by 10 searchers searching for 25 
objects (Robe and Frost 2002). 

The concept of effective sweep width is equally applicable 
to searches that rely primarily on vision, or on smell. 
Effective sweep width is estimated in a probabilistic fashion. 
Estimates should therefore be robust to stochastic variations 
in the distance at which a target is likely to be detected 
(e.g. due to changes in wind speed or direction).

Coverage
The proportion of the total area of interest that is effectively 
searched is termed ‘coverage’ (c), which can be estimated as 
c = STR / A (where S is the speed of the searcher, T is time, 
R is effective sweep width, and A is the area of the search 
zone). Factors such as remote or rugged terrain may reduce 
the searcher’s speed, and therefore increase the time required 
to achieve the same coverage (Cacho et al. 2007).

Probability of detection
‘Probability of detection’ (POD) is the probability that a 
searcher will detect a target; POD declines with increasing 
distance from the searcher to the target. The relationship 
between POD and distance is described by a ‘lateral range 
curve’ (Fig. 1). The area under the curve equals the effective 
sweep width (Koopman 1980, Perkins and Lovelock 2008). 

Probability of detection increases with additional search 
effort, and the cumulative POD for a search can be esti-
mated from the effective sweep width and the search effort 
per unit area (Robe and Frost 2002). Cumulative POD 
always falls between a theoretical maximum, represented 
by a ‘definite range sensor’, and a minimum, represented by 

Figure 1. Two examples of lateral range curves, which describe the relationship between the distance from a searcher to a target, and the 
probability of detection (POD). The solid line represents a hypothetical definite range sensor: any target within the sensor’s range (4 m in 
this example) will be detected with certainty (POD = 1), but no target beyond this distance will be detected (POD = 0). The dashed line 
represents a more realistic search scenario in which POD declines exponentially with increasing distance. If the target is directly in the 
searcher’s path (i.e. distance = 0), then POD = 1. Although POD declines sharply with increasing distance, it approaches zero asymptotically. 
It is therefore possible (but unlikely) for a distant target to be detected (e.g. at 10 m). 
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an exponential detection curve (Frost 2000) (Fig. 1). The 
hypothetical definite range sensor detects all search objects 
within a specific range but none beyond that range. By 
traversing the search zone along parallel tracks, a definite 
range sensor would detect all search objects in a single pass 
(Cacho et al. 2007). However, definite range sensors are 
merely a heuristic concept useful for explaining the idea of 
effective sweep width; such sensors do not exist in reality. At 
the opposite end of the spectrum is the exponential detec-
tion function (Koopman 1946, 1980), which is expressed 
as POD = 1 – e–c (where e is the base of natural logarithm 
and c is coverage). Frost (2000) argues that this curve best 
approximates real searches because even small variations in 
search parameters cause POD to drop sharply towards the 
theoretical minimum.

Experimental estimates of POD can be obtained by 
varying the survey conditions and measuring the effort 
required to detect the target (Hauser et al. 2015, 2016). 
For example, Moore et al. (2011) empirically measured the 
relationship between search effort and POD for the invasive 
plant Hieracium aurantiacum (see also Moore et al. 2010, 
Hanigan and Smith 2014).

Search strategies and search effort
The relationship between search effort and probability of 
detecting the target is influenced by the search pattern. 
For example, the searcher may follow parallel lines, a ran-
dom walk, or one of many other possible search patterns 
(Wharton 2000, Washburn 2002, Cooper et al. 2003, 
Chung and Burdick 2007, Arbeit 2013). An efficient search 
strategy is one that has a high probability of locating the 
target using minimal time and resources. Search strategy 
must therefore consider coverage, routing and resource allo-
cation (Wharton 2000). The optimal distribution of search 
effort depends on the effective sweep width, the speed of the 
searcher, and the probability that the search object is pres-
ent in a given area (Frost 2000). When planning a search, 
the search zone is usually divided into cells, each with an 
estimated probability of containing the target (Frost 2000). 
These probabilities may be estimated in various ways; for 
example, when searching for plants or animals, a map of pre-
ferred habitat types might be used (Hauser and McCarthy 
2009, Thalmann et al. 2015). 

