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INTRODUCTION

Biometrics and sex identification are of signifi-
cance in avian biology. Data on body characteris-
tics and gender differences have been used in a
range of ecological or behavioural studies (Hughes
1998). Moreover, mating systems and demography
have serious management implications in wild and
captive populations, and sex identification is there-
fore important (Newton 1998, Dunn et al. 2001).

Eurasian Griffon Vultures Gyps fulvus, like all
vultures of the hypergenus Gyps, lack plumage
characteristics or external features from which
sexes can be identified. Cloaca examination,
laparoscopy, analysis of steroid hormones and

DNA analysis, which have been used for sex deter-
mination in birds including vultures (Fry 1983,
Richner 1989, Griffiths et al. 1998, Wink et al.
1998, Ito et al. 2003), require trained researchers
and specialized equipment, and are expensive and
time consuming (Palma et al. 2001). Therefore,
being able to reliably distinguish sexes by measur-
ing morphological traits in the field would be
especially useful. 

Gender determination is essential to assess sex-
specific behavioural patterns (e.g. foraging strat-
egy) or life-history traits (e.g. survival, dispersal).
Although the species is widely distributed and still
common among European vultures in the Medi-
terranean region, published accounts on its body
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and sex morphology are scarce (Fernández &
Fernández 1974, Cramp & Simmons 1980). The
objectives of this paper were (1) to describe the
morphometrics of the species and make compar-
isons of this island population to continental ones,
(2) to test the existing molecular techniques for
sex identification in vultures, and (3) to determine
body measurements that best differentiate males
and females.

MATERIAL AND METHODS

Study area and sample
Between 1998 and 2006 97 live vultures were col-
lected from Crete (34°54'N 23°30'E – 35°41'N
26°19'E, 8261 km2). All birds were found wound-
ed, poisoned, emaciated or swept by strong north-
ern winds into the sea. The majority came from
central and eastern parts of the island, where pop-
ulation density is highest and most colonies occur
(Xirouchakis & Mylonas 2004). Griffons were clas-
sified into three age groups according to the
plumage characteristics provided by Forsman
(1999): juvenile (0–1 yrs), immature (2–4 yrs)
and adult (>5 yrs). After having been marked
with metal rings from the Hellenic Ringing
Scheme and with plastic engraved rings (Pro-
Touch Engraving), birds were sent to wildlife reha-
bilitation centres. Normally the recovery period
lasted from a few months to one year. Body mea-
surements and blood samples were taken a few
hours prior to the release in the wild. 

Molecular sexing
In 2002–2006 a small blood sample (0.5 ml) was
taken from each vulture with an insulin syringe
from the brachial vain (n = 55). The blood was
transferred to capillary tubes with 95% ethanol and
stored at –20°C. DNA was extracted from 200 μl of
blood using the Macherey-Nagel Kit (Germany)
following the manufacturer’s instructions. Conta-
mination with modern DNA or Polymerase chain
reaction (PCR) products was ruled out by includ-
ing two extraction blanks in every extraction
round. For DNA sexing we used the method

described by Griffiths et al. (1998) and Conway et
al. (2004) based on two conserved CHD (chromo-
helicase-DNA-binding) genes that are located on
the avian sex chromosomes of all birds. 

Morphological measurements
The following biometric data were taken, using
standard measurements as described for vultures
(Mendelssohn et al. 1989, Mundy et al. 1992): 1)
wing chord (WC), from the carpal joint of the bent
wing to the tip of the longest straightened pri-
mary; 2) wing span (WS), the distance between
the extended wing tips by keeping the bird on its
back with the wings fully outstretched; 3) tail
length (TL), from the insertion of the central rectri-
ces to their tips; 4) tarsus length (TL), the distance
from the tarsometatarsal joint to the articulation of
the middle toe; 5) middle toe (MTO), from the first
scale of the extended toe to the base of its claw; 6)
middle talon (MTA), the distance between the base
of the claw to its tip; 7) head length (HL), from the
supraoccipital to the tip of the bill; 8) head width
(HW), distance between the widest points in the
auricular patches behind the eyes; 9) bill length
(BL), from the tip of the culmen to its junction to
the cere; 10) bill plus cere length (BCL), from the
bill tip to the edge of implantation of feathers; 11)
bill width (BW), from the junction of the tomium
of the upper jaw to the cere at both sides of the
culmen; 12) bill depth (BD), dorso-ventral dis-
tance at the nostrils, and 13) body mass (W). 

