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Extant representatives of the Mollusca (Protostomia: 
Lophotrochozoa) have been extensively analyzed in the last 
decades using molecular techniques, lately in particular with 
high-throughput phylogenomic tools (Giribet 2008, Kocot 
et al. 2011, Smith et al. 2011, Smith et al. 2013, Dunn et al. 
2014, Kocot et al. 2017). Because of constantly increasing 
speed, reliability, and cost-effi ciency of these technologies, 
ever more extensive genomic research is bound to be con-
ducted in malacology. In comparison, the phenotype has 
received less attention in recent years (Sigwart and Lindberg 
2015), a development that can be attributed to a general shift 
in scientific focus away from organismic and towards 
molecular research. In addition, this has also been the con-
sequence of technical, methodological, and logistical impedi-
ments in structural research (Giribet 2010, Giribet 2015). 
Consequently, the amount of molecular and morphological 
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Abstract: Research on molluscan specimens is increasingly being carried out using high-throughput molecular techniques. Due to their 
effi ciency, these technologies have effectively resulted in a strong bias towards genotypic analyses. Therefore, the future large-scale correlation 
of such data with the phenotype will require a signifi cant increase in the output of morphological studies. Three-dimensional (3D) scanning 
techniques such as magnetic resonance imaging (MRI) or computed tomography (CT) can achieve this goal as they permit rapidly obtaining 
digital data non-destructively or even entirely non-invasively from living, fi xed, and fossil samples. With a large number of species and a 
relatively complex morphology, the Mollusca would profi t from a more widespread application of digital 3D imaging techniques. In order 
to provide an overview of the capacity of various MRI and CT techniques to visualize internal and external structures of molluscs, more 
than twenty specimens ranging in size from a few millimeters to well over one meter were scanned in vivo as well as ex vivo. The results show 
that all major molluscan organ systems can be successfully visualized using both MRI and CT. The choice of a suitable imaging technique 
depends primarily on the specimen’s life condition, its size, the required resolution, and possible invasiveness of the approach. Apart from 
visual examples derived from more than two dozen scans, the present article provides guidelines and best practices for digital 3D imaging of 
a broad range of molluscan taxa. Furthermore, a comprehensive overview of studies that previously have employed MRI or CT techniques in 
malacological research is given. 
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data available for specifi c molluscan taxa may be hugely dis-
parate, often showing a strong bias towards molecular analy-
sis (Sigwart and Lindberg 2015). However, the increasingly 
widespread application of digital three-dimensional (3D) 
imaging techniques in zoology is reinvigorating interest in 
morphological analyses by providing researchers with tools 
that permit conducting studies at a signifi cantly more rapid 
pace (Giribet 2015, Wanninger 2015). In particular, these 
imaging techniques generate large amounts of morphological 
data in a digital format that could be used in conjunction 
with digital data from molecular techniques to answer a variety 
of open questions in malacological research.

The two main approaches involving the application of 
techniques suitable for digital morphology (Ziegler et al. 
2010) have – in analogy to molecular techniques – been 
coined phenomics and morphomics. The fi rst concept aims 
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to obtain large amounts of information on the varying struc-
tural effects of genetic mutations (Gerlai 2002, Houle 2010) 
in order to link genomic data to the growth, performance, 
and composition of an entire organism (Furbank and Tester 
2011, Yang et al. 2013). This may involve the use of digital 3D 
imaging techniques, but can also be accomplished using less 
complex methodologies, e.g., photography. In contrast, mor-
phomics is directly centered on a large-scale application of 
invasive or non-invasive 3D digital imaging techniques that 
permit collecting organismic data comprehensively and at a 
rapid pace (Altenberg 2005, Lucocq et al. 2014, Chughtai 
et al. 2016). With an estimated 70,000 to 76,000 described 
recent species (Rosenberg 2014), the Mollusca constitute one 
of the largest metazoan taxa and are therefore a natural target 
for an accelerated, phenomic or morphomic approach as 
pointed out previously for cephalopods (Xavier et al. 2015). 
This concept applies particularly to Bivalvia and Gastropoda, 
which have the highest diversity within molluscs (Aguilera 
et al. 2017).

The Mollusca can be divided into the spicule-bearing 
Aculifera that include Chaetodermomorpha, Neomeni-
omorpha, and Polyplacophora and the shell-bearing 
Conchifera comprising Bivalvia, Scaphopoda, Gastropoda, 
Monoplacophora, and Cephalopoda (Wanninger and Wollesen 
2018). External structures and internal hard parts provide reli-
able landmarks for taxonomic or phylogenetic inferences, but 
there are a limited number of informative characters. Internal 
soft tissues provide more characters, but may be affected by the 
invasiveness of the traditionally conducted dissections that do 
not permit a comprehensive analysis of organ systems in their 
natural context. The potential for damage from dissection has 
also dissuaded the systematic re-study of rare and valuable speci-
mens, including type material. As digital imaging techniques 
have been demonstrated to be effective tools for the non-
invasive visualization and reconstruction of the relative position 
of internal and external structures in molluscs (Sutton 2008, 
Hoffmann et al. 2014, Xavier et al. 2015), a more widespread 
use of these techniques would support elucidating molluscan 
morphology and anatomy on a larger scale.

A number of 3D imaging techniques can be employed to 
study animal morphology and anatomy non-destructively or 
even entirely non-invasively (Ziegler et al. 2008, Boistel et al. 
2011, Ziegler 2012, Zanette et al. 2014, Gutiérrez et al. 2018). 
These technologies include magnetic resonance imaging 
(MRI), a technique based on the principle of nuclear mag-
netic resonance (NMR) as well as computed tomography 
(CT), which relies on differences in X-ray attenuation of bio-
logical tissues (Table 1). Both modalities have expanded and 
diversifi ed considerably in the last two decades, resulting in 
the availability of more specialized applications such as func-
tional MRI (fMRI), diffusion tensor imaging (DTI), micro-
computed tomography (μCT), or synchrotron-based μCT 

(SRμCT). All of these scanning techniques generate digital 
data displayed initially as sectional images, but which are also 
suitable for multiple angle reformatting and for 3D visualiza-
tion. Presumably of greatest importance, these techniques 
provide data adequate for online archiving and dissemination 
in specialized repositories analogous to those for molecular 
data.

To promote a more widespread application of digital 
morphology in malacological research, the principle aim of the 
present contribution is to provide a comprehensive overview 
of results derived from different CT- and MRI-based imag-
ing modalities applied to representative molluscan taxa. In 
addition, the article sets out to ascertain if living, freshly fi xed, 
and museum specimens are equally suitable for analyses 
using digital 3D imaging techniques and explores the poten-
tial of various commercial and free software packages to visu-
alize molluscan morphology and anatomy with a high level of 
precision. Furthermore, protocols as well as best practices for 
scanning a diverse array of extant specimens ranging in length 
from millimeters to meters are provided. Finally, the present 
paper gives a broad overview of studies that have successfully 
employed digital 3D imaging techniques to analyze mollus-
can form and function.

MATERIALS AND METHODS

Specimens
A total of 21 specimens from 18 different genera were 

analyzed. The material was obtained from fi eld trips, scien-
tifi c cruises, museum collections, or beachcombing and cov-
ers a broad range of parameters including size (millimeters, 
centimeters, meters), life condition (in vivo, ex vivo), fi xation 
(Bouin’s solution, formalin, ethanol), preservation (wet, 
dry), as well as ontogenetic stage (embryo, juvenile, sub-
adult, adult). Where applicable, specimens were relaxed 
by adding 3-7% MgCl

2
 to sea water prior to fi xation. In total, 

26 scans were made using five different CT and MRI 
techniques.

Micro-computed tomography
Scans of smaller specimens were conducted using vari-

ous X-ray tube μCT systems (Table 2): a Phoenix Nanotom 
with a detector size of 2,304 x 2,304 px (GE Sensing & 
Inspection Technologies, Wunstorf, Germany), an X-TEK 
HMX-ST 225 with a detector size of 2,000 x 2,000 px (Nikon 
Metrology, Leuven, Belgium), and a SkyScan 1272 with a 
detector size of 4,904 x 3,280 px (Bruker microCT, Kontich, 
Belgium). To prevent movement artifacts during scanning, 
specimens were either placed inside plastic tubes and mechani-
cally fi xed using thin plastic rods or were attached to a thin 
metal rod using orthodontic wax.

Downloaded From: https://complete.bioone.org/journals/American-Malacological-Bulletin on 25 Nov 2024
Terms of Use: https://complete.bioone.org/terms-of-use



250 AMERICAN MALACOLOGICAL  BULLETIN     36  · 2  · 2018

T
ab

le
 1

. G
en

er
al

iz
ed

 p
ro

pe
rt

ie
s 

of
 d

ig
it

al
 t

h
re

e-
di

m
en

si
on

al
 im

ag
in

g 
te

ch
n

iq
u

es
 e

m
pl

oy
ed

 in
 t

h
e 

pr
es

en
t 

st
u

dy
.

M
ic

ro
-c

om
p

u
te

d
 

to
m

og
ra

p
h

y

C
on

tr
as

t-
en

h
an

ce
d

 
m

ic
ro

-c
om

p
u

te
d

 
to

m
og

ra
p

h
y

C
om

p
u

te
d

 to
m

og
ra

p
h

y
P

re
cl

in
ic

al
 m

ag
n

et
ic

 
re

so
n

an
ce

 im
ag

in
g

C
li

n
ic

al
 m

ag
n

et
ic

 
re

so
n

an
ce

 im
ag

in
g

Fi
el

d 
of

 v
ie

w
50

 μ
m

-5
00

 m
m

50
 μ

m
-5

00
 m

m
 

50
-5

00
 m

m
10

-1
50

 m
m

10
0-

30
0 

m
m

V
ox

el
 r

es
ol

u
ti

on
50

 n
m

-1
00

 μ
m

50
 n

m
-1

00
 μ

m
10

0 
μm

-2
 m

m
35

-1
50

 μ
m

10
0 

μm
-3

 m
m

2D
 s

in
gl

e 
sl

ic
e 

im
ag

in
g

Im
po

ss
ib

le
, o

n
ly

 2
D

 
 