Search effort is assigned to each cell according to ‘prob-
ability of area’ (POA), which is the likelihood that it con-
tains the target (Chung and Burdick 2007, Doherty et al. 
2014). The effectiveness of a search is measured by ‘prob-
ability of success’ (POS): POS = POD  POA. Searches can 
be designed to maximise POS with a certain level of search 
effort. Alternatively, if time is critical (such as in a search and 
rescue scenario), the objective may be to minimise the time 
required to find the target (Frost 2000). Cooper et al. (2003) 
describe two approaches to optimal allocation of search 
effort. ‘Optimal search density’ aims to optimise the distri-
bution of search effort across all possible locations within 
the search zone, but ignores variation in ease of access or 
movement. The ‘optimal searcher path’ incorporates these 
variables, making it more realistic but computationally 
intensive (Cooper et al. 2003).

Hauser and McCarthy (2009) describe a model to opti-
mise allocation of search effort for an invasive species. Their 

model accounts for spatial variability in probability of occur-
rence and detection, as well as the benefits of detection. 
They conclude that searches should generally target habitats 
where the search object is relatively easy to detect; however, 
more difficult habitats may be searched intensively if there 
is a high probability that the search object occurs there, or a 
high benefit in detecting the target in that habitat (Hauser 
and McCarthy 2009). For example, there may be increased 
benefit in detecting invasive predators in critical habitat of a 
threatened species. It may therefore be beneficial to search 
such areas even if predators are more difficult to detect there. 

More recently, Moore and McCarthy (2016) developed a 
model to optimise survey effort, taking into account varia-
tion in detection probabilities and travel costs for sites. 
The model determines what proportion of the budget, and 
how many visits, should be allocated to each site. Similarly, 
Chung and Burdick (2007) developed a decision support 
model to help optimise the order in which cells are searched 
and the amount of effort assigned to each. Using Bayesian 
methods, the search plan can be continually updated with 
new knowledge (Chung and Burdick 2007).

Chung and Burdick (2007) also evaluated various search 
patterns, including: random search; sweeping search along 
parallel lines; ‘optimal lookahead search’, in which the next 
cell to be visited is continually updated with new informa-
tion; ‘saccadic search’, in which search cells are visited in 
order of their probability of containing the search object, 
and; ‘Drosophila-inspired search’, in which search focus 
follows (more or less) the shortest path from the cell just 
searched to the next most probable cell. The optimal looka-
head search delivers the best strategy, but is computationally 
intensive, whereas saccadic and Drosophila-inspired searches 
are computationally simple. A saccadic approach might be 
useful in planning a series of discrete searches; however, it 
does not account for travel time between cells. The Drosoph-
ila-inspired search can apply to a continuous search through 
multiple search cells (Chung and Burdick 2007).

Baxter and Possingham (2011) assessed the tradeoffs 
between widespread searching (with low search intensity per 
site) and focused searching (high intensity per site). They 
found that widespread searching is preferable if the target 
species is widespread, or if knowledge of its likely distribu-
tion is poor. However, focused searching may be optimal if 
the target species’ distribution is highly restricted or predict-
able (Baxter and Possingham 2011). Similarly, Delaney and 
Leung (2010) compared intensive searches of random quad-
rats with less intensive, widespread searching. A 95% POD 
required 9.5 h of intensive searching, or 2.2 h of widespread 
searching; however the widespread search was biased towards 
larger (more conspicuous) targets. Regardless of search strat-
egy, POD was similar for mobile and sessile targets, but 
mobile targets took longer to detect (Delaney and Leung 
2010). As well as considering mobile targets, search prob-
lems can also include situations in which the target responds 
to the approaching searcher, e.g. by hiding or fleeing (Frost 
and Stone 2001). 

