

Microsatellites for Oenothera gayleana and O. hartwegii subsp. filifolia (Onagraceae), and Their Utility in Section Calylophus

Authors: Lewis, Emily M., Fant, Jeremie B., Moore, Michael J., Hastings, Amy P., Larson, Erica L., et al.

Source: Applications in Plant Sciences, 4(2)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1500107

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

MICROSATELLITES FOR *OENOTHERA GAYLEANA* AND *O. HARTWEGII* SUBSP. *FILIFOLIA* (ONAGRACEAE), AND THEIR UTILITY IN SECTION *CALYLOPHUS*¹

EMILY M. LEWIS^{2,3}, JEREMIE B. FANT², MICHAEL J. MOORE⁴, AMY P. HASTINGS⁵, ERICA L. LARSON^{5,6}, ANURAG A. AGRAWAL⁵, AND KRISSA A. SKOGEN^{2,7}

²Plant Biology and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022 USA; ³Program in Plant Biology and Conservation, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208 USA; ⁴Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, Ohio 44074 USA; ⁵Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853; and ⁶Division of Biological Sciences, University of Montana, 32 Campus Drive HS104, Missoula, Montana 59812

- *Premise of the study:* Eleven nuclear and four plastid microsatellite markers were screened for two gypsum endemic species, *Oenothera gayleana* and *O. hartwegii* subsp. *filifolia*, and tested for cross-amplification in the remaining 11 taxa within *Oenothera* sect. *Calylophus* (Onagraceae).
- *Methods and Results:* Microsatellite markers were tested in two to three populations spanning the ranges of both *O. gayleana* and *O. hartwegii* subsp. *filifolia.* The nuclear microsatellite loci consisted of both di- and trinucleotide repeats with one to 17 alleles per population. Several loci showed significant deviation from Hardy–Weinberg equilibrium, which may be evidence of chromosomal rings. The plastid microsatellite markers identified one to seven haplotypes per population. The transferability of these markers was confirmed in all 11 taxa within *Oenothera* sect. *Calylophus.*
- Conclusions: The microsatellite loci characterized here are the first developed and tested in Oenothera sect. Calylophus. These markers will be used to assess whether pollinator foraging distance influences population genetic parameters in predictable ways.

Key words: gypsum endemism; microsatellites; Oenothera sect. Calylophus; Onagraceae; population genetics.

The genus *Oenothera* L. (Onagraceae) has diversified across diverse habitats of North America with conservative shifts in pollinators (primarily between bees and hawkmoths; Raven, 1979) and more dramatic shifts in life history traits (Evans et al., 2009). *Oenothera* sect. *Calylophus* (Spach) Torr. & A. Gray (Onagraceae) consists of seven recognized species (13 taxa) divided into subsections *Calylophus* (Spach) W. L. Wagner & Hoch (*O. capillifolia* Scheele, *O. gayleana* B. L. Turner & M. J. Moore, and *O. serrulata* Nutt.) and *Salpingia* (Torr. & A. Gray) W. L. Wagner & Hoch (*O. hartwegii* Benth., *O. lavandulifolia* Torr. & A. Gray, *O. toumeyi* (Small) Tidestr., and *O. tubicula* A. Gray) (Wagner et al., 2007; Turner and Moore, 2014). Ring chromosomes have been documented in all taxa in sect.

¹Manuscript received 18 September 2015; revision accepted 16 October 2015.

The authors thank W. Daichendt, J. Medina, J. M. Keller, H. Flores Olvera, H. Ochoterena, and N. Douglas for laboratory and field assistance; the U.S. Bureau of Land Management and the USDA Forest Service for permits; and the Ecological Genetics Core Facility at Cornell University, specifically S. Bogdanowicz. Funding was provided by the National Science Foundation (DEB 1342873 to K.A.S. and J.B.F., DEB 1054539 to M.J.M., and DEB-1513839 to A.A.A.), the National Geographic Society (M.J.M.), Oberlin College, a Botanical Society of America Graduate Student Research Award (E.M.L.), and the Chicago Botanic Garden.

