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INTRODUCTION

Moult in waders (Charadriiformes) has been gen-
erally investigated in depth for many species (e.g.
Holmgren et al. 2001, Summers et al. 2004, Serra
et al. 2006), but that of the Eurasian Stone-curlew
Burhinus oedicnemus (hereafter Stone-curlew) re-
mains poorly known. Indeed, current descriptions
regarding this bird (Cramp & Simmons 1983, Ginn

& Melville 1983) are based on small sample sizes,
and they are not easily comparable to that of other
species because they were made well before the
latest statistical methodology designed for the
analysis of moult data became available (Underhill
& Zucchini 1988, Underhill et al. 1990). Further-
more, no information regarding the pattern of sec-
ondary moult is currently available, nor did these
earlier studies report additional information that
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enables the moult to be reliably placed within the
context of the species’ annual cycle. This seems to
be a particularly significant omission, because in
this species the data at hand suggest a large over-
lap between breeding and moult (Cramp &
Simmons 1983), which is relatively rare for birds
in temperate areas, where seasons are marked and
predictable (Jenni & Winkler 1994, Moreno 2004).
Given that relatively few studies have investigated
the costs and benefits of this overlap, and conse-
quently the reasons for its higher frequency in
tropical rather than in temperate species are
poorly understood (Foster 1974, Jenni & Winkler
1994, Moreno 2004), it seems likely that an in-
depth investigation of the moult strategy of the
Stone-curlew could provide important information
on this topic. The aim of this paper is to examine
the timing, duration and pattern of wing moult in
the Stone-curlew and to relate these parameters to
the breeding cycle of the study population.

METHODS

Our study was performed during 1998–2007 in
the Taro River Regional Park (Parma, Italy;
44.74°N, 10.17°E; total area 25 km2), which hosts
a relatively large breeding population of Stone-
curlews (more than 80 pairs, Pollonara et al.
2001), mainly nesting along the dry gravel river-
bed. 141 birds were caught either while incubat-
ing, using a fall trap over the nest (April–July, n =
101), or in the post-breeding season, using mist-
nets placed near late summer-autumn roosts
(August–November, n = 40). For 21 birds which
were trapped more than once the first retrap
within each year was considered as a first capture
and thus included in the analysis. This gave a total
of 166 records, 119 for the breeding season and 47
for the post-breeding season. All the considered
birds were at least in their second calendar-year.
Juvenile birds trapped in the post-breeding season,
as recognized by their plumage characteristics (see
Prater et al. 1977), were excluded from the analy-
sis. In this regard it should be noted that post-juve-
nile moult of Stone-curlew is a ‘partial moult’,

involving only body feathers, some rectrices and
some great coverts, while post-breeding moult is
usually described as a ‘complete moult’ (Ginn &
Melville 1983).

The stage of the moult of the remiges was
described using the British Trust for Ornithology
method (Ginn & Melville 1983) by allocating a
score to each feather according to its state of
growth (0 = old feather; 1 = feather in pin; 2 =
brush to one-third grown; 3 = one-third to two-
thirds grown; 4 = two-thirds to fully grown; 5 =
new feather). For the purpose of the analysis the
10 innermost primaries (the vestigial eleventh was
ignored), numbered from innermost to outermost,
and the 12 outermost secondaries, numbered from
outermost to innermost were considered. The tim-
ing and duration of moult was rigorously de-
scribed only for the primaries, because they were
completely replaced within one moult cycle
(Cramp & Simmons 1983, Ginn & Melville 1983).
Primary feather scores were converted to percent-
age mass grown using the percentage mass of each
primary derived from Dawson (2005) and report-
ed in Table 1 and the corresponding proportion of
feather grown reported in Underhill & Zucchini
(1988). The timing of primary moult was esti-
mated according to the method of Underhill &
Zucchini (1988) and Underhill et al. (1990). We
restricted our analysis only to birds not yet
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Primary feather % mass