X
-r

ay
 p

ro
je

ct
io

n
 im

ag
es

Im
po

ss
ib

le
, o

n
ly

 2
D

 X
-r

ay
 

 
pr

oj
ec

ti
on

 im
ag

es
P

os
si

bl
e 

in
 n

on
-h

el
ic

al
 

 
m

od
e

P
os

si
bl

e
P

os
si

bl
e

3D
 r

eg
io

n
-o

f-
in

te
re

st
 

 
sc

an
n

in
g

P
os

si
bl

e
P

os
si

bl
e

P
os

si
bl

e
P

os
si

bl
e

P
os

si
bl

e

A
cq

u
is

it
io

n
 t

im
e 

fo
r 

 
3D

 s
ca

n
s

M
in

u
te

s 
to

 h
ou

rs
, 

 
 si

n
gl

e 
2D

 X
-r

ay
 

pr
oj

ec
ti

on
 

w
it

h
in

 s
ec

on
ds

M
in

u
te

s 
to

 h
ou

rs
, 

 
 si

n
gl

e 
2D

 X
-r

ay
 

pr
oj

ec
ti

on
 w

it
h

in
 

se
co

n
ds

M
in

u
te

s 
to

 h
ou

rs
, 

 
 si

n
gl

e 
2D

 X
-r

ay
 

pr
oj

ec
ti

on
 w

it
h

in
 

se
co

n
ds

M
in

u
te

s 
to

 h
ou

rs
, 

 
 si

n
gl

e 
2D

 s
ec

ti
on

 
w

it
h

in
 s

ec
on

ds
 

M
in

u
te

s 
to

 h
ou

rs
, 

 
 si

n
gl

e 
2D

 s
ec

ti
on

 
w

it
h

in
 s

ec
on

ds

D
at

as
et

 s
iz

e
M

B
-P

B
M

B
-P

B
M

B
-P

B
M

B
-G

B
M

B
-G

B

Li
fe

 c
on

di
ti

on
U

su
al

ly
 e

x 
vi

vo
 d

u
e 

 
to

 in
cr

ea
se

d 
X

-r
ay

 d
os

e
E

x 
vi

vo
In

 v
iv

o 
an

d 
ex

 v
iv

o
In

 v
iv

o 
an

d 
ex

 v
iv

o
In

 v
iv

o 
an

d 
ex

 v
iv

o

Sc
an

n
in

g 
m

ed
iu

m
A

ir
, s

ev
er

al
 li

qu
id

s 
 

po
ss

ib
le

E
th

an
ol

, w
at

er
, a

ir
A

ir
, l

iq
u

id
s 

(i
n

cl
. f

ro
ze

n
)

D
is

ti
lle

d 
w

at
er

, s
ev

er
al

 
 

ot
h

er
 li

qu
id

s 
po

ss
ib

le
A

ir
, s

ev
er

al
 li

qu
id

s 
 

po
ss

ib
le

H
ar

d 
pa

rt
 v

is
u

al
iz

at
io

n
E

xc
el

le
n

t
E

xc
el

le
n

t
E

xc
el

le
n

t
Li

m
it

ed
, n

eg
at

iv
e 

 
 co

n
tr

as
t 

du
e 

to
 

su
rr

ou
n

di
n

g 
ti

ss
u

es

Li
m

it
ed

, n
eg

at
iv

e 
 

 co
n

tr
as

t 
du

e 
to

 
su

rr
ou

n
di

n
g 

ti
ss

u
es

So
ft

 p
ar

t 
vi

su
al

iz
at

io
n

Li
m

it
ed

E
xc

el
le

n
t 

du
e 

to
 

 
co

n
tr

as
t 

ag
en

t
Li

m
it

ed
E

xc
el

le
n

t
E

xc
el

le
n

t

P
ot

en
ti

al
 a

rt
if

ac
ts

B
ea

m
 h

ar
de

n
in

g,
 

 
 ri

n
gi

n
g,

 p
ar

ti
al

 v
ol

u
m

e,
 

ph
ot

on
 s

ta
rv

at
io

n
, 

u
n

de
rs

am
pl

in
g,

 
m

ov
em

en
t,

 p
ix

el
 

bl
oo

m
in

g

B
ea

m
 h

ar
de

n
in

g,
 

 
 ri

n
gi

n
g,

 p
ar

ti
al

 v
ol

u
m

e,
 

ph
ot

on
 s

ta
rv

at
io

n
, 

u
n

de
rs

am
pl

in
g,

 
m

ov
em

en
t,

 
pi

xe
l b

lo
om

in
g

B
ea

m
 h

ar
de

n
in

g,
 

 
 ri

n
gi

n
g,

 p
ar

ti
al

 v
ol

u
m

e,
 

ph
ot

on
 s

ta
rv

at
io

n
, 

u
n

de
rs

am
pl

in
g,

 
m

ov
em

en
t,

 p
ix

el
 

bl
oo

m
in

g

M
ov

em
en

t,
 G

ib
bs

 
 

 ri
n

gi
n

g,
 c

h
em

ic
al

 s
h

if
t,

 
al

ia
si

n
g,

 s
u

sc
ep

ti
bi

lit
y 

ca
u

se
d 

by
 a

ir
 o

r 
m

ag
n

et
ic

 p
ar

ti
cl

es

M
ov

em
en

t,
 G

ib
bs

 r
in

gi
n

g,
 

 
 ch

em
ic

al
 s

h
if

t,
 a

lia
si

n
g,

 
su

sc
ep

ti
bi

lit
y 

ca
u

se
d 

by
 a

ir
 o

r 
m

ag
n

et
ic

 
pa

rt
ic

le
s

Downloaded From: https://complete.bioone.org/journals/American-Malacological-Bulletin on 25 Nov 2024
Terms of Use: https://complete.bioone.org/terms-of-use



 DIGITAL 3D IMAGING TECHNIQUES IN MALACOLOGY 251

Table 2. List of specimens analyzed using computed tomography techniques. AVG = averages, CUR = source current, EXP = exposure time, 
FIL = fi lter, FOV = fi eld of view, MCZ = Museum of Comparative Zoology (Cambridge, Massachusetts, U.S.A.), MTX = matrix size, RES = 
voxel resolution, STE = step size, TA = acquisition time, TL = total length, VOL = source voltage, ZMB = Museum für Naturkunde (Berlin, 
Germany), ZMK = Zoologisk Museum København (Copenhagen, Denmark).

Scan Taxon Specimen Scanning parameters Figure

1 Lepidochitona cinerea 
 (Linnaeus, 1767)

Unvouchered, ex vivo, adult, 
 15.5 mm TL, Sylt (North Sea)

Phoenix Nanotom, 100 kV VOL, 130 μA CUR, 
  0.2 mm Cu FIL, 1,000 ms EXP, 3 AVG, 0.4° STE, 

8 x 8 x 8 μm RES, 1 h 2 min TA

1

2 Leptochiton asellus 
 (Gmelin, 1791)

Unvouchered, ex vivo, adult, 
  13 mm TL, Heligoland 

(North Sea)

SkyScan 1272, 70 kV VOL, 142 μA CUR, 0.5 mm 
  Al FIL, 834 ms EXP, 4 AVG, 0.4° STE, 8 x 8 x 8 μm 

RES, 34 min 31 s TA

2A-G

3 Leptochiton asellus 
 (Gmelin, 1791)

Unvouchered, ex vivo, adult, 
  13 mm TL, Heligoland 

(North Sea)

SkyScan 1272, 60 kV VOL, 166 μA CUR, 0.25 mm 
  Al FIL, 3,135 ms EXP, 3 AVG, 0.1° STE, 600 x 600 x 

600 nm RES, 5 h 56 min 57 s TA

2H-J

4 Cerastoderma edule 
 (Linnaeus, 1758)

Unvouchered, ex vivo, adult, 
  21 mm TL, Sylt (North Sea)

Phoenix Nanotom, 100 kV VOL, 160 μA CUR, 
  0.2 mm Cu FIL, 750 ms EXP, 2 AVG, 0.4° STE, 

13 x 13 x 13 μm RES, 1 h 16 min TA

3A-D

5 Cerithium litteratum 
 (Born, 1778)

Unvouchered, ex vivo, adult, 
  22.5 mm TL, Naples (Gulf 

of Mexico)

Phoenix Nanotom, 100 kV VOL, 160 μA CUR, 
  0.2 mm Cu FIL, 1,000 ms EXP, 4 AVG, 0.4° STE, 

25 x 25 x 25 μm RES, 1 h 47 min TA

3E-H

6 Nautilus pompilius 
 Linnaeus, 1758

MCZ 380017, ex vivo, adult, 
  77 mm TL, Gilbert Islands 

(Pacifi c Ocean)

HMX ST 225, 80 kV VOL, 120 μA CUR, 
  0.1 mm Cu FIL, 1 AVG, 0.4° STE, 

42.33 x 42.33 x 42.33 μm RES, 48 min TA

3I-L

7 Dosidicus gigas (d’Orbigny 
 [in 1834-1847], 1835)

D-gig01/S-353773-US, ex vivo, 
  adult, 1.55 m TL, California 

(Pacifi c Ocean)

Somatom Volume Zoom, 120 kV VOL, 134 mAs 
  CUR, 750 ms EXP, 0.4° STE, 350 x 350 mm FOV, 

683 x 683 x 1,000 mm RES, 6 min 30 s TA 
(x4, batch scan)

4

8 Acanthochitona crinita 
 (Pennant, 1777)

Unvouchered, ex vivo, adult, 
  32 mm TL, Concarneau 

(Atlantic Ocean)

SkyScan 1272, 100 kV VOL, 100 μA CUR, 
  0.11 mm Cu FIL, 1,050 ms EXP, 8 AVG, 0.4° STE, 

1,632 x 1,092 px MTX, 12 x 12 x 12 μm RES, 1 
h 16 min 43 s TA (x4, batch scan)

5A-C

9 Spirula spirula 
 (Linnaeus, 1758)

ZMK 405, ex vivo, adult, 
  63 mm TL, Zavala 

(Indian Ocean)

SkyScan 1272, 100 kV VOL, 100 μA CUR, 
  0.11 mm Cu FIL, 2,600 ms EXP, 10 AVG, 0.3° STE, 

2,452 x 1,640 px MTX, 10 x 10 x 10 μm RES, 5 h 
29 min 18 s TA (x5, batch scan)

5D-G

10 Muusoctopus Gleadall, 2004 ZMB 240165, ex vivo, 
  embryo, 12 mm TL, Bering 

Sea (Pacifi c Ocean)

SkyScan 1272, 80 kV VOL, 125 μA CUR, 1 mm 
  Al FIL, 1,030 ms EXP, 10 AVG, 0.2° STE, 2,452 x 

1,640 px MTX, 5 x 5 x 5 μm RES, 3 h 44 min 
24 s TA

6

Computed tomography
Scans of larger specimens were made using a Somatom 

Volume Zoom helical CT system (SIEMENS Healthineers, 
Erlangen, Germany). Tube voltages employed were 120-140 kV 
and the radiographs were processed with an image matrix 
size of 512 x 512 px. The scans were performed as a series of 
four continual spirals, each of which was done with a table 
speed of 1 mm/s and 1 mm data block acquisition per tube 
rotation (Table 2). Partial soft part visualization was accom-
plished through selection of an ultrahigh kernel (U/H90) and 
extended scales with bone and soft tissue windowing using 
protocols frequently used for head and neck imaging in 
human diagnostics.

