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Evaluating New SMAP Soil Moisture

for Drought Monitoring in the

Rangelands of the US High Plains☆
By Naga Manohar Velpuri, Gabriel B. Senay, and Jeffrey T. Morisette
On the Ground
• Level 3 soil moisture datasets from the recently
launched Soil Moisture Active Passive (SMAP)
satellite are evaluated for drought monitoring in
rangelands.

• Validation of SMAP soil moisture (SSM) with in situ
and modeled estimates showed high level of
agreement.

• SSM showed the highest correlation with surface
soil moisture (0-5 cm) and a strong correlation to
depths up to 20 cm.

• SSM showed a reliable and expected response of
capturing seasonal dynamics in relation to precip-
itation, land surface temperature, and evapotrans-
piration.

• Further evaluation using multi-year SMAP datasets
is necessary to quantify the full benefits and
limitations for drought monitoring in rangelands.
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roughts are one of the costliest natural disasters
and globally affect a large number of people and
their livelihoods every year. In the United States,
droughts, on average, cause financial damage of
$6 to $8 billion per year.1 The 1996 drought resulted in
estimated loss of about $6 billion for the state of Texas alone1

and had the greatest negative impact on rangeland ecosystems.
Gathering knowledge of the onset, duration, and severity of
prior droughts is important for efficient planning of drought
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mitigation strategies. In order to minimize losses due to
droughts and to manage the impact of water scarcities, it is
essential to develop scientifically-based drought monitoring
tools and early warning systems.2

Understanding the hydrologic cycle and its parameters is of
paramount importance to identify the nature and character-
istics of droughts. Precipitation is one of the most important
parameters that provides information on the availability of
water and potential occurrence of drought. Although
precipitation is the best observed hydrologic variable, it
alone cannot adequately characterize a drought. Nevertheless,
several widely used drought monitoring indices have been
developed based on the information obtained from precipi-
tation data.3 Other agro-hydrologic parameters such as land
surface temperature, normalized difference vegetation index
(NDVI), and evapotranspiration (ET) have also been used in
several standard drought indices.4 While each of these
standard indices used for drought monitoring has its own
advantages and disadvantages, all of them are expressions of
the key hydrologic variable, i.e., soil moisture. It may be worth
considering a multi-sensor approach that would look for a
convergence of evidence, which would allow for as many of the
agro-hydrologic variables as possible when trying to derive a
reliable drought product that can be used consistently over
space and time.2

Of all the hydrologic variables, soil moisture is one of the
least measured variables for understanding droughts at large
spatial scales. Because of the lack of large-scale and long-term
observations of soil moisture in the United States and
elsewhere, the use of simulated soil moisture fields from
land surface models, forced with observed precipitation and
near surface meteorology, has been a viable aproach.2 Soil
moisture combines the response from recent precipitation,
antecedent moisture, and the soil and vegetation character-
istics. The amount of water in the top layers of the soil is
correlated with shorter-term precipitation and atmospheric
demand. This governs the amount of water available to meet
the demands of evapotranspiration and, in turn, plant growth.
In water-limited ecosystems such as semi-arid rangelands, soil
183
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i Read about this release at http://smap.jpl.nasa.gov/news/1246/.
ii Available at http://nsidc.org/data/docs/daac/smap/sp_l3_smp/.
iii Available at https://www.ncdc.noaa.gov/crn/.
iv Available at http://landcover.usgs.gov/global_climatology.php.
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water content in the root zone is a strong predictor of future
vegetation condition. Therefore, characterizing soil moisture
plays a critical role for droughtmonitoring in general but becomes
a critical parameter for water-limited rangeland ecosystems.

The goal of this study is to evaluate the capability of level 3
soil moisture estimates obtained from the Soil Moisture
Active Passive (SMAP) mission particularly for drought
monitoring over rangelands. However, due to the limited
(nine months) and preliminary nature of the SMAP data, this
paper focuses on in situ validation as well as a comparison of
SMAP soil moisture (SSM) with other currently available
drought monitoring data. The results should be considered a
demonstration of the reliability and usefulness of SSM but not
an exhaustive synthesis on its application for drought
monitoring, which would require multi-year time series
evaluation of the product over diverse ecosystems.