Tools for optimising searches
A number of authors have used search theory to develop 
automated tools for search planning. Models can use infor-
mation from geographic information systems, as well as 
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characteristics of the searcher and target, to evaluate factors 
such as ease of traversing the terrain, ease of detecting the 
target, and optimal search path (Wharton 2000, Sujit and 
Ghose 2004, Arbeit 2013). Allocation of effort and resources 
can then be optimised, and can be updated as the search 
progresses (Wharton 2000). Mission plans can be produced 
for searchers with a series of search tasks to be carried out in 
sequence (Flushing et al. 2012).

Examples of search planning software include the US 
Coastguard’s Search and Rescue Planning (SARP) and com-
puter-assisted search planning (CASP) programs, and the 
freely available computer-aided search information exchange 
(CASIE) (Frost and Stone 2001, O’Connor 2004). Similar 
software has yet to be developed specifically for use with 
conservation dogs. 

Conservation dogs

Because of their speed, agility, trainability and acute sense 
of smell, dogs are increasingly being used to search for 
plants and animals (Beebe et al. 2016, Johnen et al. 2017). 
For example, dogs have been used to search for carnivores 
(Long et al. 2007a, b, Glen et al. 2016), rodents (Gsell et al. 
2010), reptiles (Stevenson et al. 2010, Browne et al. 2015), 
birds (Cheyne 2011) and invertebrates (Ward et al. 2016), 
as well as rare or cryptic plant species (Goodwin et al. 2010, 
Cherry et al. 2016, McLean and Sargisson 2017). Dogs 
have been trained to detect up to 10 different target odours, 
and learn more quickly as they are trained for more targets 
(Williams and Johnston 2002).

Dogs can be useful for capturing animals, assessing popu-
lation status, collecting specimens (e.g. scats or carcasses), 
studying animal behaviour, or managing invasive species 
(Cruz et al. 2009, Dahlgren et al. 2012, McGregor et al. 
2016, Mumma et al. 2016). Conservation dogs are particu-
larly useful for detecting species at low density when other 
methods have a low probability of detection (Cheyne 2011). 
On detecting a target, dogs generally alert their handler 
through a trained response, such as sitting, or through a 
change in behaviour, such as an altered search pattern (Cablk 
and Heaton 2006, Savidge et al. 2011, Cablk and Harmon 
2013, McLean and Sargisson 2017).

The use of dogs has a number of advantages over other 
methods of detecting wildlife. Compared to human observ-
ers, detector dogs may have higher effectiveness. For exam-
ple, a koala Phascolarctos cinereus scat detection dog achieved 
higher efficacy (proportion of available scats found) and 
efficiency (time to find scats) than human observers (Cris-
tescu et al. 2015), and dogs are much more successful 
than humans at detecting invasive brown tree snakes Boiga 
irregularis (Savidge et al. 2011). Dogs can also locate target 
animals at very low density, e.g. a single rat Rattus norvegi-
cus experimentally released on a small (9.5-ha) rodent-free 
island (Russell et al. 2008).

Some studies have reported that scat detection dog sur-
veys were more cost-effective than camera traps for detect-
ing various carnivores (Long et al. 2007a, Alexander 2016), 
although a recent study found the cost-effectiveness of detect-
ing feral cats Felis catus in a New Zealand pastoral landscape 
was similar for camera traps and dogs. However, dog teams 
had some advantages over the use of camera traps: they can 

detect cats more rapidly, and are less prone to interference by 
humans or livestock (Glen et al. 2016).

Applying search theory to the use of conservation dogs
Although a variety of strategies are used when searching with 
dogs, principles of search theory are usually not explicitly 
applied. Furthermore, dogs are sometimes used to detect 
wildlife without assessing accuracy or considering potential 
sources of bias (Cablk and Heaton 2006). Here we discuss 
how ideas from search theory might be used to standardise 
and optimise the use of conservation dogs.

For any search problem, the optimal strategy will 
depend on the aims of the search (MacKay et al. 2008). 
For example, if the aim is to estimate landscape occupancy, 
only a moderate probability of detection may be required 
(MacKenzie et al. 2002). In other situations, e.g. response 
to an incursion, managers may wish to maximise detec-
tion probability and minimise time taken to find the target. 
Much greater search effort would be justified in the latter 
case. Search design should consider the minimum density of 
targets the search should be able to detect with a certain level 
of confidence, the sensitivity of the search effort, and cost 
(Kean et al. 2015).