Contrast-enhanced micro-computed tomography
Formalin-fi xed, ethanol-preserved specimens of one 

polyplacophoran and two cephalopod species were placed in 
50 ml plastic tubes and stained using an 0.3% phosphotungstic 
acid (PTA) solution in 70% ethanol. Specimens were stained 
for four weeks each and placed inside plastic tubes fi lled with 
clean 70% ethanol directly prior to scanning (Table 2). The 
scans were made using a SkyScan 1272 μCT system with a 
detector size of 4,904 x 3,280 px (Bruker microCT). 

Preclinical magnetic resonance imaging
Scans of smaller specimens were obtained using five 

different high-fi eld preclinical MRI systems (Table 3): a 
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Table 3. List of specimens analyzed using magnetic resonance imaging techniques. AVG = averages, DTI = diffusion tensor imaging, FA = 
fl ip angle, FLASH = fast low angle shot, FMNH = Field Museum of Natural History (Chicago, Illinois, U.S.A.), FOV = fi eld of view, MCZ = 
Museum of Comparative Zoology (Cambridge, Massachusetts, U.S.A.), MP-SAGE = magnetization-prepared spiral acquisition gradient 
echo, MSME = multi slice multi echo, MTX = matrix size, RARE = rapid acquisition relaxation enhancement, RES = voxel resolution, SE = 
spin echo, SEQ = sequence, TA = acquisition time, TE = echo time, TL = total length, TR = repetition time, ZMB = Museum für Naturkunde 
(Berlin, Germany).

Scan Taxon Specimen Scanning parameters Figure

11 Cerastoderma edule 
 (Linnaeus, 1758)

Unvouchered, ex vivo, 
  adult, 21 mm TL, Sylt 

(North Sea)

7 T PharmaScan 70/16, 3D FLASH SEQ, 30 ms TR, 
  6.66 ms TE, 35° FA, 31.2 x 31.2 x 31.2 mm FOV, 

384 x 384 x 384 MTX, 12 AVG, 81 x 81 x 81 μm RES, 
14 h 44 min 44 s TA

7A-C

12 Mytilus edulis 
 Linnaeus, 1758

Unvouchered, in vivo, 
  adult, 71 mm TL, Sylt 

(North Sea)

4.7 T BioSpec 47/40 DBX, 2D RARE SEQ, 12.367 ms 
  TR, 183.6 ms TE, 180° FA, 100.5 x 100.5 mm FOV, 

256 x 256 px MTX, 1 AVG, 393 x 393 x 2,000 μm 
RES, 1 min 14 s TA

7D-F

13 Dendronotus frondosus 
 (Ascanius, 1774)

Unvouchered, ex vivo, 
  adult, 24.5 mm TL, 

Concarneau (Atlantic Ocean)

7 T PharmaScan 70/16, 2D FLASH SEQ, 30 ms TR, 
  6.66 ms TE, 35° FA, 31.25 x 31.25 mm FOV, 384 x 384 

MTX, 1 AVG, 81 x 81 x 313 μm RES, 24 min 
11 s 52 ms TA

7G, H

14 Carronella pellucida 
  (Alder & Hancock, 

1843)

Unvouchered, ex vivo, 
  adult, 25 mm TL, Castle 

Point (Atlantic Ocean)

7 T PharmaScan 70/16, 2D RARE SEQ, 3,500 ms 
  TR, 36 ms TE, 42 x 42 mm FOV, 256 x 256 px MTX, 8 

AVG, 164 x 164 x 500 μm RES, 11 min 12 s TA

7I

15 Brachidontes exustus 
 (Linnaeus, 1758)

FMNH 243, ex vivo, 
  juvenile, 16 mm TL, Vero 

Beach (Atlantic Ocean)

9.4 T BioSpec 94/20, 3D FLASH SEQ, 30 ms TR, 
  5.11 ms TE, 15° FA, 17.5 x 8.0 x 11.7 mm FOV, 

440 x 200 x 296 px MTX, 4 AVG, 40 x 40 x 40 μm 
RES, 1 h 58 min 24 s TA

8A-C

16 Ostrea edulis 
 Linnaeus, 1758

Unvouchered, in vivo, 
  adult, 143 mm TL, Vigo 

(Atlantic Ocean)

9.4 T BioSpec 94/30, 2D RARE SEQ, 2,000 ms TR, 
  53.19 ms TE, 90° FA, 120 x 120 mm FOV, 512 x 512 

px MTX, 8 AVG, 234 x 234 x 1,000 μm RES, 17 min 
4 s TA

8D, E

17 Crassostrea virginica 
 Gmelin, 1791

Unvouchered, in vivo, 
  adult, 135 mm TL, Stump 

Sound (Atlantic Ocean)

4.7 T BioSpec 47/40 DBX, 2D RARE SEQ, 6,000 ms TR, 
  20.9 ms TE, 90° FA, 80 x 80 mm FOV, 128 x 128 px 

MTX, 8 AVG, 625 x 625 x 2,740 μm RES, 
12 min 48 s TA

8F

18 Pecten maximus 
 (Linnaeus, 1758)

Unvouchered, in vivo, 
  adult, 99 mm TL, Vigo 

(Atlantic Ocean)

9.4 T BioSpec 94/30, 2D RARE SEQ, 3,000 ms TR, 
  45.51 ms TE, 90° FA, 120 x 120 mm FOV, 512 x 512 

px MTX, 4 AVG, 234 x 234 x 1,000 μm RES, 
12 min 46 s TA

8G

19 Sepia offi cinalis 
 Linnaeus, 1758

Unvouchered, ex vivo, 
  juvenile, 37 mm TL, Banyuls 

(Mediterranean Sea)

9.4 T BioSpec 94/20, 3D RARE SEQ, 600 ms 
  TR, 35 ms TE, 180° FA, 36 x 15.2 x 15.2 mm FOV, 

544 x 232 x 232 px MTX, 12 AVG, 66 x 66 x 66 μm 
RES, 13 h 27 min 22 s TA

8H, I

20 Spirula spirula 
 (Linnaeus, 1758)

MCZ 93797, ex vivo, 
  adult, 55 mm TL, St. Lucia 

(Caribbean Sea)

9.4 T BioSpec 94/20, 2D TurboRARE SEQ, 1,500 ms 
TR, 60.01 ms TE, 180° FA, 35 x 26 x 26 mm FOV, 
  584 x 432 x 256 px MTX, 8 AVG, 60 x 60 x 

102 μm RES, 9 h 16 min 48 s TA

9A-C

21 Sepia offi cinalis 
 Linnaeus, 1758

Unvouchered, ex vivo, 
  sub-adult, 37 mm TL, Banyuls 

(Mediterranean Sea)

9.4 T AVANCE Ultrashield 400 WB Plus, 2D 
  MSME SEQ, 7,446.6 ms TR, 40 ms TE, 180° FA, 

35 x 17.5 mm FOV, 512 x 256 px MTX, 10 AVG, 
30 x 30 x 100 μm RES, 8 h 28 min 21 s TA

9D

22 Sepia offi cinalis 
 Linnaeus, 1758

Unvouchered, ex vivo, 
  sub-adult, 37 mm TL, Banyuls 

(Mediterranean Sea)

9.4 T AVANCE Ultrashield 400 WB Plus, DTI SEQ, 
  12.5 s TR, 37.96 ms TE, 15 x 15 mm FOV, 256 x 256 px 

MTX, 1 AVG, 58.6 x 58.6 x 235 μm RES, 24 h 
18 min 21 s TA

9E-G
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horizontal 4.7 T BioSpec 47/40 equipped with a 50 mm triple 
tuneable surface coil (Bruker BioSpin MRI, Ettlingen, 
Germany), a horizontal 7 T PharmaScan 70/16 using a linear 
transmit-receive birdcage resonator with an inner diameter 
of 38 mm (Bruker BioSpin MRI), a horizontal 9.4 T BioSpec 
94/20 using either a 20 mm CryoProbe transmit-receive sur-
face resonator or a microcoil quadrature volume resonator 
with an inner diameter of 35 mm (Bruker BioSpin MRI), a 
horizontal 9.4 T Biospec 94/30 using a volume coil with 200 mm 
inner diameter (Bruker BioSpin MRI), and a vertical 9.4 T 
AVANCE 400WB Plus NMR spectrometer equipped for 1H 
imaging using a linear volume resonator with 15 mm inner 
diameter (Bruker BioSpin MRI). Prior to scanning, ethanol-
preserved specimens were gradually immersed in distilled 
water for a few hours, while living specimens were kept fully-
immersed inside plastic containers fi lled with oxygenated sea 
water. In selected cases, fi xed specimens were embedded in 
1% low-melting agarose contrasted with Magnevist (Bayer 
Vital, Leverkusen, Germany) at a fi nal concentration of 2 mM.

Clinical magnetic resonance imaging
Scans of larger specimens were carried out using three 

different high-field clinical MRI systems (Table 3): a 3 T 
MAGNETOM Tim Trio equipped with a 32-channel head 
coil (SIEMENS Healthineers), a 3 T Achieva using an 8-channel 
SENSE head receiving coil (Philips Healthcare, Amsterdam, 
Netherlands), and a 7 T MAGNETOM in combination with a 
32-channel head coil (SIEMENS Healthineers). The living 
cephalopod specimen analyzed in the course of this study was 
anaesthetized and kept inside a plastic container partially fi lled 
with oxygenated sea water. Care and subsequent imaging 
was conducted under the direction of a licensed veterinarian 
and according to procedures set forth by the Institutional 
Animal Care and Use Committee as well as the Universities 

Federation for Animal Welfare (Boyle 2010, Budelmann 
2010).

Data visualization
Computer hardware used for two-dimensional (2D) sec-

tioning and 3D visualization was based on 64-bit Windows 7 
or 10 operating systems running on multi-core processors with 
6-128 GB random access memory (RAM) and graphic cards 
with 1-24 GB video RAM. The free software packages employed 
in this study were Drishti (Limaye 2012), DSI Studio (http://
dsi-studio.labsolver.org), Acrobat Reader (Adobe Systems, San 
Jose, California, USA), and Fiji (Schindelin et al. 2012). The 
commercial software packages used were Adobe 3D Reviewer 
(Adobe Systems), Amira 6.5 (Thermo Fisher Scientific, 
Waltham, Massachusetts, U.S.A.), ParaVision 4-6 (Bruker 
BioSpin MRI), and VGSTUDIO MAX 3.2 (Volume Graphics, 
Heidelberg, Germany).