Wing span was measured with a tape meter
(accuracy 0.5 cm). Wing chord and tail length
were measured with a steel stopped ruler to the
nearest millimetre. The remaining measurements
were taken to the nearest 0.1 mm by using a
vernier caliper. Body mass was determined with a
pesola 15-kg spring balance to the nearest 0.1 kg.
Vultures without physical injuries were weighed
before being dispatched to rehabilitation centres,
recovered birds again after having fasted for 2–3
days prior to release.

Two aerodynamic statistics were estimated
(Pennycuick 1972), namely wing loading (weight/
wing area) expressed as kg m–2 and aspect ratio
(wingspan2/ wing area). Wing area was calculated
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as the average wingspan divided by average wing
width (Mendelsohn et al. 1989, Mundy et al.
1992). The latter character was measured from a
sample of 14 alive (8 males and 6 females) and 5
dead specimens that were all immature. All mea-
surements were made by the same person to mini-
mize variability, and are presented as means and
standard deviations.

Statistical analysis
Data were tested for normality by using the
Shapiro-Wilk’s statistic, and homogeneity of vari-
ances with the Levene’s test. A univariate analysis
(ANOVA) was applied for differences in body mea-
surements between age groups and sexes, and
Tukey tests and t-tests on a post-hoc analysis,
respectively. When the assumption of normality
was violated, comparisons were made with Kruskal-
Wallis and Mann-Whitney tests (Zar 1996). A mul-
tiple analysis of variance (MANOVA) was per-
formed on both age and sex in order to investigate
their main effect and interaction on body charac-
ters (Hair et al. 1998). For sex determination, fre-
quency distributions, although overlapping, indi-
cated that some characters might discriminate
birds. The percent of sexual dimorphism in each
measurement was taken as –xm– –xf/

–xm where –xm
and –xf were the mean values of males and females
respectively. Gender determination was pursued
by applying Discriminant Function Analysis (DFA;
Klecka 1980) with sex being the categorical vari-
able. For selection of the dependent variable (body
measurements) we used Wilks’ lambda statistic.
The main criteria established for the application of
the method were: a) normality of the data, b) lin-
earity of inter-variable relationships (inspection of
scatterplot matrix), c) lack of multicollinearity
(inter-variable correlation coefficients r < 0.6) and
d) homoscedasticity (equality of the variance/
covariance matrices, Box’s M statistic). Prior prob-
abilities in the groups formed in the classification
were determined by the observed sample sizes. 

The DFA with all variables combined detected
the most informative ones and predicted member-
ship into two mutually exclusive groups. It created
a regression equation (discriminant function) that

provided individual functions (D scores) where a
cut-point between male-female mean scores (the
weighted average of group centroids) distin-
guished birds by gender. The effectiveness of the
method was assessed by the proportion of birds of
known sex that were correctly classified using all
individuals in the analysis. A jackknife procedure
(Sokal & Rohlf 1995) was also performed where
each bird was singly removed from the analysis
and classified using a separate function derived
from the remainder of the data. This cross-valida-
tion technique was considered a good indicator of
the DFA accuracy since it works better for small
sample sizes. All analyses were made at a 0.05
level of significance by using SPSS 14.0 software
(Norusvis 1989).

