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           Carex helodes  Link (sect.  Spirostachyae  (Drejer) L. H. Bailey, 
Cyperaceae) is a diploid, wind-pollinated, perennial herb with 
a minimum generation time of two years. The species is en-
demic to the western Mediterranean, being locally distributed 
in southern Portugal and southwestern Spain, and rare in 
northern Morocco ( Escudero et al., 2008a ). This sedge occurs 
in temporarily inundated acidic soils in open cork oak wood-
lands. Despite its well-characterized morphology,  C. helodes  
has been misidentifi ed as  C. laevigata  Sm. by some authors 
(see  Luceño et al., 2009 ). Recent cytotaxonomic and nuclear- 
and plastid-based phylogenetic studies have revealed the 
monophyly of  C. helodes  populations and its taxonomic inde-
pendence within sect.  Spirostachyae  ( Escudero et al., 2008a , 
 2008b ;  Escudero and Luceño, 2009 ).  Carex helodes  is an en-
dangered species in Spain because the extent of its severely 
fragmented occurrence is less than 100 km 2 , with continued 
loss of area and habitat quality ( Moreno, 2008 ;  Bañares et al., 
2010 ). 

 Our aim is to develop molecular markers for further studies of 
gene fl ow among and within populations. Nuclear microsatellites 

have been proven to be highly variable and very suitable to the 
study of recent gene fl ow between populations ( Ouborg et al., 
1999 ). To accomplish our task, we isolated and characterized 
109 nuclear microsatellites. 

 METHODS AND RESULTS 

 We extracted genomic DNA using a DNeasy Plant Mini Kit (QIAGEN, 
Valencia, California, USA). We used ~5  μ g from one  C. helodes  individual 
collected in Madroñalejo (Aznalcóllar, Seville, Spain; see Appendix 1 for GPS 
coordinates and voucher specimens) to construct a shotgun genomic library that 
was sequenced on 1/4th of a plate using 454 GS FLX Titanium chemistry 
(Roche Applied Science, Indianapolis, Indiana, USA) at the University of Ari-
zona Genetic Core (Tucson, Arizona, USA). We generated 108.3 Mb of quality-
fi ltered data, distributed over 221,198 unique reads with an average length 
of 490 bp after quality fi ltering (quality score [Q]  ≥  20 using a 10-bp sliding 
window). We searched for all possible microsatellite loci containing at least six 
perfect repeats for hexa-, penta-, tetra-, and trinucleotides or 12 perfect repeats 
for dinucleotides and designed primers using the software QDD version 3 
( Meglécz et al., 2014 ). We used the unique reads as input to detect microsatel-
lite sequences. The reads were used to build contigs using QDD version 3 (de-
fault options were used: sequence set limit of 80 bp, 95% minimum identity 
between two sequences to make a consensus, and 66% as the proportion of se-
quences that must have the same base on the aligned site to accept it as a con-
sensus). For primer design, the default options were also used but the minimum 
size of the PCR product was set to 100 bp and the maximum to 450 bp. 

 We found a total of 3985 microsatellite loci, including 51 hexa-, 58 penta-, 
78 tetra-, 406 tri-, and 3392 dinucleotide loci. We selected 27 hexa-, 26 penta-, 
23 tetra-, 206 tri-, and 152 dinucleotide loci that met our criteria (at least 12 
repeats for dinucleotides and six for the rest) and tested a total of 132 loci. 
Specifi cally, we tested the eight hexa-, eight penta-, eight tetra-, 18 tri-, and 90 
dinucleotide loci with the highest numbers of repeats ( Table 1 ) . 

 For primer testing, DNA was isolated from silica gel–dried leaves using 
a modified cetyltrimethylammonium bromide (CTAB) extraction method 
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  PRIMER NOTE  

  ISOLATION OF 91 POLYMORPHIC MICROSATELLITE LOCI IN 
THE WESTERN MEDITERRANEAN ENDEMIC    CAREX HELODES   

 (CYPERACEAE)  1  

   JUAN   M.     ARROYO    2  ,   MARCIAL     ESCUDERO     2,3,4   ,  AND    PEDRO     JORDANO     2    

  2 Department of Integrative Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científi cas (CSIC), 
Calle Américo Vespucio s/n, E-41092 Seville, Spain; and  3 Department of Plant Biology and Ecology, Universidad de Sevilla, 

Apartado 1095, E41080 Seville, Spain 

  •  Premise of the study:  Microsatellite primers were developed for  Carex helodes  (Cyperaceae), a western Mediterranean en-
demic that is locally distributed in southern Portugal and southwestern Spain and rare in northern Morocco. 