Data deposition
A MorphoBank project (#3107) was created as reposi-

tory for selected digital 2D and 3D data generated in the 
course of this study (Ziegler et al. 2018). The deposited infor-
mation includes one DTI data folder, 23 tomographic data-
sets, and 80 media fi les amounting to a total size of 2 GB.

RESULTS

Molluscs in general are characterized by a complex inter-
nal anatomy, a relative dominance of soft parts, and the pres-
ence of extensive fl uid-fi lled cavities. These anatomical and 
morphological features render molluscs in principle ideal 
candidates for MRI (Ziegler et al. 2011). In contrast, molluscan 
hard parts are best studied using CT techniques, because this 

Scan Taxon Specimen Scanning parameters Figure

23 Sepia omani Adam & 
 Rees, 1966

MCZ 380019, ex vivo, 
  adult, 247 mm TL, Jiagarh 

(Indian Ocean)

3 T MAGNETOM Tim Trio, 3D FLASH SEQ, 
  150 ms TR, 4.7 ms TE, 72° FA, 200 x 100 x 67 mm FOV, 

576 x 288 x 192 px MTX, 4 AVG, 347 x 347 x 347 μm 
RES, 9 h 10 min 25 s TA

10A, B

24 Sepia offi cinalis 
 Linnaeus, 1758

Unvouchered, in vivo, 
  adult, 341 mm TL, Woods 

Hole (Atlantic Ocean)

3 T Achieva, 2D RARE SEQ, 595.6 ms TR, 100 ms TE, 
  90° FA, 240 x 240 mm FOV, 1,200 x 1,200 px MTX, 3 

AVG, 200 x 200 x 1,000 μm RES, 20 min TA

10C

25 Sepia offi cinalis 
 Linnaeus, 1758

Unvouchered, in vivo, 
  adult, 341 mm TL, Woods 

Hole (Atlantic Ocean)

3 T Achieva, 3D RARE SEQ, 1,700 ms TR, 190 ms TE, 
  90° FA, 60 x 60 x 60 mm FOV, 512 x 512 x 512 px 

MTX, 6 AVG, 117 x 117 x 117 μm RES, 25 min TA

10D, E

26 Grimpoteuthis Robson, 
 1932

ZMB 240160, ex vivo, 
  adult, 290 mm TL, Tenji 

Seamount (Pacifi c Ocean)

7 T MAGNETOM, 3D MP-SAGE SEQ, 3,000 ms TR, 
  3.4 ms TE, 7° FA, 150 x 111 x 150 mm FOV, 536 x 

396 x 536 px MTX, 37 AVG, 280 x 280 x 280 μm RES, 
16 h 59 min TA

10F, G

Table 3. (Continued)
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approach provides superior results with regard to 3D analyses 
of mineralized tissues. CT and MRI can thus be seen as com-
plementary imaging techniques, although both permit visual-
izing soft tissues as well as mineralized structures under 
certain conditions.

Micro-computed tomography

Scan 1
Gray chiton, Lepidochitona cinerea (Polyplacophora: 

Lepidochitonidae), adult, 15.5 mm total length (TL), formalin-
fixed, ethanol-preserved, dataset acquired ex vivo, scanned 
in ethanol (Table 2). A digitally reconstructed radiography 
(DRR) rendering illustrates that the chosen scan settings per-
mit recognition of hard parts only, despite the presence of 
soft tissues in this ethanol-preserved sample (Fig. 1A). Virtual 
sections and volume renderings at different positions and 
from various viewpoints show that mineralized tissues such as 
valves (Fig. 1B), spiculae (Fig. 1C), radula (Fig. 1D), tegmen-
tum (Fig. 1E), and pustules (Fig. 1F), but also X-ray-dense 
ingesta inside the posterior digestive tract (Fig. 1G) can be 

visualized using μCT. A close-up view of the radula (Fig. 1H) 
reveals that even individual radular teeth can be successfully 
differentiated at the given resolution. Because of its relatively 
large size, the dataset was binned (i.e., down-sampled) from 
its original 8 μm to 16 μm isotropic voxel resolution (IVR) for 
online deposition. Due to the 3D nature of the tomographic 
data, this reduction in resolution by a factor of two results in 
a reduction of the dataset’s volume by a factor of eight (i.e., 23). 
While binning lowers resolution, it may result in an improved 
signal-to-noise ratio (SNR), thus artifi cially improving the 
visual aspect of the dataset.

Scan 2 
Northern chiton, Leptochiton asellus (Polyplacophora: 

Leptochitonidae), adult, 13 mm TL, Bouin-fi xed, ethanol-
preserved, dataset acquired ex vivo, scanned in air (Table 2). 
For high-resolution scanning of an isolated chiton body part, 
the anterior valve was removed and air-dried. This scan was 
made to obtain an overview of the entire sample prior to 
scanning at higher resolutions (see below). A DRR rendering 
partly reveals the internal macrostructure of the anterior 

Figure 1. Micro-computed tomography data of an adult specimen of the polyplacophoran Lepidochitona cinerea. A. Digitally reconstructed 
radiograph rendering, lateral view with anterior to right. B. Virtual sagittal section at the level of the radula. C. Solid volume rendering. D. 
Virtual sagittal slicing of a solid volume rendering at the level of the radula. E. Virtual transverse section, position indicated by white arrow as in C. F. 
Solid volume rendering, anterior view. G. Solid volume rendering, ventral view with anterior to right. H. Close-up view of the radula. All ren-
derings and virtual sections created using the commercial software Amira (A) and VGSTUDIO MAX (B-H) at 8 μm isotropic voxel resolution.
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valve (Fig. 2A), while a solid volume rendering can be used to 
show the superfi cial distribution of the sensory pores (Fig. 2B). 
However, a semi-transparent rendering (Fig. 2C) as well as a 
consecutive series of a virtual sagittal section (Fig. 2D), solid 
(Fig. 2E), and sliced (Fig. 2F, G) volume renderings are neces-
sary to obtain a more comprehensive understanding of the 
underlying megalaesthete morphology. Despite the insight 
provided by this scan, a higher IVR is required to reveal 
smaller structures, specifi cally the micraesthetes.

Scan 3
Northern chiton, Leptochiton asellus (Polyplacophora: 

Leptochitonidae), adult, 13 mm TL, Bouin-fixed, ethanol-
preserved, dataset acquired ex vivo, scanned in air (Table 2). 
In order to obtain a dataset with sub-micron resolution, only 

the anterior tip of the valve was scanned. As a virtual sagittal 
section through the resulting tomographic data shows, micraes-
thetes and megalaesthetes can now be differentiated (Fig. 2H). 
Close-up sagittal (Fig. 2I) and dorsal views (Fig. 2J) of the 
scanned region of interest (ROI) provide further insight into 
sensory pore morphology of this polyplacophoran species.

Scan 4
Common cockle, Cerastoderma edule (Bivalvia: Cardiidae), 

adult, 21 mm TL, Bouin-fixed, ethanol-preserved, dataset 
acquired ex vivo, scanned in ethanol (Table 2). As in the fi rst 
scan (Fig. 1), the scanning parameters chosen here do not 
permit any differentiation of soft parts, despite their pres-
ence in this ethanol-preserved sample. This lack of soft tis-
sue contrast is illustrated by a DRR rendering (Fig. 3A) as well 

Figure 2. Micro-computed tomography data of the anterior valve of an adult specimen of the polyplacophoran Leptochiton asellus. The two 
datasets were acquired at 8 μm (A-G) and 600 nm (H-J) isotropic voxel resolution. A. Digitally reconstructed radiograph rendering, dorsal 
view with anterior facing up. B. Solid volume rendering. C. Semi-transparent volume rendering. D. Virtual sagittal section, anterior to left, 
position indicated by white arrow as in C. E. Solid volume rendering, lateral view. F. Virtual sagittal slicing of a solid volume rendering. G. 
Close-up as indicated in F. H. Close-up of the approximate area as indicated in D. I. Semi-transparent volume rendering of the distal area of 
a single megalaesthete. J. Dorsal view of part of the anterior valve. All renderings and virtual sections created using the commercial software 
Amira (A) as well as the free software Drishti (B, C, E-G, I, J) and Fiji (D, H).
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as a virtual transverse section (Fig. 3B). However, despite its 
signifi cantly lower density compared to the two valves, the 
ligament can still be identifi ed (Fig. 3C). In addition, the pre-
vious as well as a further volume rendering permit obtaining 
an unobstructed view of all major hard parts, including the 
articulated hinge as seen from an internal viewpoint (Fig. 3D). 
These latter two images illustrate that visualization software 
can be used to generate false-colored renderings that closely 
approach the aspect of the specimen in real life (Fig. 3C).

Scan 5
Stocky cerith, Cerithium litteratum (Gastropoda: Cerithi-

idae), adult, 22.5 mm TL, dry shell, dataset acquired ex vivo, 

scanned in air (Table 2). A DRR rendering shows that the 
intricate internal coiling of the snail’s shell can be easily visu-
alized using μCT (Fig. 3E). However, a virtual horizontal section 
reveals that the shell’s microstructure cannot be differenti-
ated at the given resolution (Fig. 3F). Two volume renderings 
illustrate the capacity of modern visualization tools to pro-
vide a sense of depth through virtual shading (Fig. 3G) and 
slicing (Fig. 3H).

Scan 6
Chambered nautilus, Nautilus pompilius (Cephalopoda: 

Nautilidae), adult, 77 mm TL, dry shell, dataset acquired ex 
vivo, scanned in air (Table 2). A DRR rendering provides 

Figure 3. Micro-computed tomography data of adult specimens of the bivalve Cerastoderma edule (A-D), the gastropod Cerithium litteratum 
(E-H), and the cephalopod Nautilus pompilius (I-L). A, E, I. Digitally reconstructed radiograph rendering, lateral view. B, F, J. Virtual trans-
verse section. C, G, K. Solid volume rendering. D, H, L. Virtual slicing of a solid volume rendering, oblique view. All renderings and virtual 
sections created using the commercial software Amira (A, E, I, K, L) and VGSTUDIO MAX (G, H) as well as the free software Fiji (B, F, J) and 
Drishti (C, D) at 26 μm (A-D), 25 μm (E-H), and 84.7 μm (I-L) isotropic voxel resolution.
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insight into the complex internal morphology of the cham-
bered nautilus’ shell (Fig. 3I). In addition, virtual sectioning 
can be used to generate views typically employed in nautilid 
taxonomy and systematics without the need to alter the speci-
men (Fig. 3J). False-colored volume renderings further illus-
trate that conventional (Fig. 3K) as well as entirely novel 
perspectives (Fig. 3L) of the nautilid shell can be obtained 
using digital μCT data.

