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The study of host–parasite interactions has been of
primary interest for avian ecologists. However, bacteria
have only recently received attention in this respect
(Maul & Farris 2005, Benskin et al. 2009). Associations
between birds and bacteria may involve pathogenic
interactions, but also positive symbiotic interactions
(Martín-Platero et al. 2006, Ruiz-Rodríguez et al. 2009).
These interactions begin in the nest and may affect the
growth and survival of altricial and semi-altricial
nestlings (Potti et al. 2002, Moreno et al. 2003,
González-Braojos et al. 2012). The early stage of the
post-hatching period is critical for establishment of the

gut microbial community. This process starts from a
sterile gastrointestinal environment at the moment of
hatching and continues towards establishing a relatively
stable status as the nestling ages. Thus, Mills et al.
(1999) reported that microorganisms colonize nestling
cloacae shortly after hatching, suggesting the source of
microbes to be adults, local food items or their local
environment. Understanding the factors modulating
bacterial abundances in nestling digestive tracts could
improve our understanding of bird–bacteria interac-
tions in the wild. 

Several factors including climate, food, age and
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health state affect the composition of the gut microbio-
ta of individual birds (Brittingham et al. 1988,
Lombardo et al. 1996). Nutrient richness in the envi-
ronment, humidity and temperature have been identi-
fied as important factors affecting growth in bacterial
cultures (Ratkowsky et al. 1982, Madigan et al. 2006).
Nutrient availability for digestive bacteria may change
with seasonal variation in diet of both adults and
nestling birds (Blanco et al. 2006, Novotny et al. 2007).
Nutritional quality may also affect bacterial growth,
especially for nestlings competing for parental food
deliveries. Late-breeding pairs tend to offer less or
poorer quality food to their nestlings (Naef-Daenzer et
al. 2000, Rossmanith et al. 2007, Wilkin et al. 2009).
Nestlings in larger broods may also suffer nutritionally
from stronger competition with brood mates (Naguib et
al. 2004, Pichorim & Monteiro 2008). Thus, breeding
phenology and brood size could affect the growth of
bacteria in digestive tracts through nestling nutrition in
terms of quantity and quality. Gut mass declines in
conditions of poor nutrition (Brzek & Konarzewski
2001), possibly driving higher competition among
bacteria for space. To our knowledge, there is no
published information about the associations of envi-
ronmental factors with growth of bacteria in nestling
digestive tracts. The only study, to our knowledge,
relating gut bacterial growth to seasonal climate
changes did not include nestlings (Janiga et al. 2007).
Ambient temperature may affect bacterial growth
through the thermoregulatory capacity of altricial
nestlings, which improves with age until thermal inde-
pendence from adult brooding behaviour (O’Connor
1984, Starck & Ricklefs 1998). If the body temperature
of non-thermally independent offspring fluctuates more
when the ambient temperature is low (Starck &
Ricklefs 1998, Bize et al. 2007), bacterial growth might
suffer accordingly. Thermally independent nestlings
may offer more stable thermal regimes for gut bacteria.
Rainfall may affect the foraging capacity of adults and
thereby nestling nutritional condition (Rosa & Murphy
1994, Elliott et al. 2005, Spencer 2005, Geiser et al.
2008, Morrison et al. 2009, Arlettaz et al. 2010).

In this study we assessed whether environmental
factors modulate the abundance of two types of gut
bacteria (enterococci and Enterobacteriaceae) at two
nestling ages in the Pied Flycatcher Ficedula hypoleuca.
Enterococci are widely distributed in animal gastroin-
testinal tracts (Foulquié-Moreno et al. 2005) and may
exist as commensal organisms of the alimentary tract of
chickens (Klein 2003) and wild birds (e.g. Moreno et al.
2003). They have probiotic properties and are able to
limit the colonization of the digestive tract by patho-