 •  Methods and Results:  One hundred nine nuclear microsatellite markers were developed using a shotgun pyrosequencing 
method, resulting in 91 polymorphic and 18 monomorphic loci when tested using 19 individuals sampled from fi ve populations 
from Portugal, Spain, and Morocco. Loci averaged 3.23 alleles per locus (SD = 1.15). In a single population (Cortelha popula-
tion, Portugal), the 34 most polymorphic loci showed a mean observed heterozygosity of 0.357 (SD = 0.292) and mean ex-
pected heterozygosity of 0.384 (SD = 0.255). 

 •  Conclusions:  Next-generation sequencing allowed us to develop a high number of genetic markers with levels of polymor-
phism adequate to study gene fl ow among populations. However, when genotyping the individuals within a population, we 
found low levels of variation.  

  Key words:   Carex helodes ; Cyperaceae; endemism; sedge; shotgun sequencing; simple sequence repeat (SSR) marker. 
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  TABLE  1. Characteristics of 109 microsatellite markers isolated from populations of  Carex helodes   . 

Locus Primer sequences (5  ′  –3  ′  ) Repeat motif
Allele size 
range (bp)  A  a  T  a  ( ° C)

Fluorescent 
dye

Mix no. for 
capillary 

electrophoresis b 

Cahe914  F: ATCAAGAATTCAAGATTCAGGG (TATTAC) 7 112–130 3 53 FAM 1
 R: AAGTCCACGTTGAGGACGAA 

CahePM5 c  F: TCGGAGCTTTATCAGATTGATGT (TATAGA) 8 282–294 4 (5) d 53 FAM 1
 R: TCCAAACATTTGTTCTACGACTT 

Cahe587 c  F: TGTCTAGTCCATGCCACGTT (ATACAT) 14 320–420 6 55 FAM 1
 R: GCAACCTAGTTATGCTGAAGCTG 

CaheYES c  F: AAGTGCCAAAGTTTATTATGAGTTGT (AGGCTG) 6 110–134 5 54 VIC 1
 R: GTTTGCCATGTGGGAAGTTT 

Cahe9PD  F: GGTTAATACCGTTATTCAGATGAAAC (TGATGG) 7 286–292 2 54 VIC 1
 R: CATTCCGGTTATTTAATGCGA 

Cahe837  F: CACATACACTATGATCGAAACAAAT (TTTTAC) 7 447–464 3 53 VIC 1
 R: CACTATACAATAGCACTGCACCA 

Cahe130 c  F: TCCAGTTCCTCCCTCTCCTC (CCATCC) 7 268–292 4 55 NED 1
 R: CATTCACCATCAGTACCGGA 

CaheR56  F: GAGTTTGAGGAGCGAGGAGA (CTACT) 8 138–144 2 54 NED 1
 R: GCTATTGTTACAGGGTGCGA 

Cahe8IO  F: CCGTAAGGCCAGCTGTAAAT (CATTT) 7 130–152 2 55 PET 1
 R: TGTCACTGGACAGTGGGAAG 

CaheFOY  F: TTTCTTCTCTATGTTTCTTTCCGTT (TTTTC) 6 158–187 6 d 53 NED 2
 R: CAGAGGGAGACTACATTATATGGAA 

CaheC2B c  F: CTCTGACTGTACATCTGACCGA (TGCG) 7 169–181 4 53 FAM 2
 R: GATACCTATCGAATATTCCTTCTTCC 