⁷Author for correspondence: kskogen@chicagobotanic.org

doi:10.3732/apps.1500107

Calylophus (Towner, 1977), with only *O. serrulata* exhibiting permanent translocation heterozygosity (Johnson et al., 2014).

Oenothera gayleana and *O. hartwegii* subsp. *filifolia* (Eastw.) W. L. Wagner & Hoch are gypsum endemics that often cooccur in eastern New Mexico and western Texas, easily distinguished by floral characteristics associated with bee pollination and hawkmoth pollination, respectively (Towner, 1977; Turner and Moore, 2014). Because bees forage close to nesting sites (Greenleaf et al., 2007) while hawkmoths can travel great distances (Stockhouse, 1973; Alarcón et al., 2008), differentiation between populations is expected to differ between these two plant species (Finger et al., 2014). Here, we characterize 11 nuclear and four plastid microsatellite loci to be used to contrast pollen and seed dispersal patterns in *O. gayleana* and *O. hartwegii* subsp. *filifolia*. We also describe the transferability of these markers to all 11 other taxa in sect. *Calylophus*.

METHODS AND RESULTS

We tested a combination of nuclear and plastid microsatellite loci. We screened 36 unpublished nuclear microsatellite markers that were originally developed for *O. biennis* L., using the microsatellite library prepared by Larson et al. (2008) for studies of genotypic identification and herbivory (Agrawal et al., 2012). In addition, the plastid genome of *O. elata* Kunth subsp. *hookeri* (Torr. & A. Gray) W. Dietr. & W. L. Wagner (GenBank accession no. AJ271079; Hupfer et al., 2000) was screened for large strings of single nucleotide repeats. The plastid primers were designed for 12 microsatellite regions using the following settings in Primer3: optimum primer size 20 bp, melting temperature 60°C, and product size range of 100–300 bp (Untergasser et al., 2012).

Applications in Plant Sciences 2016 4(2): 1500107; http://www.bioone.org/loi/apps © 2016 Lewis et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).