Computed tomography

Scan 7
Humboldt squid, Dosidicus gigas (Cephalopoda: Ommas-

trephidae), adult, 1.55 m TL, frozen specimen, thawed prior 
to scanning, dataset acquired ex vivo, scanned in air (Table 2). 
A DRR rendering from a dorsal viewpoint illustrates the 
overall shape and scanning position of the animal (Fig. 4A). A 
virtual section at the level of the large, centrally located digestive 
gland reveals selected soft tissue organs such as gills or optic 
lobes, but also hard parts such as the statoliths (Fig. 4B). An 
impression of the external morphology can be obtained by 
solid volume rendering of the entire dataset (Fig. 4C), while 
selected internal organs can best be visualized using a semi-
transparent rendering (Fig. 4D). Note the strongly X-ray 
absorbing content of the ink sac in contrast to the relatively 
weak attenuation of gladius as well as lower and upper beak 
(Fig. 4D).

Contrast-enhanced micro-computed tomography

Scan 8
Spiny chiton, Acanthochitona crinita (Polyplacophora: 

Acanthochitonidae), adult, 32 mm TL, Bouin-fi xed, ethanol-
preserved, dataset acquired ex vivo, scanned in ethanol (Table 2). 
Lateral and ventral views based on volume renderings of the 
3D dataset show that all external hard and soft part features of 
this chiton such as valves, girdle, foot, or gills can be readily 
visualized at the given resolution (Fig. 5A, B). In addition, a 
virtual transverse section immediately posterior to the head 
demonstrates that major internal organ systems can be dif-
ferentiated as well (Fig. 5C). In this particular image, individual 
lacunae located in the girdle and foot as well as the complex 
muscular disposition of the radula apparatus become apparent.

Scan 9
Ram’s horn squid, Spirula spirula (Cephalopoda: Spiru-

lidae), adult, 63 mm TL, formalin-fixed, ethanol-preserved, 
dataset acquired ex vivo, scanned in ethanol (Table 2). A DRR 
rendering from a lateral viewpoint suggests that the contrast 
agent has permeated the entire specimen, thus rendering all 
internal structures visible (Fig. 5D). Consequently, a virtual 
sagittal section reveals not only the hard part morphology of 
the animal with its coiled chambered shell, but also its soft 
part composition with buccal mass, statocysts, central ner-
vous system, and various other internal organs (Fig. 5E). In 

Figure 4. Computed tomography data of an adult specimen of the cephalopod Dosidicus gigas. A. Digitally reconstructed radiograph render-
ing, dorsal view with anterior facing right. B.Virtual horizontal section at the level of digestive gland and gills. C. Solid volume rendering 
showing external anatomical features. D. Semi-transparent volume rendering exposing selected internal organs. All renderings and virtual 
sections produced using the commercial software Amira at 683 μm isotropic voxel resolution.
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addition, the 3D dataset can be used to visualize the external 
aspect of the animal with arms, tentacles, eyes, mantle, and 
fi ns (Fig. 5F). However, as a virtual slicing of a volume ren-
dering seen from a lateral viewpoint shows, a small area at the 
posterior end of the digestive gland has not been stained (Fig. 
5G). Despite several weeks of immersion in the contrast 
agent and occasional flushing of the mantle cavity, diffu-
sion of PTA into this part of the sample was not achieved.

Scan 10
Inkless octopus, Muusoctopus sp. (Cephalopoda: Ente-

roctopodidae), embryo, 12 mm TL, formalin-fi xed, ethanol-
preserved, dataset acquired ex vivo, scanned in ethanol (Table 2). 
This specimen was part of an egg clutch collected during a 
scientifi c cruise in the Northern Pacifi c Ocean (Werner et al. 
2016). The embryo was removed from its egg, because the 
contrast agent was incapable of penetrating the egg envelope. 
A DRR rendering shows that in addition to the external mor-
phology, several internal structures of the specimen are visi-
ble, including the eyes and digestive gland (Fig. 6A). A virtual 
horizontal section reveals that major organ systems such as 

digestive tract, sensory organs, nervous system, or respiratory 
structures can be differentiated without diffi culty (Fig. 6B). 
Virtual slicing of the volume-rendered dataset in combination 
with a 2D overlay permit obtaining a more plastic impression 
of the animal’s internal structural composition (Fig. 6C). 
Furthermore, volume renderings of the dataset allow visual-
izing various external structural features such as the arms, 
suckers, or mantle (Fig. 6D). Due to the 3D nature of the data-
set, virtual slicing can be used to create any desired arbitrary 
section, thus revealing additional internal organs such as the 
systemic heart, the statocysts, or individual components of the 
central nervous system (Fig. 6E). In addition, selected internal 
organs were manually segmented and surface-rendered, an 
approach that permits precise volumetric analyses and visual-
ization of selected structures (Fig. 6F). Note the relatively 
high number of averages (Table 2), a parameter that was chosen 
to improve SNR in this scan of a contrasted animal scanned 
in ethanol compared with non-contrasted specimens scanned 
in air (e.g., scan 2). Due to the X-ray attenuation of the liquid 
surrounding the specimen, multiple averages or longer expo-
sure times need to be applied to obtain a better SNR.

Figure 5. Micro-computed tomography data of contrast-enhanced adult specimens of the polyplacophoran Acanthochitona crinita (A-C) and 
the cephalopod Spirula spirula (D-G). A. Solid volume rendering, lateral view with anterior facing right. B. Solid volume rendering, ventral 
view. C. Virtual transverse section, position indicated by white arrow in (A). D. Digitally reconstructed radiograph rendering, lateral view with 
anterior to right. E. Virtual sagittal section at the level of the right statocyst. F. Solid volume rendering. G. Virtual slicing of a solid volume 
rendering at the level of the digestive gland. Asterisk indicates region with insuffi cient penetration of the contrast agent. All renderings and 
virtual sections created using the free software Drishti (A, B) and Fiji (C) as well as the commercial software Amira (D-G) at 24 μm (A-C) and 
40 μm (D-G) isotropic voxel resolution.
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Preclinical magnetic resonance imaging

Scan 11
Common cockle, Cerastoderma edule (Bivalvia: Cardiidae), 

adult, 21 mm TL, formalin-fi xed, ethanol-preserved, dataset 
acquired ex vivo, scanned in distilled water (Table 3). Virtual 
sections illustrate that a number of internal organs can be dis-
cerned using preclinical MRI, including the foot, adductor and 
retractor muscles, ligament, and various elements of the diges-
tive tract (Fig. 7A, B). These structures can additionally be 
volume-rendered due to the relatively weak signal intensity of 
the surrounding water, a consequence of the specifi c MRI pro-
tocol chosen here (Fig. 7C). Note the susceptibility artifacts at 
the intersection of valves and the surrounding liquid – such 
distortions often occur at boundaries between tissues with dif-
ferent chemical properties (Fig. 7B).

Scan 12
Blue mussel, Mytilus edulis (Bivalvia: Mytilidae), adult, 

71 mm TL, dataset acquired in vivo, scanned in seawater 
(Table 3). The imaging protocol employed here was a rapid 
2D sequence with an acquisition time of slightly more than a 
minute. A series of orthogonal sections illustrates that even 

with such a reduced scanning time and relatively low resolu-
tion, all major internal organs of a common bivalve can be 
differentiated, in particular gills, adductor and retractor mus-
cles (Fig. 7D) as well as mantle (Fig. 7E) and various compo-
nents of the digestive tract (Fig. 7F).

Scan 13
Bushy-backed nudibranch, Dendronotus frondosus (Gas-

tropoda: Dendronotidae), adult, 24.5 mm TL, formalin-fi xed, 
ethanol-preserved, dataset acquired ex vivo, scanned in dis-
tilled water (Table 3). A virtual sagittal section through the data-
set along the median plane shows that various internal and 
external structures can be differentiated, including the diges-
tive tract, gonad, and foot (Fig. 7G). In order to test whether this 
scan could also be used for volumetric analyses, the original 2D 
dataset was zero-fi lled (i.e., increased in resolution) from 313 μm 
to 81 μm along the Z axis, which resulted in a 3D dataset with 
81 μm IVR. Visualization of this new image stack in the form of 
a virtually sliced volume rendering shows that the artifi cial in crease 
in resolution along the third dimension can be used as a tool to 
acquire volumetric information from 2D MRI data (Fig. 7H). 
However, this artifi cial increase in resolution along the Z axis 
obviously cannot provide any additional structural information.

Figure 6. Micro-computed tomography data of a contrast-enhanced embryo of the cephalopod Muusoctopus sp. A. Digitally reconstructed radio-
graph rendering, dorsal view with anterior facing right. B. Virtual horizontal section at the level of the eyes. C. Virtual horizontal slicing of a solid 
volume rendering. D. Solid volume rendering, lateral view with anterior facing right. E. Virtual sagittal section at the level of the systemic heart. F. 
Digitally reconstructed radiograph rendering illustrating position of segmented internal organs, oblique anterodorsal view. Branchial gland = dark 
green, branchial heart = light brown, digestive tract = blue, eye = orange, gill = light green, nervous system = yellow, posterior salivary gland = light 
blue, white body = white. All renderings and virtual sections created using the commercial software Amira at 10 μm isotropic voxel resolution.
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Scan 14
Red-gilled nudibranch, Carronella pellucida (Gastropoda: 

Flabellinidae), adult, 25 mm TL, Bouin-fixed, ethanol-
preserved, dataset acquired ex vivo, scanned in distilled water 
(Table 3). A single virtual sagittal section illustrates that in 
less than a quarter of an hour all major internal structures as 

well as external structures of a nudibranch can be visualized 
using preclinical MRI (Fig. 7I).