CaheWE1 c  F: AAGTGAACCACCTTTGGCAC (TTAT) 8 229–269 4 (7) 55 NED 2
 R: GATTTGGAGGAAATGTACGCA 

CaheBI5 c  F: GGTGTTTATCATAAGAATGAAATTGA (AGAT) 7 215–231 3 53 PET 2
 R: TTATCTGTGTATCTCATGATCCATTG 

CaheXAF c  F: TCATCAATTGGAGCAATTACAGTT (TCA) 18 321–449 5 (6) 55 FAM 3
 R: ATAAAGAGTGCTGCCGATGG 

Cahe147 c  F: TCGGCAAATACGTTGTCCAT (TTA) 16 147–154 4 (5) d 53 VIC 3
 R: AATGATGACAATTTAGATAAGACCACT 

CaheJEU  F: TAATTGCAATCAAGCGACCA (TAA) 10 235–241 2 56 VIC 3
 R: TTGTGGATTGCCGAAGGTAT 

CaheFG7 c  F: ATCCGCTTCTTCATTCGCT (TAA) 11 469–496 4 (6) d 54 VIC 3
 R: TGATAGTCACGACTGTTCATGC 

CaheMIW c  F: GGATGATTCATAAGGCCTCTCA (ATC) 12 (GTC) 4 262–280 3 56 NED 3
 R: TTCAGGTTTAATCACAAGACAGGA 

CaheQWB c  F: GTGTAAATGGCTACTGAAACATTG (AAT) 10 AG(TAA) 6 122–147 3 53 PET 4
 R: CCACTTGCATAACAGTGAATTG 

Cahe121 c  F: GATATAATCGTGGAAGTCATTTCA (ATT) 16 374–410 4 (6) 53 NED 3
 R: TTGCAATTAGCAAGAGATCAATTAG 

CaheGVB c  F: CTACGAGCACTTTGGGCATT (TAT) 14 112–135 4 55 PET 3
 R: TTGATTTGAATTTGACCGTTTG 

Cahe4Q8  F: AACACAAAGAAGAGGGCGAG (GAG) 10 219–234 3 55 FAM 4
 R: GGAGAATGACGACGCTGAG 

Cahe965  F: GGAGGATACATAACAGAGATTGGG (AAT) 10 275–278 2 56 VIC 4
 R: TTGTAAGTTTGCAGAATCAATATGGT 

Cahe468 c  F: GGCAAGAACAAAGAAAGGTCG (AGA) 9 461–475 3 (5) 55 VIC 4
 R: ATGGATCTAGTCACCGCTCC 

CaheT2N c  F: TATTCACCAATAATTCCACAAACAA (CA) 17 (TA) 6 154–176 4 55 FAM 3
 R: TCTTCTACAGCCTCTCAAAGACTTG 

CaheODD c  F: TCAATATTTCTACTTGATATGATGAGC (TA) 16 129–180 7 (10) 53 NED 4
 R: AACATTCCGCAAATAACAAATACG 

Cahe7LF c  F: TTGAGGAGGTACAACATTATCCA (AT) 16 (AAT) 3 225–258 7 (9) d 53 NED 4
 R: TTTGCCCATTAATCACCTATTT 

Cahe408  F: GATGCGCGAGATACACATTT (AT) 18 468–473 3 54 NED 4
 R: AAAGACCTGAGACTAGAGCAGGAA 

CaheTDK  F: TGGAGATTCTGTTTGTAACCACC (TA) 7 TG(TA) 3 C(GT) 16 238–242 3 55 PET 4
 R: TTTAGAGTCATGGATAATTGGTCCT 

Cahe829 c  F: TTTGTTGGGCTGAGCCTG (GT) 3 GG(GT) 10 (AT) 12 342–402 4 (6) 55 FAM 5
 R: ATCCATTGAAGAAATGGAAGGA 

Cahe971  F: AATTAGCATTAATTTCCACAGGC (CT) 9 133–137 2 54 PET 5
 R: GGAGTTCGACAGCTCATTCA 

Cahe215  F: CTCACAGAAGAGAAAGTCAGCG (GA) 8 277–282 2 55 PET 5
 R: TGGAATTTCTAAGTCTTGACTAGCG 

Cahe2121  F: AGGTCAGAAGTCTTGCCGAG (GA) 9 419–427 3 55 PET 5
 R: CCGGGTAGATATACTCTCCTCTCA 
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Locus Primer sequences (5  ′  –3  ′  ) Repeat motif
Allele size 
range (bp)  A  a  T  a  ( ° C)