Need for Satellite-Based Estimates of Soil
Moisture

Soil moisture may be measured by a variety of methods, but
unfortunately, there is no comprehensive, national network of
soil moisture monitoring instruments3 that can provide us
with seamless information on soil moisture status across the
nation. Although there are few national networks available,
the density of observations does not provide a comprehensive
understanding of change in soil moisture conditions nation-
ally. Hence, soil moisture is generally modeled over large areas
using precipitation and temperature, or through root-zone
water balance modeling. The SMAPmission is one of the first
Earth observation satellites built by the National Aeronautics
and Space Administration (NASA) in response to the
National Research Council’s Decadal Survey to provide global
measurements of soil moisture in the top 5 cm of the soil and
freeze/thaw state.5 The passive radiometer onboard SMAP
measures naturally emitted microwave radiation at 1.4 GHz.
The radiometer detects the minute differences in microwave
signals caused by the presence of moisture on the land surface.
In general, a dry surface (such as desert sand) emits larger
amounts of microwave radiation whereas surface water
features emit very low amounts of radiation. Using
satellite-based soil moisture estimates for drought monitoring
has several advantages: 1) global coverage enables monitoring
of large areas; 2) daily coverage improves the ability to monitor
the onset of drought-related events; 3) the application of
consistent data and algorithms enables inter-comparison of
SMAP data over time; 4) lower frequency of microwave (e.g.,
L-band) enables all-weather (that is, cloud-penetrating) mon-
itoring; 5) soil moisture observations are made even when sparse
and moderate vegetation is present on the soil surface; and 6)
unlike other visible/near-infrared sensors, SMAPmeasurements
are independent of solar illumination which allows for day and
night observations. On the other hand, these soil moisture
estimates for drought monitoring have some limitations: 1) soil
moisture estimates that can have higher uncertainties or be
unavailable over regions with dense vegetation, 2) the SSM
estimates have coarse resolution (36 km), and 3) validation needs
to be performed using in situ observations.
184
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Evaluation of SSM Using In Situ and Modeled
Datasets

During August 2015, NASA released the first calibrated
level 1 data from SMAP.i By January 2016, all radiometer
data products from the SMAP were available. At the time of
the writing of this paper, SMAP level 3 data products6

available for April to December of 2015 were obtained from
the National Snow and Ice Data Center (NSIDC) website.ii

These preliminary beta-quality data are generated using
preliminary algorithms that are not yet validated and, hence,
subject to some degree of uncertainties and improvements.

In this study, we validated the performance of the early
access SSM product available at 36 km spatial resolution equal
area scalable Earth-2 (EASE2) grids covering rangeland
regions in the states of Texas and Oklahoma, USA. First, we
validated SSM against in situ soil moisture observations
obtained from eight United States Climate Reference
Network (USCRN) sites7 (see Fig. 1 for locations). In situ
soil moisture measurements are publicly available online.iii

We also performed basin-scale validation using modeled soil
moisture obtained from the VegET agro-hydrologic model.8

Because SMAP data products and validation data used in this
study are available at different spatial resolutions, we
summarized both input SMAP and validation data at a
watershed scale. We identified hydrologic units (HUC8
watersheds, HUC) that are dominated by grasslands and
shrublands.We used 0.5-km land cover climatology productsiv

obtained from Moderate Resolution Imaging Spectroradi-
ometer (MODIS) data9 to compute the percentage of
grasslands and shrublands for each HUC (Fig. 1). Then, we
selected HUCs with grassland and shrublands cover greater
than 70%. Fig. 1 shows grasslands- and shrublands-dominated
watersheds across the United States. However, in this study,
we used HUCs covering the USCRN sites in Texas and
Oklahoma. The SMAP level 3 soil moisture is summarized
(spatial average) for eight HUCs and temporally aggregated
over an 8-day time period for comparison with validation
products. The list of all the datasets and their characteristics are
presented in the appendix, Table A1.
Point and Basin-Scale Validation of SSM
Retrieval of soil moisture from brightness temperature