RESULTS

Descriptive statistics for all birds sampled are pre-
sented in Table 1. All variables were normally dis-
tributed (Shapiro-Wilk’s statistic P > 0.05), with
the exception of body mass which was discarded
from the discriminant function analysis. The
weight of Griffons differed between age groups
(Kruskal-Wallis χ2 = 8.6, P = 0.014), but not
between the sexes (Mann-Whitney U = 294, P =
0.634) although females were slightly heavier than
males. Extreme values below 6 kg (with a mini-
mum of 4 kg), apparently the threshold for a
Griffon to become grounded, were excluded from
the comparisons.

Regarding age, 41 vultures were classified as
juveniles, 46 as immatures and 10 as adults.
Means for body measurements did not differ
between age groups apart from wing chord that
was significantly larger in adult than in juvenile
and immature birds (Tukey test P = 0.003).
However, non-adult birds (pooled data) were
smaller than adults for eight out of 12 morpho-
metrics variables examined (Table 1). Although
the small sample size might have produced some
bias, adult birds were on average smaller in tail,
middle talon, bill width and bill depth. By examin-
ing the coefficient of variation we concluded that
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Variable n Pooled Range Juvenile Immature Adult F-value P
–x ± SD –x ± SD (n) –x ± SD (n) –x ± SD (n)

Wing chord, cm 97 69.9 ±2.65 64–75.3 70 ±2.56 (41) 69.1 ±2.47 (46) 72.9 ±1.58 (10) 9.74 < 0.001
Wingspan, cm 97 252.5 ±9.13 230–272 250.3 ±8.55 (41) 253.6 ±8.57 (46) 256.2 ±12.35 (10) 2.45 0.09
Tarsus 97 118.3 ±7.93 99.5–135.04 117.9 ±7.99 (41) 118.4 ±7.09 (46) 119.2 ±11.57 (10) 0.13 0.88
Tail, cm 97 30.4 ±2.80 24–38 30.3 ±2.63 (41) 30.7 ±2.88 (46) 29.3 ±3.12 (10) 1.08 0.34
Middle toe 97 107.9 ±3.83 100–116.8 107.7 ±3.10 (41) 107.7 ±4.27 (46) 110.6 ±3.86 (10) 2.63 0.07
Middle talon 97 35.5 ±2.73 27.8–43 35.6 ±2.42 (41) 35.6 ±3.01 (46) 35 ±2.78 (10) 0.20 0.82
Head length 89 142.8 ±5.07 133.3–153.8 142.8 ±5.33 (35) 142.5 ±5.10 (44) 144 ±4.24 (10) 0.36 0.70
Head width 59 61.1 ±2.54 56.9–66.8 60.6 ±2.83 (16) 61.2 ±2.45 (37) 62.2 ±2.30 (6) 0.97 0.38
Bill length 91 52.6 ±2.58 45.9–61.1 52.1 ±2.44 (35) 52.6 ±2.74 (46) 54 ±1.84 (10) 2.12 0.13
Bill-cere length 74 73.5 ±2.5 67–78.6 73.7 ±2.78 (25) 73.4 ±2.37 (40) 73.9 ±0.53 (9) 0.20 0.82
Bill width 75 24.8 ±1.84 21.4–29 24.9 ±1.89 (27) 24.8 ±1.82 (39) 24.4 ±1.95 (9) 0.25 0.78
Bill depth 74 35.5 ±1.94 30.8–40 35 ±1.96 (26) 35.9 ±1.70 (39) 35.4 ±2.66 (9) 1.79 0.17
Weight, kg 92 7.44 ±0.72 6–9 7.16 ±0.68 (37) 7.66 ±0.55 (45) 7.47±1.13 (10)
Wing area, m2 19 0.88–0.89 0.88 ±0.01 
Wing loading, 19 8–9.5 8.69 ±0.38 

kg m–2

Aspect ratio 19 7.2–7.3 7.23 ±0.04 

Table 1. Descriptive statistics of body measures of Griffon Vultures in Crete. Units in mm unless otherwise mentioned.
Variable that differs among age groups (F-test) in bold. 