genic bacteria (Mazur-Gonkowska et al. 2006). Moreno
et al. (2003) found a significantly positive association
between nestling mass shortly before fledging and the
presence of Enterococcus faecium. Enterobacteriaceae are
also common in the intestinal microflora of wild birds.
Thus, Winsor et al. (1981) showed that the most preva-
lent intestinal bacteria of this group in Turkey Vultures
Cathartes aura were Escherichia coli and Proteus mira-
bilis. Moreover, Enterobacteriaceae contribute to the
digestion of food and play an important role in control-
ling other gut bacteria (Hudault et al. 2001, Reid et al.
2001). It has been shown that both enterococci and
Enterobacteriaceae grow best at temperatures between
22 and 45ºC (Ron 1975, Martínez et al. 2003, Foulquié-
Moreno et al. 2005), so thermal fluctuations in ther-
mally dependent nestlings during parental absences
may affect bacterial growth conditions. 

Accordingly, we hypothesized that: (1) later broods
will have lower bacterial counts due to poor nestling
nutrition, (2) larger broods will have lower bacterial
counts due to poor nestling nutrition, (3) lower ambi-
ent temperatures will result in lower bacterial growth
in non-thermally independent offspring (7 days) while
having smaller effects in nestlings about to fledge (13
days), (4) higher rainfall will induce poorer bacterial
growth due to restricted parental food deliveries to
nestlings. Finally, (5) we looked for synergistic effects
of rainfall and temperature in driving bacterial growth
in guts of nestlings, as low nutrition may have especial-
ly strong effects when the costs of thermoregulation are
high.

METHODS

The study was conducted during the 2009 breeding
season in a deciduous forest of Pyrennean Oak Quercus
pyrenaica at an elevation of 1200 m a.s.l. in Valsaín,
Segovia province (40°54'N, 4°01'W), Spain. The local
population of Pied Flycatchers breeds in nest-boxes and
has been under study since 1991 (Sanz et al. 2003).
Nest-boxes are cleaned every year after the breeding
season. For the current study, nest-boxes were checked
daily for nest-building activity, and the hatching dates
and brood sizes were recorded.

The Pied Flycatcher is a small (12–13 g) passerine
bird, which breeds in many forested areas of the
Palaearctic region (Lundberg & Alatalo 1992). It only
stays in European woodlands for the spring and
summer, spending the rest of the year on migration or
in the wintering areas in tropical West Africa. It breeds
naturally in tree cavities, but if nest-boxes are provided,
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these are preferred over natural cavities. Egg-laying in
the population under study typically begins in late May,
and clutch sizes range from 4 to 7 eggs with a mode of
6 eggs (mean 5.5 ± 0.6). The female incubates alone
and receives part of her food from her mate (Lundberg
& Alatalo 1992). Young are brooded by the female only
up to day 8 (hatching day = day 1) (Sanz & Moreno
1995). Both sexes feed the young. Young fledge within
14–16 days of hatching. This occurs in the second half
of June in our study area (Moreno et al. 2001).

A sample of 54 broods of four to six chicks was used
for this study. Of these nests, we obtained samples from
two randomly selected chicks in 43 nests and one
randomly selected chick in the remaining nests.
Nestlings were measured and weighed at two ages (7
and 13 days).

Bacterial sampling
Bacterial samples were obtained as described in
González-Braojos et al. (2012). Briefly, we sampled
freshly faecal sacs and assumed that most bacteria
contained in those were derived from gut cloacal
communities. Faecal sacs were collected at 7 and 13
days in sterile eppendorf tubes and were processed in
the laboratory 3–6 h after collection. Here, we impreg-
nated one sterile cotton swab per faecal sac with faecal
matter, transferred this to transport media Amies
(Sterile R, Meus s.r.l., Piove di Sacco, Italy) and
conserved the samples at 4°C until processed. All
samples were analysed after exactly 20 days to avoid
effects of differences in time elapsed between sampling
and laboratory processing.