1 4.5
2 5.0
3 6.0
4 7.3
5 8.9
6 11.0
7 12.6
8 14.2
9 15.1

10 15.4

Table 1. Percentage mass of each primary feather in the
Eurasian Stone-curlew derived from Dawson (2005,
Figure 1). 
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moulted or in moult (data type 5 of Underhill et
al. 1990). We assumed that Stone-curlews moult-
ing in our study area arrive with old primaries, but
migrate away from this area soon after they have
completed moult. This assumption is supported by
the following two considerations. 1) Stone-curlews
are recorded in our area from the beginning of
February, well before the birds commence moult
(Giunchi et al. pers. observ.). 2) The number of
Stone-curlews recorded in the study area consis-
tently decreased from the beginning of October,
just when the moult cycle is completed or nearly
completed (see below).

Because we lack data regarding secondary
mass, the timing of secondary moult was described
using moult scores. In order to speed-up the ring-
ing procedures during incubation we did not
record a secondary moult score for all birds (98
records were obtained for 89 individual birds).

By means of linear regression models we tested
if the progress of secondary moult (sum of sec-
ondary moult scores) was affected by estimated
onset date of primary moult, as expected, and by
body mass (±1 g). Estimated onset dates OD were
calculated as described in Newton & Rothery
(2005): OD = t – T x PFMG, where t = capture
date (days), T = mean moult duration (days), and
PFMG = percentage of primary feather mass
grown. In all models, capture date was used as
covariate. In order to meet the assumptions of lin-
ear models (normality and homoscedasticity) the
dependent variable was transformed using the
Box-Cox transformation (Sokal & Rohlf 1995). To
select the model of maximal parsimony we used
Akaike’s Information Criterion corrected for small
sample size (Burnham & Anderson 2002). All sta-
tistical analyses were performed using software R
2.6.0 (R Development Core Team 2007)

RESULTS

The parameters of primary moult estimated
according to the Underhill-Zucchini model are
given in Fig. 1. On the whole the fit of the model
appears quite good, and most of the moult index

values fall within the expected range of variation.
As assumed by the Underhill-Zucchini model, the
estimated onset dates (see Methods) did not show
any obvious departure from the normal distribu-
tion (Shapiro-Wilk normality test, W = 0.995, P =
0.93). On average, primary moult started on 8
May and lasted more than five months, ending on
17 October. More than half of the moult process
took place during the breeding season. Primaries
were shed sequentially at a quite constant rate,
except during the very beginning and the very end
of the moult cycle (Fig. 2A). Usually only two, or
sometimes three, feathers were growing at the
same time during the whole process. 

Although some secondaries were replaced as
early as at the end of May, i.e. less than one month
after the beginning of primary moult, most secon-
daries were shed during the post-breeding period
(Fig. 3). After controlling for capture date, the best
predictor of the progress of secondary moult was
the estimated onset date of primary moult, as ex-
pected (Table 2). The relationship between these
two variables was negative (model coefficient was
–0.015, SE 0.004, P < 0.001), thus indicating that
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Figure 1. Relationship between the stage of primary
moult and date. The solid line shows the mean rate of
increase for the average bird, dashed lines are the 95%
confidence intervals. Primary moult parameters are given
with standard errors in parentheses.
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birds starting primary moult earlier tended to
show a higher percentage of moulted secondaries,
even though the recorded variability was quite
high. On the other hand, body mass did not seem
to have any effect.

It should be noted that up to c. 80% of secon-
daries were replaced during the study period, thus
indicating that the post-breeding moult of this
population was incomplete. Indeed, most birds (55
out of 63 examined individuals, or 87.3%) trapped
early in the breeding season (April–May) showed
at least two different generations of feathers, the
newest secondaries seemingly moulted at the same
cycle of primaries, while older ones probably re-
tained from the previous moult cycle. 