Variable Male (n = 29) Female (n = 22) % Wilks’ F-value P
–x ± SD (range) –x ± SD (range) dimorphism lambda

Wing chord 69.5 ±2.72 (64–75) 70.3 ±2.84 (65–75) –1.3 0.976 1.23 0.27
Wingspan 253.4 ±7.80 (238–270) 253.9 ±10.58 (230–272) –0.2 0.999 0.03 0.87
Tarsus 120.5 ±9.67 (99.5–135.04) 117.2 ±8.42 (101–134) 2.8 0.967 1.69 0.20
Tail 30 ±3.02 (24–35) 31 ±2.79 (27.2–38) –3.4 0.969 1.55 0.22
Middle toe 108.2 ±4.53 (101.3–116.8) 107.6 ±3.41 (100.4–113.8) 0.6 0.994 0.27 0.60
Middle talon 35.2 ±2.24 (30.2–39.1) 36.5 ±3.74 (27.8–43) –3.7 0.952 2.46 0.12
Head length 146.1 ±3.92 (139.5–153.8) 138.9 ±2.50 (134.3–143.2) 5 0.461 57.35 <0.001
Head width 62.1 ±2.14 (58.4–66.1) 59.8 ±2.51 (57.3–66.8) 3.7 0.799 12.29 0.001
Bill length 54.1 ±2.18 (49.9–61.1) 51.4 ±1.81 (45.9–55) 5 0.687 22.35 <0.001
Bill-cere length 74.7 ±1.93 (71.5–78.6) 72.6 ±1.77 (69.1–76) 2.8 0.754 16.01 <0.001
Bill width 24.8 ±1.98 (21.4–29) 25.3 ±1.86 (21.8–29) –1.8 0.986 0.70 0.40
Bill depth 35.4 ±1.64 (30.8–38.6) 36 ±1.90 (32.5–40) –1.8 0.969 1.56 0.22
Body mass 7.648 ±0.69 (6.5–9) 7.741 ±0.42 (6.2–9) –0.012
Wing area 0.89 ±0.004 (0.8–0.89, n = 8) 0.89 ±0.01 (0.8–0.89, n = 6) 0
Wing loading 8.7 ±0.21 (8.5–9.1, n = 8) 9.04 ±0.28 (8.8–9.5, n = 6) –3.9
Aspect ratio 7.24 ±0.03 (7.2–7.3, n = 8) 7.26 ±0.04 (7.2–7.3, n = 6) –0.3

Table 2. Sexual dimorphism, univariate comparisons and stepwise discriminant function analysis of morphometric
measurements of male and female Griffon Vultures in Crete. See Table 1 for units. Variables that differ between sexes
(by Wilks’ lambda) in bold.
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relative variability was marginally significant
(homogeneity Levene’s test, P = 0.053), increasing
with age for wingspan, tarsus length, tail length
and bill depth, and decreasing for wing chord and
bill length. 

Molecular techniques (i.e. P2 and P8 sexing
methods) proved successful in gender identifica-
tion. We determined the sex of 49 individuals (27
males, 22 females) out of a total of 55. Males
showed a single band at 379bp (CHD-Z) on the
polyacrylamide gel, while the females exhibited
two bands (379bp, CHD-Z) and (388bp, CHD-W),
both of them readily discernible. The identifying
fragments of CHD gene were sequenced to confirm
their size. GenBank accession numbers to the
nucleotide sequence of these regions are
EU430640 (CHD-W) and EU430641 (CHD-Z).
Two additional birds were sexed as males by
gonad inspection after dissection. 