observations is based on the radiative transfer equation,
commonly known in the passive microwave soil moisture
community as the tau-omega model.10 Allowing for spatial
heterogeneity and scaling issues, soil moisture measurements
from SSM should be comparable to in situ measurements or
modeled soil moisture estimates. Twofold validation of SSM
was conducted in this study. First, SSM estimates (cm3/cm3)
were validated using in situ soil moisture observations (m3/m3)
obtained from eight USCRN sites. Second, basin-scale
Rangelands
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Figure 1. Study area showing hydrologic units (HUC8 watersheds) that are dominated by grasslands and shrublands (area N 70%). Stars represent
locations of United States Climate Reference Network (USCRN) soil moisture observation sites used in this study. The background image is the sample
image of average SMAP Soil Moisture fields summarized for 30 March to 7 April 2015.
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validation was performed using modeled soil moisture
estimates (mm) obtained from the VegET agro-hydrologic
model, which produces daily estimates of root-zone soil
moisture by computing soil water balance driven byNEXRAD
precipitation (next generation radar)v and land surface
phenology obtained from remote sensing datasets.8 Daily
modeled soil moisture estimates were further aggregated to
8-day and summarized for 8 HUCs corresponding to USCRN
sites. Validation results are presented in Fig. 2 for eight
USCRN sites. Point-based validation results (Fig. 2A)
indicate a high level of agreement with in situ soil moisture
sites with the Pearson’s correlation coefficient “r” ranging from
a low of 0.53 (Panther Junction, TX) to a high of 0.95 (Austin,
TX). Similarly, good agreement was found for basin-scale
validation with r ranging from a low of 0.48 (Muleshole, TX)
to a high of 0.96 (Palestine, TX) (Fig. 2B). It is clear from the
validation results that SSM was able to capture day-to-day
variability in observed as well as modeled soil moisture.
However, there seem to be inconsistent magnitude discrep-
ancies among SSM, in situ, and modeled SM in some sites.
Hence, it is important to identify and understand the nature
and source of systematic and random errors in diverse
v View the NEXRAD precipitation analysis at http://www.srh.noaa.gov/

rfcshare/precip_about.php.
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ecosystems before integrating SSM with drought monitoring
tools and procedures.
Root Zone SM vs. SSM
Optimally, the SMAP radiometer can measure soil

moisture up to 5 cm depth. However, understanding the
amount of moisture available in the root zone would provide
an accurate assessment of drought on rangeland vegetation.
To understand the impact of depth on SSM, we compared
SSM with in situ measurements made at different depths (5,
10, 20, 50, and 100 cm) obtained from USCRN sites.7

Comparison results (r) presented in Fig. 3 indicate that SSM
showed the highest correlation with in situ measurements at 5
cm for all the sites, and correlation decreased in the deeper
layers of soil. Although, for two sites (Goodwell, OK, and
Palestine, TX) SSM compared well with in situmeasurements
made at all depths. The variability in soil moisture
observations over April–December is shown as shaded regions
in Fig. 3. The relationship could change depending on the
rain event, vegetation, and soil characteristics at a given
location. However, results from this analysis indicated that
SSM shows a relatively strong relationship with most SM
measurements made up to 20 cm, which is important for
understanding the impact of drought in rangeland ecosystems.
185
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Figure 2. Validation of SMAP soil moisture in Texas and Oklahoma. (A) Point validation of SMAP soil moisture vs. observed soil moisture from eight USCRN
sites (see Fig. 1). (B) Basin validation of SMAP HUC8 soil moisture vs. modeled HUC8 soil moisture obtained from the VegET model. Note: Modeled
estimates of soil moisture (VegET SM) are not available for Panther Junction, TX, and Edinburg, TX. The data used to generate this figure are available at
https://www.sciencebase.gov/catalog/item/5769847ae4b07657d1a05fb2.
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ComparisonofSSMwithOtherAgro-Hydrologic
Variables

Some of the key agro-hydrologic variables that are most
commonly used to generate drought indices include precipita-
tion, normalized differential vegetation index, land surface
186
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temperature, and ET. It is important to determine if the SMAP
radiometer responds to some of these drivers and response
variables. First, to understand how well the SMAP radiometer
is responding to the increase or decrease in soil moisture content
due to a rain event (or lack thereof), we tested SSM against
Rangelands
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Figure 3. Comparison of SMAP soil moisture against in situ soil moisture measurements (made at different soil depths) obtained from USCRN sites. The
shaded area represents soil moisture variability (max-min) for each station. Note: Austin and Panther Junction sites do not have soil moisture observations for
depths more than 20 cm. The data used to generate this figure are available at https://www.sciencebase.gov/catalog/item/576986e3e4b07657d1a05fc0.
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precipitation data. Eight-day precipitation totals for the eight
HUCs covering USCRN sites were summarized from 4-km
Parameter-elevationRegressions on Independent SlopesModel
(PRISM) precipitation datasets11 obtained from the PRISM
Climate Group website.vi Fig. 4 (top row) shows the
comparison results of SSM plotted with PRISM precipitation.
Comparison results with PRISM precipitation showed reason-
able agreement with rainfall (r values ranging from 0.56–0.71).