Fluorescent 
dye

Mix no. for 
capillary 

electrophoresis b 

Cahe677 c  F: TTAGTTGAACCGAACAGCCC (CT) 15 131–139 3 54 FAM 6
 R: CAGCCTAGGTTCAGCACTCTT 

Cahe84P c  F: AATCAAGGTTGCTTTGAGCC (AT) 13 245–247 2 55 FAM 6
 R: CAATCTAAAGACATGATACGATCGAG 

CahePUI c  F: TGTGGCTGATACTGACATTCTG (AT) 15 318–337 4 54 FAM 6
 R: TTGCTCGAGATCCTTTGCAG 

CaheL4G  F: ATGTTGCGCTGGTACGGT (AG) 13 467–475 3 56 FAM 6
 R: TTTACGGGAGAAACAGTCGG 

Cahe222 c  F: ATCTCGATTGGAAAGAGGGC (TA) 14 324–336 5 (6) 55 VIC 6
 R: TTGCTCTTCTCCTCACGGTT 

CaheEZE c  F: TTTCCCTTTCTTGGGCTTTC (TG) 14 153–164 4 54 NED 6
 R: ACCGATAAATTAGTCAATTATGCTATG 

Cahe1SD  F: TTACGTGTTTAGACCATCCCTCA (TA) 15 218–226 3 55 NED 6
 R: TCTAAACAGATTCATTTGACATTTCC 

CaheVSD  F: CCCAGTTTCCCTCCCTCTTT (TC) 13 306–308 2 56 NED 6
 R: AAGCCCGGGAATACTTTACG 

CaheSGU c  F: AAATCCTATCTTATACACCTACGGG (AT) 15 114–128 4 54 PET 6
 R: TTCAGTCCATATGCTTCCGA 

Cahe423  F: TCAACTTTGGCCTCCTATTG (AG) 14 167–171 3 53 NED 8
 R: CCATTTCGTACCCTTGACCT 

CaheORP c  F: AGCTTTCTATGCAACCCATAACA (TA) 13 177–185 5 55 PET 6
 R: GCTTGGATTAACCAAATAATATTGAGA 

CaheWMU c  F: CAGATGCATGTCTTCTGACACA (TA) 15 398–402 3 55 FAM 7
 R: GTCTGCCTCCTTAGGCACATA 

Cahe192 c  F: ACTTGGTGCGGAGCCTATAA (AC) 14 295–305 3 55 VIC 7
 R: GCTCGATTGCTTCCTGAGTC 

CaheB4G  F: TTACCTTGAATGCTCGAGGAAG (AT) 13 175–187 3 53 NED 7
 R: GATATCATCTTTCATATTGTATTGGC 

Cahe8RA c  F: TGAATGGAAGGCACTGCTTA (CT) 13 154–158 3 54 PET 7
 R: TCCAGTGGATTTCTAACATAGCTC 

CaheSF0  F: TTTGAAGTTCACTTTCATTTAGAAAC (AT) 7 AC(AT) 6 (AG) 5 175–181 3 53 VIC 8
 R: ATGTAACAAAGAAGACATATACATTGC 

Cahe242  F: GATCCAACGGTGGCTTAACA (CT) 10 (AT) 7 148–150 2 55 PET 8
 R: AAGATACCAGGAAGAGAAGAGGG 

CaheL7Z c  F: CAATGAATTGTTCATCAAGACTGG (CT) 9 (CA) 11 373–380 4 d 56 FAM 8
 R: TGACTAGTGACTACAGCTGCCAA 

Cahe488  F: GGATCTGACCGGAGCTATTG (TC) 11 (CA) 7 238–246 2 54 PET 8
 R: GCAAGGCAATGTGTAACTTGA 

CaheDHT  F: TCCAAATAGCGAACCAAACC (AT) 8 (AG) 9 183–187 3 d 54 VIC 9
 R: ATGGTGCATTTGAACCCTC 

CaheUAX c  F: GATCGGAGGGTTGACATTC (AT) 6 AG(TA) 8 G(TA) 3 182–229 3 53 PET 9
 R: ATCAAATCCGACAGCTAGCTAAA 

Cahe932 c  F: AAACCACCGTCAAACTGTGATA (AG) 12 158–160 2 55 FAM 10
 R: AGAAGAGAAGGAAGGCAGGC 

CaheQ9D c  F: AGCAATATTCATGTCGACTGTCA (AC) 11 342–348 3 54 FAM 10
 R: AACATTCAAATTACCTTAGAGCCA 

Cahe553  F: AGTGTTTGGTTGACACCCGT (AT) 13 139–143 2 56 NED 10
 R: AATGTTGTGGGAACCTTGGA 

CaheFTM  F: ACCTCTTCCTGCCATCCCTA (TG) 12 355–357 2 55 NED 10
 R: CAGACTCAACCACAGCTTCG 

Cahe2519  F: TTGAGTCGTCATTTGTTGGC (AT) 13 386–398 4 55 VIC 10
 R: GTGAACGTGGCAAATCTTGA 

Cahe002  F: ACCCATAGCACCCTAGCCTT (TA) 13 200–214 3 55 FAM 11
 R: CCATGCGATAACCTTTCCTC 

Cahe3IX  F: AATTGGAGCAAACATTTGGG (AG) 12 281–287 3 55 FAM 11
 R: CAGACGGTCTTGATCTAAACTCAG 

CaheLJZ  F: AGGTAGACAGAATCAAATTCAGGG (AT) 12 174–186 2 55 VIC 11
 R: TTGACATATTAATGACAAGGTACCAAA 

Cahe711  F: GTTACAGTGGGCCATCGTG (CT) 12 282–304 3 55 NED 11
 R: GCGGATGCTTTAGTGTGCAT 

CaheQWV c  F: GCGCTTCTAGATATACGTGCAA (TA) 12 175–181 3 54 PET 11
 R: AATTGTCTATACATTAACATGTCCTCG 

Cahe3XU  F: CGACTTAGACGTTGTATGGGA (TA) 12 279–285 3 53 PET 11
 R: CTTGACTGCCCTTGTTTGTC 

CaheD2S  F: CGCGAGAATAGATAGGCGAC (AAGGG) 6 251–261 3 55 PET 2
 R: ACGTCCAAACAAACCGTTCA 

CaheUNE  F: TTTGTGGAAAGTTAAATCAGTTAATCA (ATT) 10 AC(TAT) 13 477–493 3 54 FAM 3
 R: AAACCTTCACCTGTGGTTATAGAAT 

TABLE 1. Continued.
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Locus Primer sequences (5  ′  –3  ′  ) Repeat motif
Allele size 
range (bp)  A  a  T  a  ( ° C)