Search theory tells us that the relationship between dis-
tance of the searcher to the search object and probability of 
detection is important in planning a search and interpreting 
the results. However, because the distance at which a scent 
can be detected is highly variable, it is difficult to estimate 
effective coverage (Reed et al. 2011). For the purposes of a 
dog team, we define the dog handler as the searcher; the dog 
may be thought of as a sensory tool used by the searcher. 
Detection distance might be affected by such factors as 
weather, habitat and topography, as well as the abilities of the 
dog and searcher. Characteristics of the search object (e.g. 
size and developmental stage of plants; size and age of scats) 
are also important (Wasser et al. 2004, Patten and Milne 
2008, Reed et al. 2011, Dahlgren et al. 2012).

Experimental studies using dogs to search for wildlife 
have delivered variable estimates of detection distance 
(Table 1). For example, de Oliveira et al. (2012) estimated 
that deer (Mazama spp.) scats were detectable from no fur-
ther than 7.2 m, while Cablk et al. (2008) found that dogs 
could detect desert tortoises Gopherus agassizii from as far as 
62.8 m. In a New Zealand study, handlers reported that dogs 
detected rodents from an average distance of around 50–60 
m (Gsell et al. 2010). Estimates of detection distance are 
sometimes subjective, as the handler must judge when the 
dog has detected a scent.

Ground cover can influence odour dispersion but does 
not consistently reduce the effectiveness of scat detection 
dogs (Arnett 2006, MacKay et al. 2008). For example, 
Leigh and Dominick (2015) found no effect of habitat on 
the distance at which dogs detected scats of a threatened 
carnivorous marsupial, Dasyurus maculatus; mean detection 
distances ranged from 12.9–15.4 m (Table 1). 

Weather conditions can influence detection distance and 
detection probability. For example, detection success for 
brown tree snakes increased with humidity and decreased 
with wind speed (Savidge et al. 2011), and Shivik (2002) 
reported that variable winds may increase the time taken for 
dogs to find a target. Long et al. (2007b) found that site 
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characteristics and weather conditions had little effect on 
detection probabilities, but did influence the time required 
to search a site. However, other studies have found weather 
conditions to be relatively unimportant. Cablk and Heaton 
(2006) reported that variations in wind speed (0–9 m s–1), 
temperature (12–27ºC) and humidity (18–88%) had no 
measurable effect on the efficacy and reliability of dogs. Sim-
ilarly, Reed et al. (2011) conducted trials with wind speeds 
of 0.7–3.4 m s–1, temperatures of 4–29ºC and humidity 
22–100%; they concluded that detection probability was 
more strongly influenced by distance than by environmen-
tal variables. It is likely that weather conditions affect the 
distance at which dogs detect a target odour. However, 
dogs and handlers are able to adjust their search behaviour 
according to the conditions. Thus, searches may take lon-
ger to complete in some conditions, but are likely to achieve 
similar results.

One challenge with adapting search theory for use with 
dogs is that scent cues may be more directional than visual 
cues, depending on wind direction. If the searcher is walking 
directly into the wind, we might expect a symmetrical lateral 
range curve (Fig. 1), in which POD declines equally with 
increasing distance on the searcher’s left or right. However, 
if the search transect is perpendicular to the wind, we would 
expect a skewed curve, in which POD declines more sharply 
on one side than the other.

Detection parameters also vary between dog teams 
(Clare et al. 2015b). For comparability between sampling 
times and locations, the same dog team should be used where 
possible (Dahlgren et al. 2012). Alternatively, we suggest 

the identity and experience level of the dog team could be 
included as covariates in analyses.