Scan 15
Scorched mussel, Brachidontes exustus (Bivalvia: Mytilidae), 

juvenile, 16 mm TL, ethanol-fi xed, ethanol-preserved, dataset 

Figure 7. Magnetic resonance imaging data of adult specimens of the bivalves Cerastoderma edule (A-C) and Mytilus edulis (D-F) as well as 
the gastropods Dendronotus frondosus (G, H) and Carronella pellucida (I) obtained using high-fi eld preclinical scanning systems. A. Virtual 
sagittal section at the level of the intestine, anterior facing left. B. Virtual transverse section at the level of the kidney. Asterisks denote suscepti-
bility artifacts. C. Semi-transparent volume rendering, lateral view. D. Virtual sagittal section at the level of the stomach, anterior facing right. 
E. Virtual transverse section at the level of the foot. F. Virtual horizontal section at the level of the adductor, anterior facing right. G. Virtual 
sagittal section at the level of the mouth, anterior facing left. H. Virtual sagittal slicing of a solid volume rendering, oblique anterodorsal view. 
I. Virtual sagittal section at the level of the digestive gland, anterior to left. All renderings and virtual sections created using the free software 
Fiji (A-C), the proprietary scanner software ParaVision (D-F, I), and the commercial software Amira (G, H) at 40.5 μm isotropic (A-C), 39.3 x 
39.3 x 2,000 μm (D-F), 40.5 μm isotropic (G, H), and 164 x 164 x 500 μm (I) voxel resolution.
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acquired ex vivo, scanned in agarose (Table 3). A virtual 
sagittal section shows that the chosen scanning parameters 
permit unambiguous identifi cation of a considerable amount 
of internal structures such as the adductor muscles, meso-
soma, stomach, and pericard (Fig. 8A). Further internal organs 

that can be observed are elements of the digestive tract, respi-
ratory structures, and circulatory system (Fig. 8B), but also 
components of the excretory and reproductive systems (Fig. 
8C). In this particular scan, a surface instead of a volume coil 
was used, which resulted in a notable shading gradient within 

Figure 8. Magnetic resonance imaging data of adult specimens of the bivalves Brachidontes exustus (A-C), Ostrea edulis (D, E), Crassostrea 
virginica (F), and Pecten maximus (G) as well as the cephalopod Sepia offi cinalis (H, I) obtained using high-fi eld preclinical scanning systems. 
A. Virtual sagittal section, anterior to right. B. Virtual transverse section. C. Virtual horizontal section, anterior to right. D. Virtual sagittal 
section at the level of the gills, anterior to right. Asterisk indicates a smaller specimen attached to the animal originally studied. E. Virtual 
horizontal section at the level of the adductor. F. Virtual sagittal section through a region of interest surrounding heart and adductor muscle, 
anterior to right. G. Virtual sagittal section, anterior facing right. H. Virtual horizontal section at the level of the statocysts, anterior to right. 
I. Composite fi gure showing sagittal, transverse, and horizontal false-colored virtual sections, oblique anterodorsal view. All renderings and 
virtual sections created using the free software Fiji (A-C), the proprietary software ParaVision (D-G), and the commercial software Amira (H, 
I) at 20 μm isotropic (A-C), 234 x 234 x 1,000 μm (D, E), 625 x 625 x 2,740 μm (F), 234 x 234 x 1,000 μm (G), and 33 μm isotropic (H, I) voxel 
resolution.
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the dataset. The source of this particular artifact is the sur-
face coil itself, which has an optimal sensitivity at the center 
of the fi eld of view (FOV) and therefore can cover only a cer-
tain part of the measured volume with homogenous signal 
intensity. However, such shading gradients can usually be 
removed from 2D as well as 3D tomographic image stacks 
by employing the Polynomial Shading Corrector, a plugin 
available for Fiji.

Scan 16
European fl at oyster, Ostrea edulis (Bivalvia: Ostreidae), 

adult, 143 mm TL, dataset acquired in vivo, scanned in sea water 
(Table 3). Similar to the specimen of M. edulis (scan 12), vir-
tual sections through this 2D dataset illustrate that despite the 
short acquisition times typically used for in vivo MRI, all 
major internal organ systems can be identifi ed with a high 
level of confi dence (Fig. 8D, E). Such data are of particular 
interest when respiratory or muscular performance has to be 
evaluated rapidly and non-invasively using living specimens. 
Note in particular the difference in contrast within the adduc-
tor muscle, which illustrates its bipartite macrostructure 
divided into smooth (catch) and striated (quick) muscle (Fig. 
8D, E). The scan also reveals that a smaller, juvenile specimen 
is attached to the initially analyzed adult oyster (Fig. 8D).

Scan 17
Eastern oyster, Crassostrea virginica (Bivalvia: Ostreidae), 

adult, 135 mm TL, dataset acquired in vivo, scanned in sea 
water (Table 3). For this particular specimen, a ROI focusing 
on the viscera was chosen. As a single virtual sagittal section 
shows, the data permit differentiation of the main muscular 
and circulatory elements (Fig. 8F).

Scan 18
Great scallop, Pecten maximus (Bivalvia: Pectinidae), adult, 

99 mm TL, dataset acquired in vivo, scanned in sea water 
(Table 3). A virtual sagittal section shows that similar to the 
scans performed on living specimens of the bivalve species M. 
edulis (scan 12), O. edulis (scan 16), and C. virginica (scan 17) 
all major internal organ systems can be recognized (Fig. 8G). 
Particularly conspicuous are the digestive gland, kidney, gills, 
and adductor muscle. In addition, the shape of the mineral-
ized valves can be ascertained due to the positive contrast 
provided by the signal-emitting liquid (i.e., sea water) sur-
rounding these structures. However, these in vivo MRI data 
show more movement artifacts around the gills than in the 
oyster datasets due to a generally increased water circulation 
inside scallops.

Scan 19
Common cuttlefi sh, Sepia offi cinalis (Cephalopoda: Sepi-

idae), sub-adult, 37 mm TL, formalin-fi xed, ethanol-preserved, 

dataset acquired ex vivo, scanned in distilled water (Table 3). 
A virtual horizontal section shows that cephalopod internal 
anatomy can be visualized at a high level of confi dence using 
preclinical MRI (Fig. 8H). Prominent internal structures that 
can be identifi ed are the digestive gland, ink sac, optic lobes, 
buccal mass, and statocysts, while external structures such as 
suckers or the muscular mantle can be seen as well. In addi-
tion, smaller anatomical structures like the lacunae or indi-
vidual components of the statocysts can be differentiated as 
well. These structures can also be seen in arbitrary 2D sec-
tions through the 3D dataset, here shown in the form of a 
false-colored composite image of a horizontal, sagittal, and 
transverse section (Fig. 8I).

Scan 20
Ram’s horn squid, Spirula spirula (Cephalopoda: Spiru-

lidae), adult, 55 mm TL, formalin-fi xed, ethanol-preserved, 
dataset acquired ex vivo, scanned in distilled water (Table 3). 
As virtual horizontal and transverse sections through the 
MRI dataset illustrate, various internal organs can be identi-
fi ed in this specimen. For example, due to the divergent con-
trast properties of the constituent as well as the surrounding 
tissues, arm nerves or the esophagus can be readily singled 
out (Fig. 9A, B). For segmentation and subsequent 3D mod-
eling purposes, the 2D dataset was zero-fi lled to 60 μm along 
the Z axis. As an oblique anterodorsal view of the resulting 
3D model shows, segmentation of complex MRI datasets can 
be used to single out individual structures for their more infor-
mative presentation in a didactical sense (Fig. 9C).

Scan 21
Common cuttlefish, Sepia officinalis (Cephalopoda: 

Sepiidae), sub-adult, 37 mm TL, formalin-fixed, ethanol-
preserved, dataset acquired ex vivo, scanned in distilled water 
(Table 3). This 2D scan was made to obtain a morphological 
reference dataset for the subsequently conducted DTI scan 
(see below). As was the case for all previous MRI scans of 
cephalopods (Figs. 8H, 9A), the acquired data permit rapid dif-
ferentiation of major internal and external structures (Fig. 9D).

Scan 22
Common cuttlefish, Sepia officinalis (Cephalopoda: 

Sepiidae), sub-adult, 37 mm TL, formalin-fixed, ethanol-
preserved, dataset acquired ex vivo, scanned in distilled 
water (Table 3). As a proof-of-principle for the application of 
DTI in malacological research, brain and optic lobes were 
selected for fi ber tract visualization in a cuttlefi sh. To this 
end, a ROI comprising the head was chosen (Fig. 9E). The 
data show that diffusion along fi ber tracts is still present post 
mortem (Fig. 9F) and that density of the fiber tracts 
is significantly higher in the optic lobes than in the brain 
(Fig. 9G).
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Clinical magnetic resonance imaging

Scan 23
Oman cuttlefi sh, Sepia omani (Cephalopoda: Sepiidae), 

adult, 247 mm TL, formalin-fi xed, ethanol-preserved, dataset 
acquired ex vivo, scanned in air (Table 3). This particular 

specimen was removed from its ethanol-filled container, 
rinsed, and placed inside an air-fi lled glass jar that was sealed 
prior to positioning inside the MRI coil. Using this experi-
mental setup, the evaporation of the ethanol still contained 
within the sample’s tissues led to an alcohol-saturated atmo-
sphere inside the glass jar, effectively preventing specimen 

Figure 9. Magnetic resonance imaging data of adult specimens of the cephalopods Spirula spirula (A-C) and Sepia offi cinalis (D-G) obtained 
using high-fi eld preclinical scanning systems. A. Virtual horizontal section, anterior to right. B. Virtual transverse section. C. Solid and semi-
transparent surface rendering of segmented structures, oblique anterodorsal view. Blue = digestive tract, brown = digestive gland, green = 
statocysts, grey = mantle, red = eyes, yellow = nervous system. D. Virtual horizontal section at the level of the optic lobes, anterior to right. 
Areas selected for visualization by diffusion tensor imaging segmented in red. E. Semi-transparent volume rendering of the areas segmented 
as in D. shown in combination with a virtual transverse section at the level of the lenses, oblique posterodorsal view. F, G. Diffusion tensor 
imaging data showing fi ber tract orientation in optic lobes and the brain, dorsal view. All renderings and virtual sections created using the free 
software Fiji (A, B, D), Acrobat Reader (C), and DSI Studio (E-G) at 30 μm isotropic (A-C), 30 x 30 x 100 μm (D), and 58.6 x 58.6 x 235 μm 
(E-G) voxel resolution.
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movement as a result of desiccation during the scan. In addi-
tion, structural integrity of the animal during the scan was 
ensured due to the rubber-like properties of its formalin-
fi xed and long-term ethanol-preserved soft tissues. A virtual 
horizontal section at the level of the eyes shows that various 
external and internal structures can be differentiated, includ-
ing the mantle, gonad, digestive gland, gills, statocysts, lenses, 
and buccal mass (Fig. 10A). Due to the specimen being sur-
rounded by air, the strong contrast between the object and 

the surrounding medium results in the possibility to obtain 
informative volume rendering data of the entire specimen 
without the need for manual segmentation of individual 
structures (Fig. 10B).