Fluorescent 
dye

Mix no. for 
capillary 

electrophoresis b 

CaheHGI  F: CTCTTGGCTTCCTTGTTTCTC (AG) 16 A(TGTGT) 3 159–185 3 54 VIC 4
 R: TTTCCTGCCATTCCACAAG 

CaheTC7  F: AGGTTAGGATAGTTGCATAATTTACGA (ATT) 13 142–145 2 54 FAM 4
 R: GAGCCTTATGCTCACCAACA 

Cahe522  F: ACGAGATGATCTTCTGCCAT (AT) 6 173–191 2 53 FAM 5
 R: TGAAAGTCGAATATTGAGCCG 

Cahe86O  F: TTGAGTTGCCAGAACCATCA (GA) 14 447–453 3 55 NED 6
 R: TTCCTTGCCCTCTGTCTGTT 

Cahe68X  F: CATTTAGAATTGTTATGCCAGCG (AC) 12 209–225 2 55 NED 10
 R: GGAGTTGGAGATTGAGTCGG 

Cahe322  F: GGTGTGCAAGCGATCATTTA (TC) 12 386–408 2 54 FAM 11
 R: TTTCGCCTTCTTCTCCATTT 

Cahe824  F: CAGAGCCGATCTGTCCAATA (TA) 12 128–141 3 54 PET 10
 R: GACTCAGGTTAGCTGCCGAC 

Cahe818  F: CGAGAAACATTGTTAGACTCCA (AG) 13 286–288 2 53 VIC 11
 R: TTGCTTATTGGCAAGTTCTAGAGATA 

CaheXN6  F: TTTGGATTAGGGTTTGCAGC (TTCTGA) 7 433–439 2 54 FAM 1
 R: TGGATTTACTATTATGAAATGAAGCA 

CaheJSN  F: GGCAACTTGGCTGTTCCTAA (TTTCT) 7 136–147 2 54 NED 3
 R: CTGAGGTCAGGTGGCAATTA 

CahePYI  F: TTCGTTATTTCTGACTGACACG (TTTTC) 7 440–444 2 53 FAM 2
 R: CAAATGGTTGCAGCGGAA 

CaheASM  F: GGAAACTTCGCGGAGAAATA (TGTT) 7 122–130 2 54 VIC 2
 R: AGATTCCATGTGGTTCTACTGTTC 

Cahe5PU  F: CGCTTATCATGAAGTTTGTTCAC (CTAT) 7 179–196 2 54 VIC 2
 R: GCCCAACCCTGACAGATAAA 

CaheVDJ  F: CTGGCAGGAGTTCATTTGCT (ATA) 16 256–262 2 55 PET 3
 R: GCTTACTAGAGGTTGTAGGCTTAACAG 

CaheR17  F: GTCTGAAAGCGACGATTGAA (ACC) 7 428–434 2 54 FAM 5
 R: TGGTTTCATTTCGAGAAGGG 

Cahe001  F: CTTCCTGCAATGTAGGCTCC (TG) 4 TC(AG) 8 288–294 3 55 NED 5
 R: AATCGGGCTGACATCCTAGA 

Cahe670  F: TCCCGTATACCGGCTTCAG (TA) 14 189–191 2 55 FAM 7
 R: CACATTGTGTCAAACACATGAAA 

CaheGHR  F: TTACAACTTCCTTCAAATTTGTGAT (CT) 13 292–294 2 54 FAM 7
 R: GAATAGGCACCGGACACG 

Cahe7K7  F: AAACTGAAGATATTGCGTGAAGT (TC) 9 (TA) 9 155–157 2 53 FAM 8
 R: AAAGTTTGAATGGGTACACTGAA 

Cahe303  F: GGCATTGTTTGGAGCGATATT (TC) 11 N(TG) 6 281–283 2 54 NED 8
 R: GAAATGGTAGTGCTTCTTCTGAAC 

Cahe6A8  F: TGGCCTTTGCTTCTATCTCA (GA) 5 G(GA) 12 168–174 2 54 NED 9
 R: GCCATGCCTCTCATGCTACT 

CaheL2M  F: AAATGACCTGATCTGACCGA (GT) 7 (GA) 9 284–296 2 54 FAM 9
 R: ACGTGAATAGTATCACATCGAACA 

Cahe647  F: GGAGCATTCACCAATCCTCTA (TC) 12 223–227 2 55 PET 10
 R: CCCGTCGTAATCATATCTCTAATGA 

Cahe332  F: AAGACAGCCAAAGTGAGCTTG (CT) 13 161–171 2 55 NED 11
 R: CGCCATGTTAACTTGATGAGG 

CaheBUE  F: TTCAATTATGATCCAGCTTCACA (TATAT) 6 443 1 55 VIC 2
 R: TTCTTTCTTCCCTCCCTTCC 

CaheOPJ  F: TCCACCTTACACTTTATTCACCC (CAAA) 7 278 1 55 FAM 2
 R: GATGCATCCTATCCCTCCGT 

CaheNT5  F: TGAGCTGGCACACTCTATGG (GTAT) 6 311 1 55 VIC 2
 R: AGAACTATAGCTTTGAAACAGCCC 

CaheQQ1  F: TAATGGTAAATTTGGATTTGCG (TAAT) 6 145 1 54 PET 2
 R: GCAATTGGTGTAACAGCACC 

Cahe06U  F: AGAACAAGACAAGACTATCTTTATGCC (GGA) 10 423 1 54 VIC 3
 R: TTCTCCCTTCGCATCTCC 

Cahe476  F: ACCAGGAACCAGCTGGAATA (TAG) 10 477 1 55 FAM 4
 R: ATCACCAAGCTCATCAGGGT 