It is interesting to note that among those indi-
viduals that could be precisely aged by means of
colour-ringing, all birds with at least two genera-
tions of secondaries were at least in their third cal-
endar-year, while no second-calendar birds showed
any detectable lack of homogeneity within the
secondary tract (Table 3). This highly significant
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Figure 2. Relationship between the stage of primary moult
and numbers of primary (A) and secondary (B) feathers
growing simultaneously. Smoothing was calculated by
means of a Gaussian kernel estimator and cross-validated
choice of bandwidth (Bowman & Azzalini 1997).
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Figure 3. Relationship between the stage of primary
moult and secondary moult. Smoothing as in Fig. 2.

Modela k ΔAICc wi AICc

Capture + Onsetb 4 0.00 0.71
Capture + Onset + Mass 5 1.80 0.29
Capture 3 11.52 0.00
Capture + Mass 4 12.76 0.00

aCapture: capture date. Onset: estimated onset date of primary
moult (see Methods). Mass: body mass at capture.
bAICc=164.4, residual SE = 0.56, adjusted R2 = 0.81, P < 0.001.

Table 2. Analysis of the progress of secondary moult (fea-
ther score) using linear regression models evaluated
using Akaike’s Information Criterion for small sample
sizes (AICc). k = number of parameters. ΔAICc = diffe-
rence in AICc between a given model and the model with
the lowest AICc. wi AICc = AIC weights, which estimates
the probability a specified model is the true model, given
that one of the models being considered is indeed the
true model. 
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association suggested that juvenile secondaries
were not shed during the first winter. According to
our data second-calendar birds could be identified
by the age pattern of secondary feathers and/or by
the presence of juvenile secondaries, which are
usually narrower and more pointed than adult
ones. Moreover, juvenile primaries (especially the
tip of the 2–3 outer ones) of these birds are rather
pointed, paler and much more worn than secon-
daries.

As observed for primaries, the moult rate of
secondaries was quite slow, and usually no more
than three secondaries were growing simultane-
ously (Fig. 2B). The moult sequence of secondaries
was much more irregular than that of primaries.
However, the percentage of birds with new or
growing feathers in each position clearly indicated
that innermost and outermost secondaries were
shed more often than feathers belonging to the
centre of this feather tract (Fig. 4).

DISCUSSION

As mentioned in the Introduction, this paper repre-
sents the first detailed description of the wing
moult of the Stone-curlew, and thus it helps to fill
a significant gap in the information regarding the
biology of this species. Concerning primary moult,
the fit of the Underhill-Zucchini model turned out
to be quite good, and parameters were estimated
with an acceptable precision, even though the sam-
ple size was only moderately large. While signifi-
cant differences in the timing of wing moult
among populations should be expected, as reported

for other waders (e.g. Dunlins Calidris alpina,
Holmgren et al. 2001), our estimates compare well
to the data reported in the literature, although
published ranges are based on small numbers of
birds. Contrary to what is reported in Cramp &
Simmons (1983) and Ginn & Melville (1983), we
did not record any evidence regarding suspended
moult (sensu Ashmole 1962), nor serially descen-
dant moult following moult suspension. Given that
most available moult data come from northern
populations (e.g. BTO moult cards, Ginn & Mel-
ville 1983), it could be hypothesised that this
moult strategy is more widespread in the northern
part of the species’ range, while at southern lati-
tudes Stone-curlews could be favoured by a rela-
tively long season of fair weather, which should
guarantee enough time to complete the moult
cycle. This hypothesis is supported by data from
other waders, such as the Grey Plover Pluvialis
squatarola, in which the frequency of birds with
moult suspension is relatively high at higher lati-
tudes (5–40%; Serra et al. 2006 and references
therein) and near zero in south-eastern India
(Balachandran et al. 2000).