Swabs were transferred into 1 ml of phosphate
buffered saline (pH = 7.2, Química Clínica Aplicada,
Tarragona, Spain). Optimal bacterial concentration for
the quantification (Herbert 1990, Maier et al. 2000)
was determined by serial dilution in sterile physiologi-
cal saline (0.85% NaCl). The samples were cultured by
plating out 100 μl of the following dilutions: 10–2, 10–3,
10–4 and 10–5. Samples were cultured on the following
solid selective and differential bacterial media: Mac
Conkey agar (bioMérieux, Madrid, Spain; Entero-
bacteriaceae) and D-Coccosel agar (bioMérieux,
Madrid, Spain; enterococci) or Enterococcosel for 20
samples (Difco, Detroit, Michigan, USA; enterococci).
There were no significant differences in bacterial counts
obtained with the latter two media (both P > 0.1), so
data were pooled. Plates were incubated for 48 ± 2 h at
37 ± 1°C, after which colonies were counted using a
colony counter ‘sensor’ (Suntex Instruments Co., Ltd.,
Taipei County, Taiwan) by the same observer (SG-B).

Environmental data
Daily environmental mean temperature and rainfall
were obtained from the meteorological station “Casa de
la Mata”, located 2 km from the study area (40°54'N,
4°00'W, 1150 m a.s.l.). Two temperature averages were
obtained for each brood: (1) the average of mean
temperatures between hatching date and day 7, and
(2) the average of mean temperatures between days 7
and 13. For rainfall, we used the rainfall accumulated
(1) between hatching date and day 7, and (2) between
days 7 and 13. 

Statistical analyses
Bacterial loads were successfully normalized through
logarithmic transformation prior to analyses. We first
tested for intra-brood repeatability of bacterial loads for
the two bacterial types and two nestling ages separately
(Statistica 6.0). 

Loads of the two types of bacteria and for the two
nestling ages were included separately in four different
linear mixed models using Satterthwaite’s correction
for estimating degrees of freedom. Each model included
hatching date, mean temperature, rainfall, brood size
and their interactions as fixed effects and nest as a
random effect. Model selection was based on the
Corrected Akaike Information Criterion (AICc), which
is more suitable than AIC at moderate sample sizes. We
present only models with a ΔAICc smaller than 2 with
respect to the preferred model (having lowest AICc).
We also present the sign and strength of the significant
effects included in the preferred models. Linear mixed
models were performed in SAS 9.2. For graphical repre-
sentation of significant interactions between variables,
we split one of the variables according to the median
and plotted these separately. 

RESULTS

On day 7 the loads of Enterobacteriaceae (r = 0.433;
F1,26 = 2.530; P = 0.011), but not of enterococci (r =
0.229; F1,30 = 1.530; P = 0.126) were significantly
correlated within broods. No significant within-brood
similarity was found for loads on day 13 either for
Enterobacteriaceae (r = 0.159; F1,30 = 1.380; P = 0.192)
or enterococci (r = 0.014; F1,33 = 1.027; P = 0.468).
Thus, we did not calculate intra-brood average bacterial
counts.

For each bacterial type and nestling age, we present
only the preferred model, as alternative models showed
ΔAICc values higher than 2. The preferred model for
Enterobacteriaceae on day 7 included hatching date,
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mean temperature, rainfall and the interactions
between hatching date and rainfall and mean tempera-
ture and rainfall during the preceding period (Table 1).
All variables and interactions included in the model
with lowest AICc were significant (Table 2). There was
a negative association of Enterobacteriaceae loads on
day 7 with rainfall, but only for early broods (Figure 1).
Likewise, rainfall showed a negative association with
Enterobacteriaceae loads on day 7, but less so at low
ambient temperatures (Table 2). The preferred model

for Enterobacteriaceae on day 13 included only hatching
date (Table 1), which showed a negative association
with bacterial loads (Table 2, Figure 2).

The preferred model for enterococci on day 7
included only mean temperature (Table 1), which
showed a positive association with bacterial loads
(Table 2). The model for enterococci on day 13 includ-
ed only mean temperature (Table 1), which showed a
positive association with bacterial loads (Table 2).