Cahe993  F: ATGGGTGCTATATTTCACCTTG (GAT) 6 423 1 54 NED 5
 R: ACACTAGAACATGACTCGTCGC 

Cahe280  F: CGGATTCGATTTCATTCACC (TC) 12 184 1 55 VIC 5
 R: AAAGCAAGACAAATCAGCCAC 

Cahe930  F: AAGGCACATCCAAGTTTACCA (AG) 5 423 1 54 VIC 5
 R: GGAAGGAGCATGCATCTGTA 

TABLE 1. Continued.
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Locus Primer sequences (5  ′  –3  ′  ) Repeat motif
Allele size 
range (bp)  A  a  T  a  ( ° C)

Fluorescent 
dye

Mix no. for 
capillary 

electrophoresis b 

Cahe835  F: TTTCGATCCATTACCCTCCC (CT) 7 189 1 56 NED 5
 R: TCACATCAACAACATCGCCT 

Cahe36X  F: AAGCTTGTCTTGAGTGACGGA (AG) 14 216 1 55 VIC 6
 R: AAGAGTTGTTCGTTTCTGTTCCTT 

CaheXTE  F: GGGACACCTTCCATTGATAAAG (AG) 13 471 1 55 VIC 6
 R: TCACGATTTCATGCAACACA 

CaheHL4  F: CGGAGGTGAAATTAATTAAGCG (AG) 13 241 1 55 PET 7
 R: GTTTAAATTTGGGCTTGGGC 

Cahe2SB  F: ACTTAGCAGCTGCCACCAA (AG) 5 G(GA) 8 229 1 54 VIC 8
 R: TGCATTGCAGCTTACTAGAACTT 

Cahe519  F: ATCGATTATCCTTTAATCAACTAACAA (GT) 4 (AT) 4 AC(AT) 8 363 1 53 VIC 8
 R: GGGTATCACTTGAAAGAAACAAA 

Cahe0PF  F: CTTGCAGATCCAAAGGAGGT (CT) 12 147 1 55 VIC 10
 R: ACTGCAATAACAGCCATAGGAAA 

Cahe770  F: TTGATCCACTTTCTATGACAAGGA (TG) 12 229 1 55 VIC 10
 R: TCCCATAAGAATATCCTTCGATTC 

CaheX4D  F: GGAAGTTTCAGATCAGTGACCA (CT) 12 185 1 55 NED 1
 R: AGAGGCTTGAGGAAGAAGCTC 

  Note :  A  = number of alleles;  T  a  = annealing temperature (given for nontailed primers). 
  a  Total number of alleles, including seven additional individuals from the Cortelha population of Portugal, is shown in parentheses. 
  b  Mix number indicates loci that were mixed in the same capillary electrophoresis run. 
  c  One of 34 most polymorphic loci. 
  d  Loci showing one to three alleles with a size difference of 1–2 bp relative to contiguous alleles. 

TABLE 1. Continued.

( Milligan, 1998 ) that included tissue grinding in a Mixer   Mill MM301 (Retsch 
GmbH, Haan, Germany) and resuspension in TLE buffer (10 m M  Tris-HCl [pH 
8.0], 0.1 m M  EDTA). We sampled a total of 64 individuals from fi ve different 
populations (Appendix 1). Initially, 19 individuals from the fi ve populations were 
sampled and genotyped for 109 loci. Nine individuals from the Madroñalejo 
population, four individuals from the Barraçao-Caldas de Monchique population, 
one individual from the Cortelha population, four individuals from population 1 
(Pop. 1) at Ksar el Kebir, and one individual from population 2 (Pop. 2) at Ksar 
el Kebir (Appendix 1). Finally, 38 additional individuals from the Madroñalejo 
population (Spain) and seven additional individuals from the Cortelha popula-
tion   (Portugal,  Table 2 )  were genotyped for the 34 most polymorphic loci. The 
34 most polymorphic loci were estimated based on the initial screening using 
19 individuals from fi ve populations. 

