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Research

Forecasting Weed Distributions using
Climate Data: A GIS Early Warning Tool

Catherine S. Jarnevich, Tracy R. Holcombe, David T. Barnett, Thomas J. Stohlgren, and John T. Kartesz*

The number of invasive exotic plant species establishing in the United States is continuing to rise. When prevention

of exotic species from entering into a country fails at the national level and the species establishes, reproduces,

spreads, and becomes invasive, the most successful action at a local level is early detection followed by eradication.

We have developed a simple geographic information system (GIS) analysis for developing watch lists for early

detection of invasive exotic plants that relies upon currently available species distribution data coupled with

environmental data to aid in describing coarse-scale potential distributions. This GIS analysis tool develops

environmental envelopes for species based upon the known distribution of a species thought to be invasive and

represents the first approximation of its potential habitat while the necessary data are collected to perform more in-

depth analyses. To validate this method we looked at a time series of species distributions for 66 species in Pacific

Northwest and northern Rocky Mountain counties. The time series analysis presented here did select counties that

the invasive exotic weeds invaded in subsequent years, showing that this technique could be useful in developing

watch lists for the spread of particular exotic species. We applied this same habitat-matching model based upon

bioclimatic envelopes to 100 invasive exotics with various levels of known distributions within continental U.S.

counties. For species with climatically limited distributions, county watch lists describe county-specific vulnerability

to invasion. Species with matching habitats in a county would be added to that county’s list. These watch lists can

influence management decisions for early warning, control prioritization, and targeted research to determine specific

locations within vulnerable counties. This tool provides useful information for rapid assessment of the potential

distribution based upon climate envelopes of current distributions for new invasive exotic species.

Key words: Exotic species, geographic information system, invasive species, iterative sampling, modeling, rapid

assessment, weeds.

Invasive exotic plant species are one of the major threats
of the 21st century, negatively impacting human health
(Mack et al. 2000), the economy (Pimentel et al. 2005),
native species, and ecosystem processes (Vitousek et al.
1996; Wilcove et al. 1998). The rate of exotic species’
introductions appears to be increasing with globalization
(Levine and D’Antonio 2003; Stohlgren et al. 2008; Work
et al. 2005), exacerbating these potential negative impacts.

In invasive exotic species management, prevention of a
novel exotic species reaching a new location is key to
reducing unwanted invasions (Rejmanek and Pitcairn
2002). Prior to species establishment, early detection
quickly followed by control and eradication is the most
effective course of action in reducing spread. The cost of
eradicating an exotic species increases exponentially as an
infestation grows (Rejmanek and Pitcairn 2002). The large
number of species already established or currently entering
the United States coupled with the time and labor demands
of screening for potential invasiveness and early detection
of key species makes the problem seem intractable (Levine
and D’Antonio 2003). Therefore, an early warning system
is necessary in the prevention of new infestations (Lodge et
al. 2006); the creation of watch lists such as those suggested
here are an important component of such a system.

Regrettably, there is often a dearth of specific biological
knowledge about any particular exotic species. Although

DOI: 10.1614/IPSM-08-073.1

* First, second, and fourth authors: Ecologist, Ecologist Trainee,

and Invasive Species Branch Chief, U.S. Geological Survey, Fort

Collins Science Center, 2150 Centre Ave., Building C, Fort Collins,

CO 80526-8118; third author: Research Associate, Natural

Resource Ecology Laboratory, Colorado State University, Campus

Mail 1499, Fort Collins, CO 80523-1499; fifth author: Biota of

North America Program, 9319 Bracken Lane, Chapel Hill, NC

27516. Corresponding author’s E-mail: jarnevichc@usgs.gov

Invasive Plant Science and Management 2010 3:365–375

Jarnevich et al.: Forecasting weeds N 365

Downloaded From: https://complete.bioone.org/journals/Invasive-Plant-Science-and-Management on 28 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use



several different methods exist for predicting the potential
distribution of an exotic in a new range (Caley and
Kuhnert 2006; Krivanek and Pysek 2006; Richardson and
Thuiller 2007), these methods generally are used at the
scale of countries, and require specific information about
the native range of the species (see Ficetola et al. 2007;
Richardson and Thuiller 2007). Data on country distribu-
tions are generally easily obtained. Herbarium collections
may be used to generate lists of invasive exotics for political
entities such as countries, states, or counties, but such lists
are not inclusive; the species listed are not systematically
collected nor are the species lists developed for this
purpose. Ecological data concerning a potential invasive
exotic species, including its life history requirements, may
often be lacking unless the species has displayed invasive
characteristics elsewhere or it has been well studied
throughout its native range. Collecting these data for new
invaders can often be time intensive. When a new exotic
species is located, managers may not be able to wait for
detailed data collection and analysis before taking action. A
quick, general way to prioritize species watch lists at the
scale of a management unit such as a U.S. county would be
a useful tool for field managers involved in early detection
and rapid response activities.