ARDEA 100(1), 201274

Model K AICc Weight

Enterobacteriaceae on day 7 
HD+Rain+Temp+HD×Rain+Temp×Rain 6 294.6 0.8

Enterobacteriaceae on day 13
HD 2 254.2 0.7

Enterococci on day 7
Temp 2 286.7 0.7

Enterococci on day 13
Temp 2 196.3 0.9

Table 1. Linear mixed models of bacterial loads (two bacterial
types at two nestling ages) in relation to mean temperature in
the preceding week (Temp), rainfall (Rain), hatching date (HD),
brood size and their interactions. Nest was included as a
random effect. Only the preferred models for each analysis are
presented (no alternative models showed ΔAICc lower than 2).
K = the number of parameters in each model; Weight = the
probability that the model is the preferred model in the model
set.

Coefficient ± SE df F P

Enterobacteriaceae on day 7
HD –1.345 ± 0.202 1,74 44.1 <0.001
Temp 2.852 ± 0.497 1,74 32.9 <0.001
Rain –2.571 ± 0.792 1,74 10.5 0.001
HD×Rain 0.085 ± 0.017 1,74 23.7 <0.001
Temp×Rain –0.194 ± 0.040 1,74 23.0 <0.001

Enterococci on day 7
Temp 0.127 ± 0.046 1,54.6 7.4 0.008

Enterobacteriaceae on day 13
HD –0.127 ± 0.038 1,44.1 10.8 0.002

Enterococci on day 13
Temp 0.162 ± 0.071 1,91 5.1 0.025

Table 2. Parameter estimates of effects included in the preferred
models (see Table 1) of Enterobacteriaceae and enterococci loads
at two nestling ages. Effects are mean temperature in preceding
week (Temp), rainfall (Rain), hatching date (HD) and interac-
tions.
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Figure 1. Associations of Enterobacteriaceae loads on day 7 with
rainfall for broods hatched before or after the median hatching
date in the population. Lines represent the simple regression
which is not corrected for other significant effects presented in
Table 2. A single nestling per nest is presented to avoid pseudo-
replication.    
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DISCUSSION

Our results showed that Enterobacteriaceae loads were
lower in later-hatching nestlings. We found no associa-
tion between brood size and loads of either bacterial
type. Ambient temperature was positively correlated to
Enterobacteriaceae loads, but only on day 7. Tempera-
ture was positively correlated with enterococci loads at
two nestling ages. Higher rainfall resulted in lower
Enterobacteriaceae loads on day 7. 

Nestlings in late-hatched broods have fewer Entero-
bacteriaceae in their guts at both ages than early-
hatched nestlings. This effect may be due to seasonal
changes in diet. For example, Waldenström et al.
(2002) found that the prevalence of Campylobacter spp.
in migrating birds was highly influenced by feeding
habits. Also, Lombardo et al. (1996) suggested that
different feeding habits might explain the greater
prevalence of bacteria in insectivorous than in omnivo-
rous birds. Blanco et al. (2006) found differences in
composition, richness and prevalence of faecal micro-
biota associated with the diet of adult Red Kite Milvus
milvus. Furthermore, they found that Klebsiella sp.
showed a higher prevalence in January than in
February, whereas Novotny et al. (2007) found that the
occurrence of Yersinia enterocolitica in adult Alpine
Accentors Prunella collaris was high in summer, espe-
cially during the nestling period. It is possible that late-
breeding parents are less efficient at collecting prey, and
that late nestlings may therefore be undernourished.
Malnourished nestlings may have lower bacterial
growth in their guts due to intestinal shrinkage (Brzek
& Konarzewski 2001) or to lower nutrient input.
However, the non-significant effect of brood size
suggests that malnourishment induced by competition
among siblings is less important than seasonal changes
in diet. In contrast to Enterobacteriaceae, enterococci
were not responsive to differences in hatching date,
which suggests that they are relatively insensitive to
nutritional effects. 