 PCR amplifi cations were performed in a 20- μ L final volume containing 1 ×  
buffer (67 m M  Tris-HCl [pH 8.8], 16 m M  (NH 4 ) 2 SO 4 , 10 m M  KCl, 0.01% 
stabilizer), 2.5 m M  MgCl 2 , 0.01% bovine serum albumin (BSA; Roche Diag-
nostics, Mannheim, Germany), 0.25 m M  dNTP, 0.40  μ  M  dye-labeled M13 
primer, 0.40  μ  M  PIG-tailed reverse primer, 0.04  μ  M  M13-tailed forward 
primer (see M13 and PIG-tail sequences in  Table 1 ), 0.5 units  Taq  DNA poly-
merase (Bioline, London, United Kingdom), and approximately 50–70 ng ge-
nomic DNA. Reactions were undertaken in a touchdown PCR protocol in a 
Bio-Rad DNA Engine Peltier Thermal Cycler (Bio-Rad Laboratories, Hercules, 
California, USA), with an initial 2 min of denaturation at 94 ° C; 17 cycles at 
92 ° C for 30 s, annealing at 60–44 ° C for 30 s (1 ° C decrease in each cycle), and 
extension at 72 ° C for 30 s; 25 cycles at 92 ° C for 30 s, 44 ° C for 30 s, and 72 ° C 
for 30 s; and a fi nal extension of 5 min at 72 ° C. PCR products were labeled using 
FAM, VIC, NED, or PET dyes (Applied Biosystems, Foster City, California, 
USA) on an additional 19-bp M13 primer (5  ′  -CACGACGTTGTAAAAC-
GAC-3  ′  ) according to the methods of  Boutin-Ganache et al. (2001) . Moreover, 
a palindromic sequence tail (5  ′  -GTGTCTT-3  ′  ) was added to the 5  ′   end of the 
reverse primer to improve adenylation and facilitate genotyping. Amplified 
fragments were analyzed on an ABI 3130xl Genetic Analyzer (Applied Biosys-
tems) and sized using GeneMapper 4.0 and GeneScan   500 LIZ Size Standard 
(Applied Biosystems). No multiplexing was attempted at the PCR stage. 

 From a total of 132 loci tested, 18 were monomorphic, 14 showed complex 
or nonspecifi c amplifi cation, and nine failed to amplify. The   remaining 91 loci 
were polymorphic in Portugal and Morocco ( Table 1 ). Sequences of 109 loci 
(18 monomorphic and 91 polymorphic) from a shotgun genomic library were 
submitted to the National Center for Biotechnology Information (NCBI) 
Sequence Read Archive (SRA; accession SRP062192). We observed a total 
of 275 alleles for our initial sampling of  C. helodes  (nine individuals from 

Madroñalejo, fi ve from Portugal, and fi ve from Morocco), averaging overall 
3.23 alleles per locus (SD = 1.15). Gametic disequilibrium (GENEPOP 4.1.4; 
 Rousset, 2008 ) and the presence of null alleles according to the Oosterhout 
method (MICRO-CHECKER 2.2.3;  van Oosterhout et al., 2004 ) were checked 
using Bonferroni-corrected  P  values ( P  < 0.05 / 34 = 0.0015) to assess the sig-
nifi cance of the results obtained. No signifi cant gametic disequilibrium was 
detected for any pair of loci ( P  > 0.01), and four loci (Cahe587, CaheWE1, 
CaheGVB, and CaheQWV) showed signs of the presence of null alleles sug-
gested by an excess of homozygotes. Some loci showed one to three alleles 
with a size difference of one to two base pairs relative to contiguous alleles (see 
 Table 1 ). Nevertheless, no variation outside of the microsatellite region was 
shown by these loci, and no scoring errors were detected by MICRO-CHECKER 
( van Oosterhout et al., 2004 ). These polymorphisms could result from nonstep-
wise mutations in the repeat array. 

 The 47 individuals from the Madroñalejo population (Spain) showed an 
identical genotype (nine individuals were genotyped using 109 loci, and 38 ad-
ditional individuals were genotyped using the 34 most variable loci). This 
seems to indicate that this population has probably suffered a recent founder or 
bottleneck event. 