Scan 24
Common cuttlefish, Sepia officinalis (Cephalopoda: 

Sepiidae), adult, 341 mm TL, dataset acquired in vivo, scanned 
partially immersed in sea water (Table 3). As a virtual horizontal 

Figure 10. Magnetic resonance imaging data of adult specimens of the cephalopods Sepia omani (A, B), Sepia offi cinalis (C-E), and Grimpoteu-
this sp. (F, G) obtained using high-fi eld clinical scanning systems. A. Virtual horizontal section at the level of the statocyst, anterior to right. 
B. Semi-transparent volume rendering, oblique anterodorsal view. C. Virtual horizontal section at the level of the digestive gland, anterior 
facing right. D. Virtual horizontal section at the level of the eyes, anterior facing up. E. Semi-transparent volume rendering, dorsal view. F. 
Virtual horizontal section at the level of the optic lobes, anterior to right. G. Solid volume rendering of selected internal organs combined with 
a virtual sagittal section, oblique anterodorsal view. All renderings and virtual sections created using the commercial software Amira (A, B, F, 
G), the free software Fiji (C), and the proprietary scanner software syngo (D, E) at 173.5 μm isotropic (A, B), 200 x 200 x 1,000 μm (C), 117 
μm isotropic (D, E), and 140 μm isotropic (F, G) voxel resolution.
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section shows, these rapidly generated 2D MRI data permit 
differentiation of all major internal organ systems, including 
the gonads, components of the digestive tract, gills, eyes, and 
lenses (Fig. 10C). In addition, mineralized and therefore per 
se not very MRI-signal-intense structures such as the lower 
and upper beak or lenses become apparent as well due to 
being surrounded by tissues rich in signal-emitting water mol-
ecules. A direct comparison with the data from the fixed 
specimen of S. omani shown in the previous scan (Fig. 10A) 
illustrates a considerable degree of distortion that specifi c 
cephalopod organs may undergo during fi xation and subse-
quent long-term storage in ethanol.

Scan 25
Common cuttlefish, Sepia officinalis (Cephalopoda: 

Sepiidae), adult, 341 mm TL, dataset acquired in vivo, scanned 
partially immersed in sea water (Table 3). The living, adult 
specimen of S. offi cinalis introduced in the previous scan was 
analyzed again during the same imaging session using a ROI 
focusing on the specimen’s head. A virtual horizontal section 
illustrates that the resulting data permit differentiating white 
bodies from the optic lobes as well as selected internal ele-
ments of the statocysts (Fig. 10D). Due to the 3D nature of 
the acquired dataset, volume rendering allows obtaining a 
more plastic impression of the structural composition of the 
specimen’s head (Fig. 10E).

Scan 26
Dumbo octopus, Grimpoteuthis sp. (Cephalopoda: Grim-

poteuthidae), adult, 290 mm TL, formalin-fi xed, formalin-
preserved, dataset acquired ex vivo, scanned in formalin 
(Table 3). This intact cirrate specimen was collected during a 
scientifi c cruise in the Northern Pacifi c Ocean (Werner et al. 
2016). As a virtual horizontal section shows, all internal struc-
tures relevant for the identifi cation of a dumbo octopus to 
species level can be differentiated (Fig. 10F). These structures 
include, among others, digestive tract, central nervous system 
with optic lobes and nerves, white bodies, arms, web, fi ns and 
their muscles, as well as eyes. All of these organs are suitable 
for 3D reconstruction using manual segmentation followed 
by surface rendering. In addition, a volume rendering of 
selected internal organs reveals further structures that can be 
visualized in 3D, including the gills, branchial hearts, as well 
as all major components of the digestive tract such as esophagus, 
stomach, caecum, and rectum (Fig. 10G). The presence of a 
large testis shows that the captured animal is an adult male 
(Fig. 10G). In contrast to the previous two cephalopod speci-
mens analyzed using clinical MRI (scans 23-25), this sample 
was scanned fully immersed in a liquid rich in MRI-signal-
emitting water molecules (i.e., formalin), which complicates 
threshold-based volume rendering due to the absence of a 
sharp boundary between specimen and surrounding medium.

DISCUSSION

Due the large amounts of informative data that can be 
rapidly generated using genomic tools, classical morphological 
techniques such as dissection, histology, or electron micros-
copy are gradually being replaced (Giribet 2010, Giribet 
2015). However, as illustrated in the present as well as previ-
ous studies, 3D imaging techniques provide rapid access to 
complex anatomical features, thereby allowing large-scale 
comparative analyses within and across taxa. In order to cor-
relate genotype with phenotype at the desired large scale, 
such digital imaging techniques should be applied more 
broadly in zoological research (Ziegler et al. 2010). Due to 
their 3D nature, these data permit the simultaneous virtual 
dissection of scanned specimens (Ziegler and Menze 2013), 
ultimately triggering new fi ndings that lead to hypotheses on 
molluscan form, function, and evolution. However, presum-
ably the greatest asset of a digital approach is the possibility to 
deposit large amounts of structural data in online reposito-
ries (Berquist et al. 2012, Lenihan et al. 2014, Ziegler et al. 
2014), thus signifi cantly increasing data transparency and 
permitting future data mining. Because the concept of “big 
data” analysis is now also progressing into structural organis-
mic research, high-throughput imaging and segmentation 
protocols from large-scale preclinical or clinical studies 
(Akselrod-Ballin et al. 2016) can be expected to signifi cantly 
contribute to tomography-based studies in zoological disci-
plines, including malacology.

Computed tomography techniques in malacological research

μCT
As demonstrated here, X-ray-based techniques are par-

ticularly suited for the rapid visualization of molluscan hard 
part morphology in 3D, including spicules, radula, and liga-
ment, but in particular aspects of the macro- and micro-
structure of the molluscan shell (Figs. 1-3). The possibility to 
generate such data using μCT had already been noticed more 
than a decade ago (Vendrasco et al. 2004). Consequently, 
molluscs are increasingly being analyzed using this technique, 
although so far primarily in studies focusing on selected 
aspects of shell and spicule morphology (Ruthensteiner et al. 
2010, Alba-Tercedor and Sánchez-Tocino 2011, Connors 
et al. 2012, Lukeneder 2012, Sutton and Sigwart 2012, Ziegler 
and Menze 2013, Liew et al. 2014, Jochum et al. 2014, Noshita 
2014, Hoffmann et al. 2015, Jochum et al. 2015, Vinther 2015, 
Xavier et al. 2015, Becker et al. 2016, Liew and Schilthuizen 
2016, Cotton et al. 2017, Jochum et al. 2017, Sumner-Rooney 
and Sigwart 2017). But, μCT has also been used in experi-
mental malacological research, for example in studies on bur-
row systems of wood-boring bivalves (Amon et al. 2015) or of 
a sediment-boring gastropod (Hale et al. 2015) as well as on 
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the effects of ocean acidifi cation on calcifi ed structures in 
selected conchiferans (Keklikoglou et al. 2015, Chatzinikolaou 
et al. 2017, Howes et al. 2017). In addition, this X-ray-based 
imaging technique was employed to study functional and 
biomechanical aspects of molluscs, including the microstruc-
ture of the byssus (Frølich et al. 2015), eye anatomy in a chi-
ton (Li et al. 2015) as well as in a bivalve (Palmer et al. 2017), 
and radular tooth morphology in a chiton (Ukmar-Godec 
et al. 2015). Recently, μCT systems of the latest generation are 
being used to study early ontogenetic stages of molluscs, for 
example in attempts to understand shell growth or the for-
mation of suture patterns (Inoue and Kondo 2016, Lemanis 
et al. 2016, Noshita et al. 2016).

However, the relatively weak performance of X-ray tubes 
even in modern μCT systems means that scans at voxel reso-
lutions in the nanometer scale will take signifi cantly longer 
than scans with similar parameters conducted using SRμCT 
beamlines. For specifi c studies it might therefore be of inter-
est to obtain scan time at one of these facilities. Compared to 
μCT scanners, SRμCT beamlines offer improved physical 
properties and are usually equipped with robotic sample 
holders that enable high-throughput scanning. However, a 
notable caveat of such analyses is the high potential for irre-
versible damage to the specimen’s DNA, a consequence of the 
high X-ray doses emitted on SRμCT systems (Immel et al. 
2016). Signifi cantly less damage to DNA can be observed when 
conventional μCT or CT systems are used (Paredes et al. 2012, 
Hall et al. 2015, Immel et al. 2016, Wanek and Rühli 2016). In 
addition, due to technical limitations SRμCT is commonly 
performed using a FOV of only a few millimeters width and 
height (Zanette et al. 2014), which obviously complicates the 
analysis of larger specimens. One example for SRμCT-based 
research on molluscs is provided by a study focusing on 
embryonic shell formation in a gastropod (Marxen et al. 2008).

CT
CT was here performed using a system originally designed 

for human diagnostics. The scan of an adult specimen of the 
relatively large cephalopod Dosidicus gigas provides only a lim-
ited degree of soft tissue contrast (Fig. 4) if compared with 
results on Sepia omani derived from clinical MRI (Fig. 10A, 
B). However, the specifi c CT scanner settings used here still 
permit differentiation of selected internal soft and hard parts 
like the digestive gland (Fig. 4B) or ink sac and gladius (Fig. 
4D), in addition to information about the exterior shape (Fig. 
4C). Therefore, despite its limited application in malacological 
research so far, CT must be seen as an imaging modality that 
may provide a signifi cant amount of valuable morphological 
data on larger molluscs, in particular when scanning systems 
of the latest generation are employed. Prominent examples for 
such modern CT scanners are interventional angiography 
systems used in human diagnostics, primarily during surgery. 

These scanners have a smaller FOV (e.g., 30 x 30 cm) than 
conventional CT systems, but can acquire 3D datasets at a rela-
tively high IVR (e.g., 150-500 μm) in less than a minute. 

Contrast-enhanced μCT
The μCT and CT scans presented here show that the 

attenuation contrast typically employed in X-ray-based imaging 
yields data primarily restricted to hard parts, even in the pres-
ence of large amounts of soft tissues (Fig. 1, Fig. 3A-D). 
Nevertheless, soft part contrast can be obtained using such 
techniques, but the soft tissues of the specimen under study 
need to be enriched with an X-ray-dense contrast agent 
(Metscher 2009, Pauwels et al. 2013). In the present study, 
PTA was chosen for contrast-enhanced μCT, because this 
chemical offers excellent contrast properties. However, PTA 
exhibits only a relatively slow diffusion presumably due to the 
large size of the compound. PTA was previously estimated to 
penetrate earth worm tissues at about 1 mm per week, but this 
parameter may depend on various chemical and physical 
properties of the specifi c tissues involved (Fernández et al. 
2014). The results obtained here illustrate that PTA is a suit-
able contrast agent for molluscan specimens and can – given 
suffi cient diffusion time and initial concentration – penetrate 
even thick tissues, as shown here by the successful staining of 
the foot of a chiton (Fig. 5A-C) and the mantle of a cephalo-
pod (Fig. 5D-G). In contrast, smaller specimens with less 
dense tissues such as the cephalopod embryo analyzed here 
(Fig. 6) will stain rapidly. Prominent alternatives to PTA are 
the various compounds containing iodine (Metscher 2009, 
Pauwels et al. 2013, Gignac et al. 2016), but care needs to be 
taken when using these chemicals as they have been shown to 
lead to signifi cant specimen shrinkage as well as overstaining 
under certain conditions (Vickerton et al. 2013, Buytaert et al. 
2014, Gignac and Kley 2014, Li et al. 2015, Sombke et al. 2015, 
Li et al. 2016, Hedrick et al. 2018).