TABLE 1. Characte	ristics of 11 nuclear and four plastid microsatellit	e loci tested in <i>Oenothera gayleana</i> a	and O. hartwegii subsp.	filifolia.			
Locus	Primer sequences $(5'-3')$	Repeat motif	Allele size range ^a (bp)	$T_{\rm a}$ (°C) I	Reaction mix	Fluorescent dye	GenBank accession no.
Nuclear	אין איני אינע אינע אינע אינע אינע אינע אינע		101 205 (2)	22	þ	2	CLOCZELA
Oell01201A_C10*	F: AGGAGCAAACIGAAGCAGGA R: TTGCAGAACCCAGAATCTGTT	$(OA)_{20}$	167 - 179 (b)	00	Q	77	V1 1072 17
Oenbi2diA_E9	F: TTTGTCAAATCTATTCCCTAACAGC	(CA) ₁₁	122–191	56	С	D4	KT762971
	R: TGAGAAAACGTTGGCAAGTG						
Oenbi2triA_A1	F: CCACAGCATCACCAAATTCTTACTT	$(TTC)_8$	307–338	52	U	D4	KT762970
	R: GGGGCGCCAGGTATTGTCG						
Oenbi2triA_A5	F: GCTTCGACCCCATTATTCACTACA	$(GCT)_{10}$	173-185	56	A	D2	KT762969
	R: AACAGCAAAGTTGAGAAGGCG						
Oenbi2triA_C6	F: CCGCAAGAGCTAACAACCAAC	(TGA) ₁₆	82–97 (a)	56	A	D4	KT762968
	R: CCAGCTTTTTCCAGTATTTTCCTA						
Oenbi2triA_D3 ^c	F: CAGATTACGGCGAAAGGAGACAAC	(ATG) ₉	250–271	52	в	D4	KT762967
	R: CGCTCAGGCATCGCATCTC						
Oenbi2triA_E4	F: CTCTACCCTGCAGTTACCAAAAA	$(TCT)_{10}$	232–323	56	A	D4	KT762966
	R: GAGAGGATTCAACGCAGCAACT						
Oenbi2triA_F5 ^c	F: GGGACGCGCCTCAGATTC	$(GAT)_8$	185-197	56	A	D3	KT762965
	R: CGCTCAGGCATCGCATCTC						
Oenbi2triA_H1	F: GAGCCGGAATAAACTGATACCACT	$(GCT)_{14}$	185-218	56	В	D3	KT762964
	R: AGCAGAGAGGCGTCAACCATAAT						
Oenbi2triA_H2	F: TATCTCAGCACTAAAAGCCTCCTC	$(CAT)_{12}$	167-194	56	U	D2	KT762963
	R: GCTTGGGGTTGGTGCTAAT						
Oenbi39tri10	F: AACAAATTTATGCGATTTCGCC	(CTT) ₆	125–177	52	в	D4	KT900894
	R: CTGGAAGGGGCGACTGAAAC						
Plastid ^d							
OenelCp3	F: CGGGTTTGAGGTTGAATCAT	$(A)_{13} + (A)_{11}$	262–269	52	D	D4	AJ271079 ^c
	R: GGGTGGAGTCGCAGAAAAATA						
OenelCp5 ^b	F: GATATAGTTCATGGCCTATTAGAGTT (CAG	AAGATGAGGAAGGAGGAGGAGG), +	291–438 (a)	52	D	D3	AJ271079
	R: TGATCGAGTGACATTGCTTCTT (CA	GAAGAGGAAGTAGAAGGGA) ₁₂	319-451 (b)				
OenelCp11	F: GTTATCCGGCACTTGGAAGA	$(A)_9 + (A)_9 (G)_8$	184-198	52	D	D2	AJ271079
	R: GGATTCGCTACAAAAGGGTTG						
OenelCp12	F: CGAACCGTAGACCTTCTCGG	$(A)_{15}$	193–199	52	D	D2	AJ271079
	R: GCACGGGGGCCCATCTCCTTA						
<i>Note</i> : T_a = anneal	ing temperature when run individually.						
^a All values basec	on 13 taxa listed in Appendix 1.						

^bAmplified two regions. ^cThese primers share a reverse primer sequence and are likely to be amplifying the same region. ^dIn the *O. elata* chloroplast genome, OenelCp3 begins at 86,105 bp, OenelCp5 at 97,669 bp, OenelCp11 at 165,472 bp, and OenelCp12 at 12,302 bp.

Both nuclear and plastid microsatellite regions were initially screened using three randomly selected individuals of three species in sect. Calylophus: O. serrulata (Crosbyton, TX), O. lavandulifolia (Iraan, TX), and O. hartwegii subsp. filifolia (Caballo Mountains, NM) (Appendix 1). DNA was extracted from field-collected leaf tissue (Appendix 1) using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987). For nuclear microsatellite marker amplification, we used a 10-µL reaction containing 5 µL MyTaq DNA polymerase (Bioline, London, United Kingdom), plus 0.125 µL bovine serum albumin (BSA; 0.5 ng/µL), 3.375 µL DNase-free water, 1 µL template DNA, and 0.25 µL of both forward and reverse primers. The forward primers were fluorescently labeled with WellRed D2 (black), D3 (green), or D4 (blue) (Sigma-Proligo, St. Louis, Missouri, USA). PCRs were run at 95°C for 2 min, then 30 cycles of 50 s at 95°C, 30 s at 56°C, and 1 min at 72°C, with a 10-min extension at 72°C. The plastid microsatellite primers were not fluorescently labeled but instead were amplified and labeled in two steps (Schuelke, 2000). The first PCR reaction mix was identical to above except that the forward primer was designed with an M13 sequence (5'-CACGACGTTGTA-AAACGAC-3') added to the 5' end. The PCR protocol was as follows: 94°C for 3 min, followed by 13 cycles of 40 s at 94°C, 40 s at 52°C, and 2 min at 72°C, with a final extension of 10 min at 72°C. For the second step, an additional 2.5 µL MyTaq DNA polymerase, 2.0 µL DNase-free water, and 0.5 µL of a labeled M13 forward primer (D2, D3, and D4) was added to each reaction to label any PCR products that contained M13 sequences. The second PCR performed another 27 cycles. The resulting PCR products were analyzed and scored using a 400-bp size standard on a CEQ 8000 Genetic Analysis System version 9.0 (Beckman Coulter, Brea, California, USA).