One of the remarkable features of the pattern
of moult here described is the extensive overlap
between breeding and moulting. Indeed, especially
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No. of generations
Age 1 2+

second calendar-year 3 0
> second calendar-year 0 17

Table 3. Number of generations recorded in the secon-
dary tract in relation to the age of birds captured while
incubating (Fisher’s Exact Test, P < 0.001). 
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in temperate regions, birds tend to delay moult
until breeding has (nearly) finished (Morton 1992,
Hemborg 1999, Hemborg et al. 2001, Arroyo et al.
2004), in order to reduce the overlap between two
energy-demanding activities (Jenni & Winkler
1994, Moreno 2004 and references therein). Euro-
pean waders (families Haematopodidae, Recurvi-
rostridae, Charadriidae, Scolopacidae) show vari-
ous degrees of overlap between breeding and
moult, but usually this overlap includes less than a
quarter of the breeding period. The case of Stone-
curlew here documented is noteworthy, because in
our population (but see also Cramp and Simmons
1983) this overlap extends over most of the
breeding season, excluding its very beginning.
Primary moult is also quite slow (>5 months)
compared to other wader species, which usually
complete their moult cycle in less than 4 months;
longer moult cycles are usually associated with
moult suspension. It could be hypothesized that
this slow and constant rate facilitates the overlap
between breeding and moult by spreading the
costs of moult homogeneously over the whole
period and by avoiding the detrimental effects on
feather quality of rapid moult cycles (Dawson et
al. 2000, Serra 2001). It is interesting to note
that, while usually avoided in most temperate
species, an extensive moult–breeding overlap is
relatively common among tropical birds (Foster
1974, Moreno 2004), where it is associated with
small clutches and long breeding seasons (Foster
1974).

We tested whether a prolonged breeding sea-
son correlates with an extended moult–breeding
overlap using literature data of 41 Palearctic wader
species (Appendix 1). Indeed, moult–breeding
overlap was positively correlated only with the
length of the breeding season, using both the raw
data and phylogenetically independent contrasts
(Table 4). Female body mass and clutch mass were
related to each other, but not to moult–breeding
overlap (Table 4). Foster (1974) proposed that the
above-mentioned set of traits is a means by which
tropical birds may maximise their breeding output
in areas where nesting success is strongly depen-
dent on renesting potential. According to this

hypothesis, the high nest predation in the tropics
(Ricklefs 1969) may select for the capacity to re-
nest repeatedly both by reducing the investment in
single clutches and by prolonging the breeding
season, thus favouring moult–breeding overlap. It
is difficult to determine if the observed correlation
between moult–breeding overlap and length of the
breeding season in Palearctic waders could be
explained by considering the selective effect of
predation rate on renesting potential. Indeed the
available data do not take into consideration the
significant variability among populations both
regarding breeding phenology (e.g. Cramp & Sim-
mons 1983) and timing and duration of primary
moult (e.g. Pienkowski et al. 1976, Underhill
2003). Moreover, it seems likely that other factors,
such as ecological (e.g. latitude of breeding
grounds, local climate, nutritional constraints) and
physiological (e.g. activity of the immune system)
constraints, should be taken into account (see also
Moreno 2004). Testing these hypotheses is beyond
the scope of this paper.

It should be noted, that among waders, the
Stone-curlew represents a clear outlier, both con-
sidering the extent of the moult–breeding overlap
(about 90% of the breeding season) and the
strongly reduced parental investment in single
clutches (c. 19% of female body mass). Moreover,
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Breeding Clutch Female Overlap
season mass body mass

Breeding season - –0.11 0.16 0.53**
Clutch mass –0.22 - 0.71** –0.06
Female body mass 0.22 0.70** - 0.20
Overlap 0.44* 0.08 0.21 -

Table 4. Correlations between the length of the breeding
season (in months), clutch mass, female body mass and
extent of primary moult–breeding overlap (in months) in
Palaearctic waders. Upper diagonal part: Spearman rank
partial correlation using species level data (n = 41).
Lower diagonal part: Spearman rank partial correlation
using phylogenetically independent contrasts (n = 40).
See Appendix 1 for the species and data used.
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as expected for an open-nester (Lack 1968,
Ricklefs 1969, Martin & Li 1992, Bennett & Owens
2002), nest survival of the Stone-curlew is rela-
tively low (only 40–60% of the nests produce at
least one hatchling, Giunchi et al. unpubl. data),
and this species has a very high potential for re-
nesting (4 attempts per year, both considering re-
placement and second clutches, see also Vaughan
& Vaughan Jennings 2005). Females usually
replace their lost clutches in less than 15 days
(Nethersole-Thompson & Nethersole-Thompson
1986; Giunchi et al. unpubl. data). This evidence
is obviously only circumstantial, but the observed
pattern is intriguing and surely deserves further
investigation, possibly comparing data belonging
to different populations of Stone-curlew.