With regard to their usefulness in contrast-enhanced 
μCT, common to all staining agents mentioned above is that 
they do not display any form of specifi c staining properties 
(Metscher 2009, Pauwels et al. 2013, Gignac et al. 2016). 
However, although not a specifi c stain per se, certain contrast 
preferences of PTA have been documented in the past during 
studies aimed at using this agent in ultrastructural analyses 
(Quintarelli et al. 1971, 1973). However, the specifi c staining 
properties of PTA pale in comparison to established histo-
logical stains such as hematoxylin and eosin, Azan, or Mallory’s 
trichrome. This important fact must be kept in mind when ana-
lyzing data derived from contrast-enhanced μCT experiments, 
because the resulting grey-scale images require a profound 
knowledge of molluscan anatomy to avoid misinterpretations. 
One way to facilitate the identifi cation of different structures 
of complex μCT datasets is to apply dual-energy CT methods 
(Handschuh et al. 2017).
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Studies that previously have analyzed molluscan taxa using 
contrast-enhanced μCT comprise experiments on the general 
suitability of all higher molluscan taxa for this approach using 
different contrast agents (Golding and Jones 2007, Faulwetter 
et al. 2012, Cándas et al. 2015, Faulwetter et al. 2015, Cándas 
et al. 2016). In addition, more specifi c studies have focused 
on odontophoral cartilage morphology in selected gastro-
pods (Golding et al. 2009), changes in ganglionic system 
anatomy during cephalopod ontogeny (Kerbl et al. 2013), the 
internal anatomy of a larval cephalopod (Xavier et al. 2015), 
the reproductive system of a nudibranch (Cándas et al. 2017), 
the anatomy of Hoyle’s organ in a cephalopod (Cyran et al. 
2018), or the visualization of internal and external organs of 
selected gastropod species (Pedrouzo et al. 2018). Furthermore, 
contrast-enhanced μCT was performed in a methodological 
study on correlative imaging using a bivalve (Handschuh 
et al. 2013), to describe several new nudibranch species (Moles 
et al. 2016, Moles et al. 2017), and to illustrate the internal 
anatomy of numerous bivalve species (Machado et al. 2018).

As outlined above, contrast-enhanced μCT involves pen-
etration of the specimen by an X-ray-dense contrast agent, 
thus altering the object under study. While such an approach 
may be applicable for certain samples, it constitutes an inter-
ference with the specimen’s integrity. This will in principle 
render this protocol impractical for use on rare or otherwise 
valuable specimens, e.g., type material. However, initial results 
from a limited number of studies suggest that stain removal 
could be possible under certain conditions (Schmidbaur et al. 
2015, Gignac et al. 2016). An entirely non-invasive alternative 
to contrast-enhanced μCT is phase contrast imaging. This 
modality involves technical adjustments to attenuation con-
trast-based SRμCT beamlines (Zehbe et al. 2010, Saccomano 
et al. 2018), but lately also to lab-based μCT equipment 
(Zanette et al. 2014). In molluscs, this approach has so far 
only been used to analyze pearls (Krzemnicki et al. 2017), but 
is bound to develop into a promising technique for malaco-
logical research in the near future.

Magnetic resonance imaging techniques in malacological 
research

Preclinical MRI
As shown in the previous μCT scans, excellent soft part 

information can be obtained using attenuation contrast-based 
techniques in combination with staining agents, but this 
approach may not be applicable in case of all molluscan spec-
imens. As an alternative to this non-destructive, but invasive 
approach to visualizing molluscan structural detail in 3D, 
various MRI techniques can be employed. In contrast to μCT or 
CT, information on molluscan soft parts is usually obtained 
without the use of contrast agents, thus rendering this approach 
particularly attractive for the study of type material. In order 

to achieve high voxel resolutions, preclinical MRI systems are 
conventionally employed. This approach uses equipment 
designed for experimental animals such as mice, rats, or 
smaller primate species (Ziegler et al. 2011, Zanette et al. 
2014). However, these instruments have a limited FOV and are 
therefore only suitable for specimens on the millimeter and 
centimeter scale. In addition, due to their lower overall distri-
bution, preclinical MRI systems are usually less accessible than 
clinical MRI scanners (Ziegler et al. 2008). But, in contrast to 
the latter, there are no restrictions regarding protocol choice 
on preclinical MRI scanners (see below), although overheat-
ing of the gradient system may sometimes lead to an inter-
ruption of longer 3D scans (Ziegler et al. 2011). In addition, 
MRI in general shows strong artifacts when zoological speci-
mens are analyzed that contain para- or ferromagnetic sub-
stances (Ziegler and Mueller 2011). Prominent examples include 
ingesta contained within the digestive tract (e.g., in sediment 
feeders) or the strongly mineralized radula of chitons (Ziegler 
et al. 2011). Despite these caveats, the scans conducted in the 
present study show that preclinical MRI must be considered as 
a powerful tool to visualize molluscan internal and external 
structures at voxel resolutions in the single- to double-digit 
micrometer scale obtained from uncontrasted millimeter- to 
centimeter-sized specimens.

Several studies on molluscan specimens have so far been 
conducted using preclinical MRI, including analyses of the 
single-cell and sub-cellular composition of neurons from 
derived taxa (Hsu et al. 1996, Grant et al. 2000, Gozansky et al. 
2003, Lee et al. 2015), physiological capacities of cephalopods 
and bivalves measured in vivo (Bock et al. 2004, Melzner et al. 
2006, Bock et al. 2007, Melzner et al. 2007, Lannig et al. 2008, 
Gutowska et al. 2010, Lee et al. 2010, Seo et al. 2014, Sukhotin 
et al. 2017), reproductive organ maturation and sex determi-
nation in oysters (Davenel et al. 2006, Davenel et al. 2010, 
Smith and Reddy 2012), or visual system anatomy in cepha-
lopods (Jiang et al. 2013, Chung and Marshall 2014, Chung 
and Marshall 2017, Liu et al. 2017, Liu et al. 2018). In addi-
tion, preclinical MRI was applied to study the anatomy of a 
cobalt-labeled cephalopod brain (Quast et al. 2001), to con-
duct analyses of pathological alterations in belemnites 
(Mietchen et al. 2005, Mietchen et al. 2008) and to study the 
internal anatomy of a gastropod (Ziegler and Mueller 2011). 
In addition, the brain anatomy of a cephalopod (Solé et al. 
2013), the morphology and adhesion mechanism of the octo-
pus sucker (Tramacere et al. 2013), and the fi rst 3D recon-
struction of internal organs in a dumbo octopod hatchling 
(Shea et al. 2018) were performed using preclinical MRI.

With regard to specimen preparation for MRI, it is impor-
tant to note that MRI protocols in principle permit scanning 
specimens fully immersed in ethanol (Sigl et al. 2013). This 
may be advantageous for various reasons, for example if the 
higher surface tension of water leads to air bubbles being 
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trapped inside a specimen, which usually results in the pres-
ence of strong susceptibility artifacts (Ziegler et al. 2011) or when 
museum specimens have to be analyzed as non-invasively as 
feasible. However, the possibility to scan a specimen in ethanol 
depends on various parameters, in particular magnetic fi eld 
strength and ethanol concentration. In general, a mix of liquids 
is problematic for MRI as such a solution may lead to chemical 
shift artifacts, e.g., between water and ethanol. For these reasons, 
all specimens analyzed here using preclinical MRI systems were 
either immersed in distilled water prior to scanning, were kept 
in their formalin fi xative, or were embedded in agarose in order 
to provide a homogenous medium surrounding the specimen.

Clinical MRI
In contrast to the previous technique, clinical MRI is using 

scanning systems specifi cally designed for human diagnostics. 
Due to their technical optimization for medical examinations 
of living human subjects, clinical MRI systems usually employ 
fast scanning sequences, often inhibiting longer protocols with 
large volume coverage and high voxel resolutions, because 
such sequences might impact the patient due to rapid gradient 
switching or the applied radiofrequency power. However, the 
settings on most clinical MRI systems can be changed by trained 
personnel to accommodate zoological specimens intended 
for longer 3D scans. But, as illustrated here (Fig. 10A, B), 2D 
scanning sequences with resolutions along the Z axis that 
closely approach those in the X and Y axes (e.g., 500 x 500 x 
800 μm) can also be used to obtain valuable structural infor-
mation from molluscan specimens, whether in vivo or ex vivo. 
Clinical MRI studies that have analyzed molluscan taxa in the 
past include experiments on various morphological and ana-
tomical features of bivalves (Pouvreau et al. 2006, Holliman 
et al. 2008, von Brand et al. 2009), soft part morphology in 
a gastropod (Cooper 2011) as well as selected cephalopods 
(Ziegler and Menze 2013, Xavier et al. 2015), the kinematics of 
buccal mass movement in a gastropod (Neustadter et al. 2002, 
Novakovic et al. 2006), and the auditory capacity of a cephalo-
pod (Mooney et al. 2010).

Outlook
In addition to a growing number of studies, the data pre-

sented here show that 3D imaging techniques such as MRI or 
CT can be used to gather structural information from a diverse 
array of molluscan specimens rapidly, non-destructively or 
even entirely non-invasively, and in digital form. As illus-
trated by the fi rst reconstruction of the internal anatomy of a 
deep sea incirrate embryo presented here, 3D imaging tech-
niques are capable of providing new analytical pathways for 
malacological research that are bound to lead to discoveries 
that would have been impossible using conventional mor-
phological techniques. Furthermore, digital 3D datasets can 
be distributed through online repositories and used for 

various downstream analyses such as correlative imaging, 
pattern recognition, and shape analysis as well as in morpho-
metric or volumetric studies. Foreseeable technical improve-
ments such as robotic high-throughput scanning, signifi cantly 
improved voxel resolution, or specifi c staining protocols are 
bound to lead to a signifi cant extension of the methodologi-
cal spectrum available to malacologists.
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