Of the 36 nuclear primer pairs screened, 14 did not amplify (GenBank accession no.: KT762974-KT762987), 10 amplified unreliably (GenBank accession no.: KT62988-KT62997), one was monomorphic (GenBank accession no.: KT762973), and 11 were polymorphic, one of which (Oenbi2diA_C10; Table 1) amplified two regions in O. hartwegii subsp. filifolia. These 11 polymorphic markers were further characterized using three populations of O. gayleana and two populations of O. hartwegii subsp. filifolia (10-30 individuals per population; Table 2). To test for cross-amplification, they were also tested on three to five individuals from one population of each of the remaining 11 taxa in Oenothera sect. Calylophus (Tables 3 and 4, Appendix 1).

For the nuclear microsatellites, we report the following parameters for two to three populations of O. gayleana and O. hartwegii subsp. filifolia: sample size (N), number of alleles (A), number of private alleles (A_p) , observed heterozygosity (H_o) , expected heterozygosity (H_e) , and deviation from Hardy–Weinberg equilibrium (HWE) (Table 2, calculated using GenAlEx; Peakall and Smouse, 2006). Significant deviation from HWE was observed in at least one population for eight primer pairs in O. gayleana and in four primer pairs in both populations of O. hartwegii subsp. filifolia (Table 2). Primer pairs were tested for linkage disequilibrium for each pair of loci within and across all populations using the log likelihood ratio statistic and Fisher's method in GENEPOP (Raymond and Rousset, 1995). No significant linkage disequilibrium (P < 0.01) was detected in either species, except two primer pairs (Oenbi2triA_D3 and Oenbi2triA_F5; Table 1) that share a reverse primer sequence and therefore are likely to be amplifying the same region. For each population, the presence of null alleles at each locus was determined using exact tests in MICRO-CHECKER (van Oosterhout et al., 2004). Any potential null alleles detected in MICRO-CHECKER corresponded with a primer pair that showed deviation from HWE (e.g., Oenbi2diA_E9). We suspect that these anomalies may be due to the presence of ring chromosomes, documented throughout sect. Calylophus (Towner, 1977), or the small number of samples included.

Of the 12 plastid regions tested, four amplified reliably and were polymorphic in the two focal species (Table 1). One region (OenelCp5) occasionally produced two peaks; this may be due to stutter or because this region is located within the inverted repeat in the plastid genome. The peak pairs were repeatable and consistent across individuals, hence only the largest peak was scored. Across all species, these four primer pairs identified 28 haplotypes, with one to seven haplotypes per population. Most haplotypes were unique to each population with the exception of one shared haplotype between O. lavandulifolia and O. hartwegii subsp. maccartii (Shinners) W. L. Wagner & Hoch and one between two populations of O. gayleana (Yeso 62/180 and Fort Sumner; Tables 3 and 4).

CONCLUSIONS

The 11 nuclear and four plastid microsatellite markers were polymorphic and reliable in O. gayleana and O. hartwegii