Even though the moulting process began while
birds were still breeding, most of secondary feath-
ers were moulted during the post-breeding season.
As observed for primaries, moult rate of secon-
daries was slow, and this could explain why appar-
ently only some of these feathers were replaced on
the breeding grounds. Indeed, the data at hand
suggest that Stone-curlews shed secondaries
before starting autumn migration and probably
arrested this process at the end of primary moult
(the last record of birds actively moulting sec-
ondary feathers was from the beginning of
October). Even though we have no data regarding
moult on the wintering grounds, moult suspension
seems unlikely since we did not record any birds
showing secondaries distinctly younger than the
not yet moulted primaries. Interestingly, juveniles
do not replace their secondary feathers until their
second year of life, and thus they could be easily
recognized as having homogeneous secondary
feathers till late spring.

To our knowledge, this is the first time that
partial moult of secondary feathers has been
described in Stone-curlew, even though this fea-
ture is not uncommon among medium-large
waders (see e.g. the Golden Plover Pluvialis apri-
caria, Cramp & Simmons 1983) and may be
selected for to spread the costs of moult over a
long time period (see Herremans 2000 and refer-
ences therein). In the Stone-curlew this strategy

could be facilitated also by secondaries needing
less quick replacement due to moderate abrasion
(Giunchi et al. pers. observ.), given the limited
rubbing against vegetation (our Stone-curlews
inhabit open habitat), and the reduced sun exposi-
tion (in folded wing, secondaries are completely
concealed by long tertials and scapulars).
Secondary moult shows large between-individual
variation both in the number of retained feathers,
varying between 2 and 10 (median 6.5, n = 24),
and in its sequence, although it tended to follow
the pattern recorded for other waders (Prater et al.
1977). This between-individual variation may
come about by timing differences, as birds starting
moult earlier may have more time to complete the
moult of both primaries and secondaries (note
that the progress of secondary moult and the onset
of primary moult were significantly correlated).
Moreover some degree of complementary moult
could not be excluded, because in only a few cases
we were able to distinguish three generations
among old secondaries. Unfortunately, we have
too few data regarding the reproductive output of
the observed birds to test if parental investment
might constitute a severe constraint on wing
moult, as otherwise observed for other species
(e.g. Pietiaeinen et al. 1984, Hemborg & Lundberg
1998). Clearly the resource allocation between
current reproduction and moult in the Stone-
curlew deserves further investigations.
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SAMENVATTING

In het Regionale Park Taro (ten westen van Parma, Italië)
komt de Griel Burhinus oedicnemus talrijk voor. In de
zomers van 1998–2007 werden er 141 vogels gevangen
om het ruistadium van de vleugelpennen vast te stellen.
De rui van de handpennen begon begin mei en eindigde
pas in oktober, daarmee een groot deel van de broedtijd
overlappend. De rui van de handpennen verliep volgens
een vast patroon, de vervanging van de armpennen was
veel onregelmatiger. Bovendien werd binnen een zelfde
seizoen slechts een deel van de armpennen geruid, waar-
bij vooral de middelste pennen werden overgeslagen.
Vogels hadden daarom armpennen van verschillende
leeftijd. Omdat jonge vogels hun armpennen pas na de
eerste winter begonnen te vervangen, bood dit de moge-
lijkheid vogels in hun tweede kalenderjaar van oudere
vogels te onderscheiden. Gelijktijdig ruien en broeden,
zoals Grielen doen, is betrekkelijk ongewoon onder stelt-
lopers. Door de rui over een lange periode uit te smeren
kunnen de energetische kosten per tijdseenheid mogelijk
verlaagd worden. Dit zou een aanpassing kunnen zijn om
binnen een zelfde seizoen enkele broedpogingen te doen.
Steun voor deze veronderstelling komt uit een vergelij-
king tussen 41 steltlopersoorten: hoe langer het broedsei-
zoen duurt, des te groter is de overlap van rui van de
handpennen en broedactiviteiten. (DH)
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Species Family Breeding  Clutch Female Moult–breeding  
season mass body mass overlap 