As expected, loads of Enterobacteriaceae and entero-
cocci of chicks at early nestling ages are positively asso-
ciated with mean temperature, while in grown
nestlings this association is only found for enterococci.
At low ambient temperatures, poorly thermoregulating
chicks (younger than 7 days) may lose relatively more
heat, drop their body temperature and reduce their
metabolism (Starck & Ricklefs 1998), thereby negative-
ly affecting bacterial growth in the gut. Nestlings about
to fledge maintain body temperature within a much
smaller range than nestlings of 7 days (O’Connor
1984). The responsiveness of enterococci to tempera-

ture at late nestling ages indicates the extreme thermal
sensitivity of these bacteria when compared with other
gut bacteria. 

Enterobacteriaceae loads showed a negative associa-
tion with rainfall, but only in young nestlings. The
negative effects of rainfall on day 7 on loads of Entero-
bacteriaceae could also be explained by poor thermo-
regulation as temperatures in the nest drop during rain
showers. Rainfall also has a negative effect on the
foraging capacity of adults (Radford et al. 2001, Geiser
et al. 2008, Arlettaz et al. 2010). This could adversely
affect nestling nutritional condition, so we would
expect a negative effect of rainfall on the capacity to
sustain large bacterial populations. By contrast, entero-
cocci were not affected by rainfall at any nestling age.
This suggests that enterococci are less responsive to
rainfall-mediated nestling nutritional condition than
Enterobacteriaceae.

Only early-hatched broods experienced nesting
environments conductive to strong predicted effects of
high rainfall on bacterial loads in nestling guts. In fact,
loads of Enterobacteriaceae on day 7 in early-hatched
broods, but not in late-hatched broods, showed a nega-
tive association with rainfall. This may be related to
poor nestling nutrition due to low foraging capacity of
adults during periods of high humidity. Finally, low
temperatures and high rainfall may interact synergisti-
cally as predicted to induce thermoregulatory problems
for small nestlings, thereby inducing reduced bacterial
growth. In contrast, enterococci showed no response to
rainfall at any ambient temperature.

To conclude, growth of important intestinal bacteria
appears sensitive to seasonal and climatic factors,
presumably mediated by nestling diet, thermoregulato-
ry capacity and nutritional state. Different bacterial
types vary in their responsiveness to environmental and
seasonal variation.
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SAMENVATTING

Zoals bij alle dieren spelen darmbacteriën ook bij vogels een
belangrijke rol bij de vertering van voedsel. In het ei zijn de
darmen van kuikens nog vrij van bacteriën. De darmflora komt
tot stand in het nest. De periode net na het uitkomen is dus
cruciaal voor een gezonde darmflora. In deze periode zijn jonge
vogels echter nog niet in staat zelf hun lichaamstemperatuur te
reguleren. Het ligt dus voor de hand dat samenstelling van de
darmflora bij jonge kuikens varieert met de omgevingstempera-
tuur en andere weersomstandigheden, wat gevolgen zou
kunnen hebben voor de gezondheid van de kuikens. In dit
Spaanse onderzoek werd het voorkomen van twee typen darm-
bacteriën in kuikens van de Bonte Vliegenvanger gekwantifi-
ceerd. Bij jonge kuikens waren de aantallen Enterobacteriaceae
in de uitwerpselen van kuikens relatief hoog bij hogere tempera-
turen en relatief laag tijdens regenachtige periodes. Het laatste
gold alleen bij vroege broedsels en bij lage temperatuur. Voor
oudere kuikens was er alleen een correlatie tussen Entero-
bacteriaceae en de uitkomstdatum. De hoeveelheden van een
ander type darmbacterie (enterococci) waren alleen afhankelijk
van de omgevingstemperatuur. Ongeacht hun leeftijd hadden
kuikens meer enterococci bij hogere temperaturen. Deze resulta-
ten laten zien dat het weer inderdaad invloed heeft op de
samenstelling van de darmflora bij jonge vogels. Hierbij spelen
waarschijnlijk de onmacht van jonge kuikens om hun lichaam-
stemperatuur constant te houden en het vermogen van de
ouders om genoeg voedsel aan te dragen een rol. (KK)
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