							-	 gayle 	ana											$O.h_{t}$	artwegü :	subsp	. filij	folia			
			Yeso H	ills				Yeso 62,	180				Fort	Sumner		 			Yeso J	Hills				Cabi	allo Moi	untains	
Locus	N A	$A_{\rm p}$	$H_{\rm o}$	$H_{\rm e}$	HWE ^b	N A	$A_{\rm p}$	$H_{\rm o}$	$H_{\rm e}$	HWE ^b	2	A A	p h	$_{\circ}^{r}$ H_{e}	ΗM	_∧ _Ê	/ A	$A_{\rm p}$	$H_{\rm o}$	$H_{\rm e}$	HWE ^b	2	A	$A_{\rm p}$	$H_{\rm o}$	$H_{\rm e}$	HWE ^t
Oenbi2diA_C10 ^a	15 1	1	0	0	ns	8		0	0	ns	10	1		0	ü	5	د و	5 2	0.385	0.768	* *	25	L	ŝ	0.28	0.678	* * *
																6	6		0.276	0.276	ns	28	4	0	0.179	0.167	ns
Denbi2diA_E9	16 3		0	0.32	***	10 3	0	0	0.34	***	10	3	0.	1 0.2t	55 *	0	6 1.	7 11	0.423	0.875	***	26	2	0	0.385	0.75	***
Oenbi2triA_A1	16 1		0	0	ns	9 1	-	0	0	ns	10	ς Γ	- 0.	1 0.2t	55 *	6	5	9 2	0.444	0.764	*	26	10	4	0.269	0.715	***
Oenbi2triA_A5	15 3		0.333	0.384	su	10 4		0.3	0.415	su	10	ς Γ	- 0.	5 0.4()5 n:	\$ 2	7 L	4	0.259	0.233	ns	24	1		0	0	su
Denbi2triA_C6	15 2	0	0.625	0.469	su	9	-	0.1111	0.636	*	×	сл сл	2 0.2	25 0.50	38 n.	\$	~	-	0	0	ns	24	1		0	0	su
Oenbi2triA_D3	16 1		0	0	su	10 3		0.1	0.185	***	10	-		0.15	*	*	6	5 1	0.517	0.56	ns	29	2	1	0.483	0.45	su
Oenbi2triA_E4	15 3		0.067	0.127	***	9 2	-	0	0.198	*	6	4	- 0.2	22 0.51	** 61	*	6		0.31	0.445	*	26	2	4	0.423	0.49	***
Oenbi2triA_F5	29 3		0	0	su	10 2		0	0.18	*	10	1		0	ü	\$	~ ~	5 1	0.357	0.364	ns	23	4		0.261	0.303	su
Oenbi2triA_H1	16 3		0.313	0.648	*	10 3		0.3	0.515	su	10	ς Γ	- 0.	6 0.54	t n:	3	6	5 1	0.759	0.6308	ns	29	6	С	0.724	0.666	ns
Oenbi2triA_H2	16 2	-	0.188	0.17	ns	10 4		0.4	0.415	su	10	ς Γ	- 0.	2 0.4	15 nº	3	9 1	1 5	0.724	0.782	ns	29	Г	0	0.655	0.665	ns
Oenbi39tri10	15 2		0.067	0.064	su	10 4		0.2	0.27	**	10	2	- 0.	6 0.42	ü	s 2	7 1.		0.889	0.874	ns	28	11		0.893	0.881	ns

Amplified two regions

Significant departures from HWE are indicated at the following levels: *P = 0.05, **P = 0.01, ***P = 0.001; ns = not significant