 We used Arlequin 3.5.1.3 ( Excoffi er and Lischer, 2010 ) to calculate number 
of alleles, observed ( H  o ) and expected heterozygosities ( H  e ), and to test for de-
viations from Hardy–Weinberg equilibrium (HWE;  Table 2 ) for the 34 most 
polymorphic loci in the eight individuals from the Cortelha population (Portu-
gal). The eight individuals from the Cortelha population had a mean  H  o  of 0.357 
(SD = 0.292) and a mean  H  e  of 0.384 (SD = 0.255). Six loci were monomorphic 
in this population, and only one (CaheWE1,  P  < 0.05;  Table 2 ) of the 28 re-
maining loci deviated from HWE ( Table 2 ). 

 CONCLUSIONS 

 This study provides 109 simple sequence repeat markers to 
quantify the degree of genetic diversity in the endangered 
 C. helodes . These markers may also help disentangle the phylo-
geographic history of  C. helodes  as well as gene fl ow among 
populations. This next-generation sequencing approach may 
also be useful for linkage mapping studies of experimental 
crosses between populations in a nonmodel organism. How-
ever, the low observed levels of variation within populations 
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  TABLE  2. Results of screening 34 loci in the Cortelha population of  Carex 
helodes . a  

Locus  N  A  H  o  H  e HWE

CaheC2B 8 2 0.625 0.525 1
Cahe587 8 2 0 0.233 0.0668
CaheYES 8 4 0.625 0.592 1
CaheFG7 8 5 0.500 0.533 0.5924
CaheWE1 8 6 0.500 0.825 0.0054
Cahe121 7 1 0 0 NA
CaheT2N 8 2 0.625 0.525 1
CaheXAF 7 3 0.571 0.659 0.0975
Cahe147 8 4 0.625 0.575 0.5498
CaheODD 8 4 1 0.642 0.0594
CaheMIW 8 1 0 0 NA
CaheGVB 8 2 0 0.233 0.0667
CahePM5 8 3 0.250 0.433 0.1368
CaheQ9D 8 1 0 0 NA
Cahe468 8 3 0.500 0.633 0.0969
Cahe7LF 8 3 0.875 0.625 0.3286
CaheQWB 8 2 0.625 0.525 1
CaheQWV 8 2 0.125 0.458 0.0768
CahePUI 8 2 0.125 0.125 1
Cahe222 8 4 0.625 0.675 0.4806
CaheEZE 8 2 0.250 0.233 1
CaheSGU 8 1 0 0 NA
Cahe8RA 8 2 0.250 0.400 0.3843
CaheORP 8 2 0.250 0.233 1
CaheBI5 8 2 0.125 0.125 1
Cahe130 8 3 0.625 0.575 1
Cahe829 8 5 0.750 0.767 0.0523
Cahe677 8 1 0 0 NA
Cahe84P 6 2 0.333 0.485 1
CaheWMU 8 2 0.125 0.125 1
CaheL7Z 8 2 0.375 0.525 0.5299
CaheUAX 8 3 0.625 0.542 0.4024
Cahe932 8 1 0 0 NA
Cahe192 8 2 0.250 0.233 1

  Note :  A  = number of alleles;  H  e  = expected heterozygosity;  H  o  = 
observed heterozygosity; HWE = nominal  P  values for tests of deviation 
from Hardy–Weinberg equilibrium;  N  = number of successfully genotyped 
individuals; NA = not applicable  . 

  a  GPS coordinates and voucher information are available in Appendix 1. 

are not enough to genotype reproductive individuals and their 
seeds within populations and study gene interchange patterns 
within populations. 
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   APPENDIX  1 . Voucher and locality information for  Carex helodes  populations sampled in this study. Vouchers are deposited at the Universidad Pablo de 
Olavide herbarium (UPOS), Seville  , Spain  . 

Locality Population Geographic coordinates   N  a Voucher no.

Spain, Seville, Aznalcóllar, Madroñalejo Madroñalejo 37 ° 35  ′  24.0  ″  N, 6 ° 21  ′  30  ″  W 9 (38) 24ME07, 1ME14
Portugal, Algarve, betw. Barraçao Caldas de Monchique Pop. 1 37 ° 15  ′  44.4  ″  N, 8 ° 45  ′  47.4  ″  W 4 8101JMM
Portugal, Algarve, Cortelha Pop. 2 37 ° 14  ′  56.4  ″  N, 7 ° 57  ′  45.5  ″  W 1 (7) 7901JMM
Morocco, Tanger-Tetuan, Chauen, Ksar el Kebir Pop. 1 35 ° 05  ′  09.0  ″  N, 5 ° 22  ′  07.0  ″  W 4 34JFA03, 27PJM04
Morocco, Tanger-Tetuan, Chauen, Ksar el Kebir Pop. 2 35 ° 06  ′  02  ″  N, 5 ° 20  ′  37  ″  W 1 22PJM04

  Note :  N  = number of sampled individuals. 
  a  The number of additional individuals sampled to test the 34 most polymorphic loci is given in parentheses. 
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