Search efficacy also varies for the same dog team over 
time, and may increase with training and experience (Cablk 
and Heaton 2006). However, dogs may lose motivation if 
not rewarded for finding a target (e.g. if reward is withheld 
pending confirmation that the correct target has been identi-
fied). If the handler is uncertain whether the correct target 
has been identified, a ‘partial reward’ can be given, while 
reserving the ‘full reward’ for cases when the handler can 
verify the target’s identity (Cablk and Harmon 2013). Search 
efficacy may also be influenced by fatigue and motivation 
level of the dog or handler (Cablk and Harmon 2013), 
potentially reducing POD and/or effective sweep width. For 
example, a dog’s motivation can be reduced if few targets 
are encountered over a long period. Handlers can carry tar-
get objects (e.g. plant material or scats) and plant these in 
the search area to maintain the dog’s interest and motiva-
tion when detections are rare (Wasser et al. 2004, Kelly et al. 
2012). 

Variation in search efficacy is not exclusive to detection 
dogs; other ecological survey methods have similar limita-
tions (Neff 1968). Researchers and managers using detector 
dogs should report the results for each individual dog and 
handler so that more reliable estimates of detection param-
eters can be obtained (Kelly et al. 2012, Clare et al. 2015b).

Search design
Armed with estimated detection parameters, the searcher 
must decide where to search and how to distribute search 

Table 1. Published estimates of detection distance for various target species using detection dogs. Target species are listed according to taxon, 
habit (e.g. arboreal, fossorial), and whether the dog teams searched for live subjects or scat.

Target species Taxon Habit Target type
Mean detection 

distance* Reference

Spotted knapweed Centaurea stoebe (small)† plant terrestrial live subject 8.5 m1 (SE 1.3) Goodwin et al. 
2010

Spotted knapweed (medium)† 12.8 m1 (SE 2.8) Goodwin et al. 
2010

Spotted knapweed (large)† 12.6 m1 (SE 1.9) Goodwin et al. 
2010

Kit fox Vulpes macrotis mutica and coyote Canis 
latrans

mammal terrestrial scat 4.8 m2 (SE 6.7; range 
0–38.4)

Ralls and Smith 
2004

Desert tortoise Gopherus agassizii reptile terrestrial/fossorial live subject 13.9 m1 (0.5–62.8) Cablk et al. 2008
Spotted-tailed quoll Dasyurus maculatus mammal terrestrial/arboreal scat 12.9–15.4 m, depending 

on habitat1  
(SE 1.2–1.6)

Leigh and 
Dominick 2015

Felids Puma concolor, Lynx rufus and Felis catus mammal terrestrial scat 9.6 m (0–25) Reed et al. 2011
Foxes Vulpes vulpes, V. macrotis and Urocyon 

cinereoargenteus
mammal terrestrial scat 10.4 m2 (0–25) Reed et al. 2011

Human Homo sapiens (normal clothing) mammal terrestrial live
subject

40.2 m1 Shivik 2002

Human Homo sapiens (scent-adsorbing clothing) mammal terrestrial live
subject

29.3 m1 Shivik 2002

Rodents Rattus norvegicus and Mus musculus mammal terrestrial live subject 50–60 m (4–150)1 Gsell et al. 2010
Deer (Mazama spp.) mammal terrestrial scat 0–6 m2 de Oliveira et al. 

2012

*Figures in brackets indicate variability in detection distance for those studies in which this was reported. Studies reported the range of values 
and/or standard error (SE). 
†The range of detection distances for all size classes combined was 1.0–62.2 m (Goodwin et al. 2010). The range was not reported for each 
size class of plant.
1Detection distance estimated as distance from target when a marked change in search behaviour indicated the dog had detected the scent.
2Detection distance estimated as distance of target from defined search transect.
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effort across the area in question. Search areas are often 
divided into cells, with a certain amount of effort assigned 
to each. The size of search cells may be determined by bio-
logical factors, such as home range of the target species 
(Brook et al. 2012, Mumma et al. 2015, Fuller et al. 2016) 
or logistical considerations, such as the area a dog team can 
search in a given time. This will vary according to terrain 
and conditions, but various studies report that dogs can 
typically search for about 5–7 h per day (Wasser et al. 2004, 
de Oliveira et al. 2012, Fuller et al. 2016), covering about 
3–10 km of transect (Brook et al. 2012, Clare et al. 2015b, 
Mumma et al. 2015, Alexander 2016). The distance covered 
by the dog may be much greater than the transect followed 
by the handler (Woollett et al. 2013).