TABLE 3. inclu	Results of cros uded for compari	s-amplifications son.	on of	nuclear	microsate	llites in the	11 additional	taxa within C	<i>lenothera</i> sec	t. Calylophus.	Results from	. O. gayleana	and O. harty	<i>vegii</i> subsp. f	ilifolia are
Subsection	Species	Population	N nuc	Oenbi2d	iA_C10 ^a C	Denbi2diA_E9	Oenbi2triA_A1	Oenbi2triA_A5	Oenbi2triA_C6	Oenbi2triA_D3	Oenbi2triA_E4 (Denbi2triA_F5 C	Denbi2triA_H1 (Denbi2triA_H2	Denbi39tri10
Calylophus	 O. capillifolia subsp. 	Monahans	8	I	181–195	120–130	320–323	176–185	I	265–268	232–253	191–194	200–209	191–194	131
	O. capillifolia subsp. capillifolia	Uvalde	S	I	183	122–130	310–323	176–188	100-115	265–268	314–355	194	200–206	155–188	134–158
	O. gayleana	Yeso Hills	16	I	183	122-153	316	179-185	94-103	268	244-320	194	203-218	191-194	131-171
		Yeso 62/180	10	177	183	122-153	316	176-185	82–94	250-268	244-320	188-194	203-218	182-194	131-177
		Fort Sumner	10		183	122-130	313-326	176-185	85-97	265-268	235-323	194	203-218	185-191	131-134
	0. serrulata	Crosbyton	S	Ι	170-183	120-130	313-323	176-185	85	268	235-320	194-200	188 - 209	188-191	131
Salpingia	O. hartwegii subsp. fendleri	Galisteo Dam	5	I	179–191	155-161	274	176	94–97	259–265	244	188-194	197	185-194	155-170
	O. hartwegii subsp. filifolia	Yeso Hills	30	169–179	191–205	143–191	307–335	173–182	94	256–271	241–250	185–197	197–206	167–191	152–177
		Caballo Mtn.	30	167-177	185 - 205	149-181	310-338	176	94	250-271	232-250	188-197	185-215	167 - 188	152-177
	O. hartwegii subsp. hartwegii	Mazapil	5	177–179	189–193	153-171	313-332	176	94	262–265	244–247	188–194	197–218	182-188	149–177
	O. hartwegii subsp. maccartii	Zapata	5	177	183-195	137–153	320–332	176	94	262–278	235-250	188–204	197–203	182-188	149–161
	O. hartwegii subsp.	Ranch 7	5	177	185-193	153-173	271-320	176	94	259	244-247	188-194	203-209	182-185	161-168
	pubescens O. lavandulifolia	Iraan	Ś	177	187-193	124-159	292-320	176	94	262-268	241-250	188-197	200-203	179–191	152-180
	O. toumeyi	Pinery	5		183	157-169	304-307	176	94-112	259–274	241–244	185-200	206-212	188	149–152
	O. tubicula subsp. striaulosa	Canyon La Ascension	5	177	189–197	143–157	313	176-188	94	262–265	244	188-191	197–206	176–206	152-174
	O. tubicula subsp. tubicula	Black River Rd.	2	167–183	189	143–189	310–332	176	94–97	250-262	244-247	188	182–209	197	155–171
Note: 1	N nuc = number (of individuals	teste	d with m	uclear mic	rosatellite m	arkers.								

Lewis et al.—*C*

^aAmplified two regions.

Subsection	Species	Population	N cp	OenelCp3	Oene	lCp5ª	OenelCp11	OenelCp12	N cp haple
Calylophus	O. capillifolia subsp. berlandieri	Monahans	ю	266	338-362	345-369	192	195-199	2
	O. capillifolia subsp. capillifolia	Uvalde	ю	264	338	344	192	196–199	1
	O. gayleana	Yeso Hills	12	263-269	315-380	319–387	184-197	193-199	L
	•	Yeso 62/180	б	265	380	388	193	196	1
		Fort Sumner	б	265	380–383	390	193	196	2
	O. serrulata	Crosbyton	ю	265	280	285	191	195	1
Salpingia	O. hartwegii subsp. fendleri	Galisteo Dam	na	na	na	na	na	na	
)	O. hartwegii subsp. filifolia	Yeso Hills	27	263-269	354-438	363-451	195-198	193-195	7
	•	Caballo Mtn.	10	262-267	291–297			195	
	O. hartwegii subsp. hartwegii	Mazapil	б	262-265	330–392	338	196	192-193	2
	O. hartwegii subsp. maccartii	Zapata	ю	263	311	317	193	192	1
	O. hartwegii subsp. pubescens	Ranch 7	ю	267	371		196	195	1
	O. lavandulifolia	Iraan	ю	263	311	317	195	192	1
	O. toumeyi	Pinery Canyon	ю	269	372	382	196	194	1
	O. tubicula subsp. strigulosa	La Ascension	ю	263	290	296	196	196	1
	O. tubicula subsp. tubicula	Black River Rd.	С	264	372-413	382-425	195	195	2

subsp. *filifolia* and in some populations of the remaining 11 taxa within *Oenothera* sect. *Calylophus*. These markers will be used in future studies of genetic differentiation between populations in the bee-pollinated *O. gayleana* and the hawkmoth-pollinated *O. hartwegii* subsp. *filifolia*. In addition, they will be useful for investigations into gene flow within and among other taxa in sect. *Calylophus* and may help identify populations and species that exhibit translocation heterozygotes in this group.