Second, to determine if SSM shows response to changes in
land surface temperature (LST), we plotted the MODIS LST
(MOD11A2) 8-day average obtained from MODIS onboard
the Terra satellite (because overpass times from Terra are
closer to SMAP overpass times than those of the Aqua
satellite). MODIS LST, derived from MODIS thermal
bands, is an important parameter, closely linked to soil
moisture and widely used to estimate ET. MODIS products
are available on a near-daily basis and available freely via the
Land Processes Distributed Active Archive Center
(LPDAAC) web page.vii Results indicate (Fig. 4, middle
row) that, on average, SSM showed an expected negative
relation with MODIS LST with a wide range of r values from
-0.25 for Muleshole and Panther Junction, TX, to -0.79 for
Palestine, TX. Low correlations resulted from the lack of
range in soil moisture estimates in some HUCs.

In general, SSM andmodeled actual ET estimates cannot be
directly compared (as ET is driven by both available energy and
soil moisture). However, under non-energy limiting environ-
ments, ET is expected to respond positively to the available soil
moisture. Hence, in this study we produced normalized ET
(ETn) by creating a ratio between actual ET (ETa) obtained
from the VegET model8 with potential ET (PET) estimates
(obtained from University of Idaho websiteviii) to exclude
vi View the PRISM group website at http://www.prism.oregonstate.edu/.
vii View the LP-DAAC website at https://lpdaac.usgs.gov/

dataset_discovery/modis/modis_products_table/mod11a2.
viii Available at http://metdata.northwestknowledge.net/.
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seasonality (energy component) of ET, thus making ETn more
comparable to soil moisture. Therefore, comparisons between
ETn and SSM would provide insights into a potential
convergence of evidence approach for drought monitoring.
Comparison results of ETn with SSM are presented for 6
HUCs in Fig. 4 (bottom row). On average, SSM showed a
strong positive relation with ETn with r values ranging from a
low of 0.29 for Muleshole, TX, to a high of 0.94 for Palestine,
TX. Comparison results from Fig. 4 reinforce the fact that SSM
can complement and validate other agro-hydrologic variables
used in drought monitoring in rangeland ecosystems with a
potential of being used as an input to developing a robust
multi-index drought monitoring system.
Drought Monitoring Using SSM
Drought monitoring is a complex process and depends on a

variety of complex hydrological and physiological factors that are
challenging to monitor consistently and exhaustively in space
and time.1 Currently, theUSDroughtMonitor (USDM)offers
weekly data on the occurrence and severity/intensity of drought
in the United States. The USDM provides a consistent and
usable drought product generated by combining information
from a variety of factors and drought indices. In this study, we
directly (qualitatively) compared drought severity images for
parts of the southern United States obtained from the USDM
with the SSM summaries for the grassland HUCS over Texas
and Oklahoma watersheds (Fig. 4).

Qualitative comparison of SMAP soil moisture and
drought images from USDM are shown in Fig. 5. Drought
graphics obtained from USDM indicate that regions were
abnormally dry during early September 2015 and that drought
severity increased from dry to moderate to severe and extreme
drought in just a few weeks. By 20 October 2015, several
regions in Texas were showing exceptional drought intensity.
However, short duration rains that started just after 20
October 2015 provided relief from the exceptional drought
conditions. SSM images for the same region indicate a similar
187
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Figure 4. Scatterplots showing comparison of SMAP soil moisture (SSM) with other agro-hydrologic (drives and response) variables for the eight HUCs
covering the USCRN soil moisture observation sites. Top row: SSM vs. PRISM precipitation data; Middle row: SSM vs. MODIS land surface temperature;
Bottom row: SSM vs. normalized modeled evapotranspiration (ETa/PET) obtained from the VegET model. The data used to generate this figure are
available at https://www.sciencebase.gov/catalog/item/57699ebfe4b07657d1a05feb. Note: Modeled ET estimates for Panther Junction, TX, and
Edinburg, TX, were not available.