There are many techniques available for predicting
species ranges (see recent review by Elith et al. 2006),
typically requiring point locations for a species or an
overlaid grid with cells identified as present or absent based
upon field data. Unfortunately, these types of location data
are often not obtained easily by resource managers.
Occurrence data for invasive exotic plant species across
large spatial extents are often only readily available at
county-level (or even state-level) distributions (or as species
lists for areas such as national parks or wildlife refuges),
although there are several online systems being developed
to synthesize disparate field data sets for invasive exotic
species. Because of the varied size and shape of U.S.
counties, it can be difficult to transform these data into the
required point locations or grid of presence locations.

There are two suites of environmental niche models that
are useful in determining species occurrences, those
requiring presence-only data and those requiring presence
and absence data. These models can be generated with
location data from many sources, including museum and
herbarium records, research survey data such as plot data
and transects, and inventories of species for specific areas.
Models using presence and absence data will be more
discerning and can distinguish between factors related to
species absence as well as presence (Brotons et al. 2004;
Zaniewski et al. 2002). However, when reliable absence
data are unavailable different strategies may be recom-
mended. Generally, absence locations are not implicitly
collected in weed surveys (Barnett et al. 2007; North
American Weed Management Association 2002), and often
may only be inferred if an entire area has been surveyed or
all inspected locations are known. However, this informa-
tion is generally not included in online databases that make
presence data readily available (e.g., Invasive Plant Atlas of
New England [University of Connecticut 2007]). Other
data sets, including those from museums and herbaria and
species lists for areas such as counties or national parks, also
lack absence data, again resulting from our lack of
knowledge about survey locations or because of lack of
information on survey targeting and extent for species
occurrence data. Where available, absence data has the
potential of false absences (e.g., where a species is cryptic or
present as a buried seed; Crossman and Bass 2008; Rouget
et al. 2001), and the species could be unreported or absent
even in highly suitable habitat. Detection of an exotic
species can often be difficult early in the invasion process as
some exotic species often grow in relatively small numbers
for a period of time after the introduction, which is called
the lag phase (Crooks 2005). Missing these presence
locations can cause errors in models by missing important
suitable habitats (Hortal et al. 2008, but see Loiselle et al.
2008). Another kind of false absence may result from the
fact that there is a high probability that the new invading
species has not yet had the opportunity to establish itself at

Interpretive Summary
The rapid-assessment geographic information system tool

described in this paper is very applicable to management of
invasive exotic species. County-level records for weed distributions
for large geographic areas are readily available on Websites, unlike
point location data. This tool is easy to use and creates potential
distribution maps based on climate variables. These maps can then
be used to generate watch lists for early detection of the weeds.
Early detection can help efforts to eradicate a problem species
before a large infestation occurs that is much more difficult to
control.

The tool creates an environmental envelope for each environ-
mental variable for each species; this envelope describes the range
of environmental variability over which the species can survive. For
example, we obtained the lowest recorded temperature and the
highest recorded temperature for a species in counties where it is
present. We then compared this range to counties where the
species is absent and recorded if the county’s value fell inside
(assigned a value of one) or outside (assigned a value of zero) the
range of the recorded presence locations. Finally, we summed these
values of one or zero for all of the variables by county. The sum
indicates the number of variables for each county that fell within
the environmental envelope of the species.

We developed bioclimatic envelopes using climate data for
invasive exotic plant species at the county level in the United
States. Using these envelopes, we determined the likelihood of a
species establishing in a county. These results can be used to
develop county-level watch lists of species whose envelope includes
the county. This method is not limited to the county-level data sets
used here, but could be applied to other taxonomic groups and
other data sets such as national park species lists.

366 N Invasive Plant Science and Management 3, October–December 2010

Downloaded From: https://complete.bioone.org/journals/Invasive-Plant-Science-and-Management on 28 Mar 2024
Terms of Use: https://complete.bioone.org/terms-of-use



a particular location, and so is out of equilibrium with its
environment. Given opportunity and time, the invader
could eventually establish itself and spread into areas where
it is currently absent. In these situations, where a species
does not occupy all suitable habitat, presence-only models
have out-performed presence/absence methods (Brotons et
al. 2004; Hirzel et al. 2001) and have been used instead
(Gibson et al. 2007). Thus, we choose to use presence-only
data in this paper for exotic species distribution modeling.