LITERATURE CITED

- AGRAWAL, A. A., A. P. HASTINGS, M. T. JOHNSON, J. L. MARON, AND J. P. SALMINEN. 2012. Insect herbivores drive real-time ecological and evolutionary change in plant populations. *Science* 338: 113–116.
- ALARCÓN, R., G. DAVIDOWITZ, AND J. BRONSTEIN. 2008. Nectar usage in a southern Arizona hawkmoth community. *Ecological Entomology* 33: 503–509.
- DOYLE, J. J., AND J. L. DOYLE. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.
- EVANS, M., S. A. SMITH, R. S. FLYNN, AND M. J. DONOGHUE. 2009. Climate, niche evolution, and diversification of the "Bird-Cage" evening primroses (*Oenothera*, sections *Anogra* and *Kleinia*). *American Naturalist* 173: 225–240.
- FINGER, A., C. KAISER-BUNBURY, C. KETTLE, T. VALENTIN, AND J. GHAZOUL. 2014. Genetic connectivity of the moth pollinated tree *Glionnetia sericea* in a highly fragmented habitat. *PLoS ONE* 9: e111111.
- GREENLEAF, S. S., N. M. WILLIAMS, R. WINFREE, AND C. KREMEN. 2007. Bee foraging ranges and their relationship to body size. *Oecologia* 153: 589–596.
- HUPFER, H., M. SWIATEK, S. HORNUNG, R. G. HERRMANN, R. M. MAIER, W.-L. CHIU, AND B. SEARS. 2000. Complete nucleotide sequence of the *Oenothera elata* plastid chromosome, representing plastome I of the five distinguishable *Euoenothera* plastomes. *Molecular & General Genetics* 263: 581–585.
- JOHNSON, M. T. J., A. R. IVES, J. AHERN, AND J.-P. SALMINEN. 2014. Macroevolution of plant defenses against herbivores in the evening primroses. *New Phytologist* 203: 267–279.
- LARSON, E. L., S. M. BOGDANOWICZ, A. A. AGRAWAL, M. T. J. JOHNSON, AND R. G. HARRISON. 2008. Isolation and characterization of polymorphic microsatellite loci in common evening primrose (*Oenothera biennis*). *Molecular Ecology Resources* 8: 434–436.
- PEAKALL, R., AND P. E. SMOUSE. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295.
- RAVEN, P. H. 1979. A survey of reproductive biology in Onagraceae. New Zealand Journal of Botany 17: 575–593.
- RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. *Journal of Heredity* 86: 248–249.
- SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.
- STOCKHOUSE, R. E. 1973. Biosystematic studies of *Oenothera* L. subgenus *Pachylophus*. Ph.D. dissertation, Colorado State University, Fort Collins, Colorado, USA.
- TOWNER, H. F. 1977. The biosystematics of *Calylophus* (Onagraceae). *Annals of the Missouri Botanical Garden* 64: 48–120.
- TURNER, B. L., AND M. J. MOORE. 2014. Oenothera gayleana (Oenothera sect. Calylophus, Onagraceae), a new gypsophile from Texas, New Mexico, and Oklahoma. Phytologia 96: 200–206.
- UNTERGASSER, A., I. CUTCUTACHE, T. KORESSAAR, J. YE, B. C. FAIRCLOTH, M. REMM, AND S. G. ROZEN. 2012. Primer3—new capabilities and interfaces. *Nucleic Acids Research* 40: e115.
- VAN OOSTERHOUT, C., W. F. HUTCHINSON, D. P. WILLS, AND P. SHIPLEY. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538.
- WAGNER, W. L., P. C. HOCH, AND P. H. RAVEN. 2007. Revised classification of the Onagraceae. Systematic Botany Monographs 83: 1–240.

are

Amplified two regions

http://www.bioone.org/loi/apps	

Calylophus taxa used in this study.
ormation, mating system, and primary pollinator for all Oenothera sect.
Voucher info
APPENDIX 1.