When the search area is too large to cover exhaustively, 
searches can follow roads, drainage lines, or some other pre-
defined search path (MacKay et al. 2008), although this 
may introduce bias towards particular habitat types. For 
efficiency, transects are often designed as a loop so that the 
dog team starts and finishes at the same point (Ralls et al. 
2010, Beckmann et al. 2015, Alexander 2016). To make 
optimal use of wind direction, we suggest that the handler 
should walk perpendicular to the prevailing wind on the out-
ward and return legs of the loop. Alternatively, loops could 
be traversed once in each direction. Dogs can work on- or 
off-leash (Savidge et al. 2011, Woollett et al. 2013), although 
the latter allows the dog to cover more ground, and to adjust 
to factors such as wind direction (Fuller et al. 2016). 

Searches may follow a regular, pre-determined path, 
or they may be flexible. For example, Cablk and Harmon 
(2013) describe a ‘three-pass’ search strategy starting with a 
perimeter search, followed by a ‘hasty’ pass (cross-grid search 
along widely spaced lines) and a ‘detail’ pass (search lines 
closer together, perpendicular to those of the hasty pass). 
Gsell et al. (2010) used dog teams to search a 32-ha area 
for rodents, travelling along parallel grid lines either 50 
or 100 m apart. The authors considered that a typical dog 
team in New Zealand would be able to search 30–40 ha per 
day, although larger areas could be searched in open habi-
tat (Gsell et al. 2010). Other studies have adopted stratified 
search patterns, focusing on habitat features where the target 
species is likely to be found (Brook et al. 2012, O’Kelly et al. 
2012, Alexander 2016, Fuller et al. 2016). Because individ-
ual searchers vary in their abilities, some flexibility in search 
strategy can be beneficial (Flushing et al. 2012). Wultsch and 
Kelly (2012) compared the effectiveness of linear transects, 
diamond-shaped transects, and ‘opportunistic’ (ad hoc) 
searches for locating scats of large felids in various habitat 
types. Opportunistic searches in a range of habitats on and 
off roads and trails revealed the highest numbers of scats.

Detection probabilities of various plants and animals 
have been estimated experimentally. For example, for every 
kilometre searched, the estimated probability of detect-
ing bobcat scats was 0.135. Dogs searched 8.8 km day–1 
on average, yielding a daily detection probability of 0.721. 
Therefore two days, or 16 km, of search effort would yield 
a probability  90% of detecting bobcat scats, if present 
(Clare et al. 2015b). However, detection probabilities can 
vary between habitats (Smith et al. 2005, Hunter 2011), and 
between repeated visits to the same site (Kapfer et al. 2012).

Statistical analysis
Although dog teams can achieve high detection rates, their 
use presents analytical challenges, particularly when attempt-
ing to estimate population size. Many methods of density 
estimation require fixed sampling points, such as traps for 
animals or sampling quadrats for plants (Thompson et al. 
2012). While locations where target species are found are 
easily recorded, most analysis methods also need data on 
locations where nothing was detected. For example, capture-
mark-recapture analysis uses information from traps that 
catch nothing, as well as those that catch animals. To address 
this problem, Thompson et al. (2012) modified the spatially 
explicit capture–recapture model of Royle et al. (2009). The 
survey area is divided into hexagonal grid cells, the centres 
of which provide locations for detection/non-detection 
data (Thompson et al. 2012). An alternative approach 
was adopted by Fuller et al. (2016): search transects were 
divided into 25-m sections, which were treated as ‘traps’ 
for spatially explicit capture–recapture analysis. Other ana-
lytical approaches include occupancy modelling (Clare et al. 
2015b) and mark–recapture analysis based on individual 
identification from scat DNA (Wultsch and Kelly 2012).