Figure 5. Drought representation in the rangelands of Texas (SeptemberOctober 2015). (A) SMAP soil moisture for Julian dates 249289. (B) Weekly
drought images obtained from the US Drought Monitor. (C) Mean daily precipitation from Texas and Oklahoma grassland-dominant HUC8 polygons.
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improving trend in soil moisture status. SSM data indicated
that during the early part of September 2015 (Julian dates 249,
257, and 265) through mid-October 2015 (Julian dates 273
and 281) soil moisture levels declined substantially from 0.3 to
0.0 cm3/cm3 over some regions of Texas and Oklahoma.
However, rain events that occurred after 20 October 2015
improved the soil moisture level back to early September 2015
levels as corroborated by data obtained from the USDM. This
finding indicates that soil moisture images obtained from
SMAP are consistent with, and could potentially be
incorporated into, drought monitoring tools such as the
USDM. Although only a qualitative comparison between
SSM and USDM is made, understanding the differences in
these two datasets will help us develop a more quantitative
analysis and integration. The SSM provides information on
soil moisture or the amount of soil moisture deficit, whereas
the USDM provides information on drought severity
classification based on a multitude of inputs.

This study presented initial insights and demonstrated the
potential of using SSM for drought monitoring studies in the
rangeland ecosystems. The SMAP satellite is providing, for
the first time, spatially explicit, global observations of soil
moisture at 36-km spatial resolution. This initial investigation
indicates that there is potential for SMAP data to contribute
to existing drought monitoring tools and procedures. This is a
step forward towards building a national soil moisture
monitoring system, without which, quantitative measures of
drought will remain difficult to judge.3

It must be stressed, however, that this study used only 9
months (April–December 2015) of beta quality, early release
data with preliminary algorithms and are subject to uncer-
tainties. This study is based on the early adopter data to
determine initial accuracy and usefulness of the SSM product.
Hence, care should be taken in generalizing results from this
study. As more data become available, comprehensive
evaluations of SSM over longer time periods and larger
areas will be necessary to understand the full benefits and
limitations of using SMAP data for drought monitoring.
Improved understanding can benefit from additional studies
Table A1. Characteristics and source of input and valida

No. Dataset

Source/

Satellite/

Sensor

1

SMAP
Level 3
soil
moisture

SMAP
Radiometer

2
PRISM
Rainfall

PRISM
model

Appendix A
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that include multi-year time series of SMAP data and studies
that focus on comprehensive evaluations of SSM at a) field or
pixel scale, b) regional scale/watershed scale, and c) global
scale. Furthermore, studies integrating field soil moisture
measurements wherever available with SSM for monitoring
drought and its severity according to soil types and
hydro-climatic regions can advance our knowledge of using
SMAP data for drought monitoring. Studies that work to
understand the relationships between available soil moisture
and changes in rangeland biomass, drought onset, frequency,
and severity in rangeland ecosystems will be needed as well.
Because the SMAP data are independent of solar illumination
and unique from the primary data used in other drought
indices, studies that explore how these data complement (as
opposed to replace) existing monitoring tools and procedures
will be important as we work toward building an integrated
drought monitoring approach that takes advantage of all
available data to help decision makers mitigate the impact of
drought in a timely manner.
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(daily swaths)

36 km 6
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to 8-day)

4 km 11
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Table A1 (continued )

No. Dataset

Source/

Satellite/

Sensor

Time period Resolution Reference

3

MODIS
land
surface
temp
(LST)

MODIS
Terra
(MOD11A2.005)

Apr-Dec 2015
(8-day composites)

1 km -

4
Modeled
soil
moisture

VegET Model
Apr-Dec 2015
(8-day composites)

5 km 8

5
Actual
evapotranspiration

VegET Model
Apr-Dec 2015
(8-day composites)

5 km 8

6
In situ soil
moisture

US Climate
Reference
Network
Stations

Apr-Dec 2015
(daily aggregated
to 8-day)

- 7

7
Hydrologic
units for
CONUS

USGS - - -

8
Global
Land cover
climatology

MODIS
(MCD12Q1)

- 0.5 km 9
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