APPENDIX 1.	voucher information, mating system, and prim	ary pollinator for all <i>Uenothera</i> sect.	<i>Calylophus</i> taxa	i used in this study.			
Subsection	Species	Population locality	Latitude	Longitude	Voucher collector no. ^a	Mating system ^b	Primary pollinator ^c
Calylophus	O. capillifolia Scheele subsp. berlandieri (Spach) W. L. Wagner & Hoch	Monahans, TX, USA	31°36′58.2″N	-102°48′29.3″W	M. J. Moore 757	SI	В
	O. capillifolia Scheele subsp. capillifolia	Uvalde, TX, USA	29°14'45.3"N	-99°47′23.6″W	M. J. Moore 1040	SI	В
	O. gayleana B. L. Turner & M. J. Moore	Yeso Hills, NM, USA	32°02′13.9″N	-104°27′18.8″W	M. J. Moore 2286	SI	В
	•	Yeso 62/180, NM, USA	32°02′36.9″N	-104°28'10.3"W	M. J. Moore 653	SI	В
		Fort Sumner, NM, USA	34°09′17.7″N	-104°28′51.6″W	M. J. Moore 669	SI	В
	O. serrulata Nutt.	Crosbyton, TX, USA	33°40′21.1″N	-101°10'27.5"W	M. J. Moore 798	SC	Self
Salpingia	<i>O. harwegi</i> i Benth. subsp. <i>fendleri</i> (A. Gray) W. L. Wagner & Hoch	Galisteo Dam, NM, USA	35°27′27.7″N	-106°13′08.8″W	M. J. Moore 928	SI	МН
	0. hartwegii Benth. subsp. filifolia (Eastw.) W. L. Wagner & Hoch	Yeso Hills, NM, USA	32°02′13.9″N	-104°27′18.8″W	M. J. Moore 2285	SI	МН
)	Caballo Mountains, NM, USA	33°00′23.4″N	-107°09′25.1″W	M. J. Moore 2260	SI	HM
	O. hartwegii Benth. subsp. hartwegii	Mazapil, Zacatecas, Mexico	24°38′58.2″N	-101°34'36.7"W	M. J. Moore 1400	SI	HM
	O. harwegii Benth. subsp. maccartii (Shinners) W. L. Wagner & Hoch	Zapata, TX, USA	26°51'45.0″N	-99°14′48.1″W	M. J. Moore 997	SI	МН
	O. hartwegii Benth. subsp. pubescens (A. Gray) W. L. Wagner & Hoch	Ranch 7, TX, USA	30°14′51.9″N	-103°33′56.6″W	M. J. Moore 601	SI	МН
	0. lavandulifolia Torr. & A. Gray	Iraan, TX, USA	30°52'29.1"N	-102°05′10.2″W	M. J. Moore 623	SI	HM
	O. toumeyi (Small) Tidestr.	Pinery Canyon, AZ, USA	31°56′10.2″N	-109°16′53.8″W	M. J. Moore 857	SI	HM
	O. tubicula A. Gray subsp. strigulosa (Towner) W. L. Wagner & Hoch	La Ascensión, Nuevo León, Mexico	24°18′15.2″N	-99°53′28.3″W	M. J. Moore 1367	SI	В
	O. tubicula A. Gray subsp. tubicula	Black River Rd., NM, USA	32°14′20.3″N	-104°12′16.4″W	M. J. Moore 1077	IS	В
^a Herbariu ^b SC = sel: ^c B = bee;	m vouchers deposited at the U.S. National Herb- f-compatible; SI = self-incompatible. HM = hawkmoth; Self = autogamous.	arium (US).					