Males were smaller than females for most body
measurements, including wing loading and aspect
ratio, though the degree of sexual dimorphism dif-
fered significantly only between head and bill
dimensions (F-tests, all P < 0.05, Table 2). In par-
ticular females were larger for all physical charac-
ters, apart from tarsus length and middle toe
length, but male birds were significantly larger
than females (c. 3–5%) for length and width of the
head as well as length of the bill up to the cere or
to the edge of the feathering (Table 2). The effect
of age on sexual dimorphism (MANOVA, Wilks’
Lambda = 0.399, F = 1.65, P = 0.055, interaction:
Wilks’ Lambda = 0.421, F = 1.53, P = 0.087) was
not significant, therefore we pooled data of all age
classes and performed a discriminant function
analysis with sex as independent variable. A linear

discriminant function analysis was used since all
relevant assumptions were met, i.e. linear relation-
ship between the variables, no inter-variable corre-
lations (r < 0.5) and homoscedasticity (Box’s M
statistic = 15.1, F = 1.38, P = 0.18). The Wilks’
Lambda criterion indicated that head length, head
width, bill length and bill-cere length were the best
physical characters in discriminating gender (Table
2). The application of DFA where all four variables
were entered simultaneously, exhibited a success
rate of 96.6% and 95.5% in correctly predicting
males and females respectively (eigenvalue = 2.92,
χ2 = 0.255, df = 4, P < 0.001). On the whole sex
was accurately predicted for 96.1% of the sample,
although it dropped to 94.1% when the jackknife
cross-validation technique was performed.
However, a stepwise procedure showed that sex
discrimination was possible by using head length,
head width and bill length (eigenvalue = 2.89,
χ2 = 0.257, df = 3, P < 0.001) with an overall
accuracy of 94.1% (Table 3). 

Both unstandardized discriminant functions
were similarly effective, as shown by the cross-vali-
dated values (Table 3). However, we considered
the discriminant formula with the fewer variables
to be the most useful (Fig. 1), because the cross-
validation technique did not reduce its predictive
ability even if prior probabilities in the DFA were
taken of equal values (Table 3, correctly classified
cases, D2: 96.6% of males, 90.9% of females,
94.1% overall vs. D1: 89.7% of males, 90.0% of
females, 90.2% overall). For the simpler discrimi-
nant function the group centroids were 1.45 for
males and –1.912 for females, thus the cutting
score 0.31 could be used as a gender index (males:
D scores > 0.31, females: D scores < 0.31). 
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Discriminant function Group centroids Selftest (%) Cross-

Males Females validated (%)

D1 = 0.26 HL+0.17 HW+0.34 BL+0.06 BCL–71.4 1.459 –1.924 96.1 94.1
D2 = 0.27 HL+0.19 HW+0.37 BL–69.12 1.450 –1.912 94.1 94.1

Table 3. Discriminant functions (four and three variables) for gender determination of Griffon Vultures in Crete. HL =
head length, HW = head width, BL = bill length, BCL = bill-cere length.
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DISCUSSION

Regarding age-related biometrics, relevant conclu-
sions should be drawn with caution as the sample
size of adult birds was small. Nevertheless, exclud-
ing characters of significant sexual dimorphism,
adult griffons were larger than immatures in all
morphological measurements apart from tail
length, probably a feature that serves manoeuvra-
bility of flight-inexperienced birds. The length of
the middle talon was found to be smaller in adult
birds but this difference could have been caused by
some degree of wear in a few individuals. The neg-
ative trend in the variation of measurements with
regard to age should be attributed to the variable
body condition of fledglings and first-year birds.
However, an increase in wing chord and a
decrease of tail length with age seems rather com-
mon among medium-sized raptors and eagles
(Mundy 1982, Bortolotti 1984, Ferrer & de le
Court 1992, Donohue & Dufty 2006). 
In general raptors exhibit reverse sexual dimor-
phism where females are generally larger than
males (Newton 1979). In our case the differences

observed, with female vultures being marginally
larger than males for most linear measurements as
well as weight, were in line with the existing liter-
ature (Cramp & Simmons 1980, Donázar 1993).
More specifically, our results on sex-specific dis-
crepancies in head and bill dimension corre-
sponded with Fernández & Fernández (1974), who
observed morphological differences in head width,
bill length and width of the lower mandible of
male and female Griffons in a sample of 16 pairs.
The fact that head and bill dimensions were not
influenced by age indicates that inter-sexual differ-
ences between these characters build up quite
early, probably already during the nestling stage. 