Another potential problem in enumerating populations 
from scat detection data is the assumption of population 
closure (Alexander 2016). Scats can remain detectable in 
the field for prolonged periods (Brown et al. 2011, Hunter 
2011). One solution is to search the area once, removing all 
scats found, then re-visit and collect scats at a later date for 
capture–recapture analysis (Alexander 2016). Another pos-
sibility is to discard scats that are not fresh, although the age 
of scats can be difficult to determine (Cristescu et al. 2012).

Future research

Of utmost priority is to quantify effective sweep widths for 
wildlife detector dogs. This will include variation between: 
individual dogs and handlers; vegetation structures; topo-
graphic features; weather conditions and; search target 
(Reed et al. 2011, Dahlgren et al. 2012). The condition of 
the search target (e.g. live or dead animal; fresh or old scat) 
may also contribute to variation. There is also likely to be 
day-to-day variability even when all of the above factors are 
held consistent (Cablk and Harmon 2013). Therefore it 
would be beneficial to determine a typical effective sweep 
width, plus a measure of variability, for each combination 
of the above factors. Tabulating effective sweep width for 
different types of search objects and environments would 
allow optimal search strategies to be identified quickly and 
easily for a given scenario (Cacho et al. 2007).

Although some estimates of detection distance exist, tests 
involving larger numbers of dogs would help gauge vari-
ability. It would also be useful to perform tests with search 
objects placed further off the search transect to assess the 
distance at which detection rate approaches zero (Reed et al. 
2011). There are various approaches to estimate detec-
tion distance. For example, distance sampling methods 
(Buckland et al. 2005) can be used to estimate the relation-
ship between detection probability and distance (Guthery 
and Mecozzi 2008, MacKay et al. 2008). Cablk et al. (2008) 
developed a practical method to estimate detection distance. 
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Search objects were deployed at locations unknown to the 
dog team, and dogs were tracked by GPS. The distance to 
the search object from the point where the dog changed 
direction and moved directly towards the target was taken as 
the detection distance (Cablk et al. 2008).

Having estimated effective sweep widths, it would also 
be helpful to determine optimal approaches to stratify a 
search; what proportion of effort should be applied to vari-
ous habitat types? This may be influenced by detectability of 
the target within each habitat, relative proportions of each 
habitat, the probability of the target occurring there, and the 
relative benefit of detecting the target in different habitats 
(Hauser and McCarthy 2009, Doherty et al. 2014, Moore 
and McCarthy 2016). A helpful approach using existing data 
may be to map locations where dogs have detected targets, 
then identify landscape features with the highest probability 
of success (Hauser and McCarthy 2009). A similar approach 
might be adopted to evaluate different search strategies if 
GPS track data are available for dogs and/or handlers. 

Conclusions

Search theory has potential to increase effectiveness of 
conservation dogs, and to standardise methods so that results 
may be compared across different locations and times. How-
ever, this will require reliable data on detection parameters, 
including estimates of variation and the factors contributing 
to it. 

The limited data available on detection distances sug-
gest that most target taxa are detected by conservation dogs 
from an average of around 10 m (Table 1), although distance 
may be greater for some targets (e.g. humans; Shivik 2002). 
Although some detections occur from much greater dis-
tances (e.g. up to 150 m; Gsell et al. 2010), these instances 
are the exception rather than the rule. In the absence of 
detailed data specific to the target taxon and environment, 
we recommend that searches with conservation dogs assume 
an average detection distance of approximately 10 m. How-
ever, new data should be collected as searches are carried out. 
Using an adaptive management approach, search strategies 
may be modified to improve efficacy and/or efficiency as 
more data come to hand.

What is ultimately needed is a decision support tool to 
help determine optimal search strategy for one or more dog 
teams, given: resources; effective sweep width (which may 
depend on the target, habitat type and topography); desired 
probability of detection (which will depend on the search 
objectives). Such a tool would allow researchers and manag-
ers to use conservation dogs more effectively and efficiently. 
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