(months) (g) (g) (months)

Burhinus oedicnemus Burhinidae 5 84 449 4.5
Haematopus ostralegus Haematopodidae 4.5 140 616 2.5
Himantopus himantopus Recurvirostridae 3 88 180 0.5
Recurvirostra avosetta Recurvirostridae 4 129 325 1
Vanellus spinosus Charadriidae 5 64 148 3
Vanellus vanellus Charadriidae 5 100 217 3
Charadrius hiaticula Charadriidae 5 46 65 2
Charadrius dubius Charadriidae 5 31 39 2
Charadrius alexandrinus Charadriidae 4 27 60 1.5
Eudromias morinellus Charadriidae 3.5 48 116 1.5
Pluvialis apricaria Charadriidae 3.5 139 191 3
Pluvialis squatarola Charadriidae 3 140 220 0.5
Cursorius cursor Glareolidae 4.5 28 128 0
Glareola nordmanni Glareolidae 2.5 44 96 0
Glareola pratincola Glareolidae 3.5 30 74 1
Dromas ardeola Dromadidae 4.5 45 325 3
Numenius arquata Scolopacidae 3.5 300 788 1
Numenius phaeopus Scolopacidae 3 200 398 0
Limosa lapponica Scolopacidae 2.5 148 273 1
Limosa limosa Scolopacidae 3.5 162 315 1.5
Scolopax rusticola Scolopacidae 5 100 320 1.5
Gallinago media Scolopacidae 3.5 82 190 1.5
Gallinago gallinago Scolopacidae 4.5 68 112 1
Lymnocryptes minimus Scolopacidae 3 56 68 2
Tringa hypoleucos Scolopacidae 3.5 48 50 0
Arenaria interpres Scolopacidae 2 72 115 0
Limicola falcinellus Scolopacidae 2.5 36 39 0
Philomachus pugnax Scolopacidae 3 88 118 1
Calidris minuta Scolopacidae 2.5 25 31 0
Calidris alpina Scolopacidae 2.5 40 55 0
Calidris maritima Scolopacidae 2 52 70 0
Calidris temminckii Scolopacidae 2.5 24 28 0
Phalaropus fulicaria Scolopacidae 2 31 61 0.5
Phalaropus lobatus Scolopacidae 2.5 25 35 0
Tringa glareola Scolopacidae 3 56 60 0
Tringa erythropus Scolopacidae 3 98 157 2
Tringa totanus Scolopacidae 4 89 135 1
Tringa nebularia Scolopacidae 3.5 145 200 0.5
Tringa stagnatilis Scolopacidae 3.5 56 76 0
Tringa ochropus Scolopacidae 3 62 85 1
Tringa cinerea Scolopacidae 2.5 52 75 0

Appendix 1. Palaearctic waders considered in the analysis (n = 41) belonging to seven families (del Hoyo et al. 1996).
Variables were derived from Cramp & Simmons (1983): (1) length of the breeding season (accuracy by 0.5 months):
period of egg laying and caring for young, excluding outliers (early eggs and late broods); (2) modal clutch mass (by
1 g); (3) modal female body mass (by 1 g); (4) extent of the overlap (by 0.5 months) between primary moult and the
breeding season (excluding outlying data for the onset and termination of primary moult). Analyses were performed by
means of the Spearman rank partial correlation both using species level data and phylogenetically independent contrasts
(Felsenstein 1985). These contrasts were calculated by considering the phylogenetic tree reported in Thomas et al. (2004),
randomly resolving all multichotomies. Analyses were performed using the R-package APE 2.0-2 (Paradis et al. 2004).
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