Head and bill length have a strong discrimi-
nant power to distinguish males from females.
These ‘skeletal’ measurements have the advantage
not to vary in relation to factors such as food avail-
ability, season, phase of the breeding cycle, moult
or wear. Moreover, they are consistent and rou-
tinely measured in morphometrical studies in con-
trast to other body characters that are effective in
adult gender discrimination but not traditionally
collected in the field e.g. footpad length, forearm
length or tarsus length (Edwards & Kochert 1986,
Ferrer & de le Court 1992). 

The present field method for gender determi-
nation of Griffon Vultures is rapid and simple, and
cheaper than molecular techniques. Its applicabil-
ity corresponds to live birds and possibly to study
skins. Geographic variation may affect the sex dis-
criminant coefficients of the function we devel-
oped. However, given the long-distance move-
ments of the species within its distribution range
(Bernis 1983, Berthold et al. 1991, Susvic 2000,
Bahat et al. 2001), this is unlikely. 
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Door middel van inspectie van de cloaca, laparoscopie en
een analyse van steroïde hormonen en DNA is het moge-
lijk de sekse van Vale Gieren Gyps fulvus te bepalen. Deze
technieken vergen echter veel ervaring, kennis en gespe-
cialiseerde apparatuur. Ze zijn bovendien niet goedkoop.
De onderhavige studie probeert morfologische maten te
identificeren waarmee de geslachten van Vale Gieren uit
elkaar kunnen worden gehouden. Onderscheid naar
geslacht is wenselijk, omdat veel biologische parameters
– zoals dispersie, overleving en gedrag – verschillen naar
sekse. Om inzicht in de populatiedynamiek van een
lokale populatie te krijgen, zoals in dit geval bij Vale
Gieren op Cyprus, is seksebepaling van gevangen en
gevonden vogels een eerste vereiste. Dat klinkt eenvoudi-
ger dan het is, omdat Vale Gieren – in tegenstelling tot
andere roofvogelsoorten – slechts een geringe seksuele
dimorfie kennen. Verder is onbekend of de eilandpopula-
tie op Cyprus afwijkt van die op het vasteland van
Europa. Het onderzoek werd verricht aan 97 gieren die
tussen 1998 en 2006 in vogelasiels terecht waren geko-
men, voornamelijk als juveniele (41) en onvolwassen

(46) vogels. Slechts 10 vogels werden als adult aange-
merkt. Van alle vogels werden twaalf lengtematen
bepaald, verdeeld over vleugel, staart, poot en kop, daar-
naast gewicht en afgeleiden als vleugelbelasting en vleu-
gelslankheid. Een deel van de vogels werd moleculair op
geslacht gebracht. Voor de meeste lichaamsmaten waren
mannen kleiner dan vrouwen. Significante verschillen
tussen de seksen werden gevonden in koplengte, kop-
breedte en snavellengte (zowel met als zonder washuid),
waarbij mannen 3–5% groter waren dan vrouwen.
Kopmaten zijn ‘hard’ (immers betrekking hebbend op
bot), vertonen geen seizoenvariatie, zijn niet onderhevig
aan leeftijdsafhankelijke variaties, en zijn beter reprodu-
ceerbaar dan ‘zachte’ maten als vleugel, staart en tarsus.
Door gebruik te maken van snavellengte, koplengte en
kopbreedte kon bijna 95% van de Vale Gieren foutloos op
geslacht worden gebracht. Daarmee is het een goed en
goedkoop alternatief voor meer geavanceerde methoden.
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