Given the challenges of obtaining species-specific data
for exotic plants, data format (point locations or regular
grid) limitations, and inaccuracies of absence data along
with the issues associated with species distribution models,
we have developed what we believe to be a quick and
effective method of providing information early in the
invasion process to guide management decisions until the
information and resources to develop more detailed and
specific models become available. This geographic infor-
mation system (GIS) program is adapted from an earlier
program that we created, which incorporates known point
location data to create an environmental envelope for a
species (Barnett et al. 2007; Evangelista et al. 2008). This
method is simple enough for users who may not have the
statistical background necessary to understand more
complex predictive modeling techniques. It incorporates
county-level species lists and ancillary data layers such as air
temperature and annual precipitation as parameters; in this
example we chose general bioclimatic parameters (although
other environmental parameters such as topographic pa-
rameters could be used) that are fundamentally important
for most plant species’ growth and establishment rather
than parameters necessary for a particular species. Here, we
detail our system for generating ‘‘watch lists’’ of species
based upon currently reported county-level distribution
data in association with various bioclimatic factors. We
plan to make this system available for use at the National
Institute for Invasive Species Science (National Institute of
Invasive Species Science 2008). This GIS program will
create a bioclimatic envelope of a species’ potential
distribution based upon where the species is known to
currently occur. These envelopes are defined by the range
in bioclimatic conditions where a species is currently
known and can be used to assess the potential spread of the
species and develop watch lists for early detection activities.
Information is quickly available while more detailed
assessments are gathered.

Materials and Methods

Invasive Exotic Weed Data. We obtained county-level
presence data from 2004 and 2007 for the top 100 most
problematic invasive exotic plant species within the
contiguous 48 states of the United States from the Biota
of North America Program (BONAP; Kartesz 2004,

2007). BONAP maintains a county-level database of
current occurrence data and historic herbarium records
for all known vascular plants in the United States. The top-
100 list includes the most problematic invasive exotic
species. These species covered a broad range of spatial
distributions, from mesquite [Prosopis juliflora (Sw.) DC.]
found in one county to curly dock (Rumex crispus L.) found
in 1,846 counties across 47 states.

Validating our method required a temporal data set
because we were predicting the potential range of an exotic
species given an initial distribution after introduction. We
used a county time series data set from the INVADERS
database (Rice 2006), which records exotic plant occur-
rence records for all counties in the Pacific Northwest and
northern Rocky Mountain states of Washington, Oregon,
Idaho, Montana, and Wyoming, hereafter called the
Northwest. We queried county-level distributions for all
100 species for 1930, 1960, 1990, and 2005. Some of the
species documented only a single occurrence record for a
time-step and 27 species were undocumented for these
states for all four time periods (not recorded), precluding
their use. Thus, sample sizes varied for each time period,
resulting in envelopes for 44 species for 1930, 57 for 1960,
66 for 1990, and 69 for 2005.

Climate Data Layers. We derived 19 bioclimatic raster data
layers (Appendix A) from average monthly precipitation,
minimum temperature, and maximum temperature (Nix
1986) using an ArcAML script (Hijmans 2006). These
variables represent annual trends, seasonality, and extreme or
limiting bioclimatic factors. To represent current climate
conditions and species habitat we used the PRISM data set,
(Daly et al. 2000; PRISM Group 2007), an 800-m (2,625-ft)
resolution 30-yr average data set for 1971–2000. We then
summarized the bioclimatic variables for each county using
ArcGIS’s Spatial Analyst Zonal Statistics tool1 to calculate
the minimum, maximum, mean, and range for each vari-
able for each county. From these four metrics we chose the
statistic that matched the variable most closely, for example
for Bio1, annual mean temperature, we chose the mean, and
for Bio6, minimum temperature of the coldest month, we
chose the minimum. This method allowed us to take the
extremes in counties rather than simply using an average
across the county.

Bioclimatic Envelope Tool. We developed an ArcGIS
script to determine the bioclimatic envelope of a species
defined by its known polygonal presence locations (in this
case, counties). We created a bioclimatic envelope for each
variable for each species; we define a bioclimatic envelope
as the range of bioclimatic variability over which the species
can survive. For example, we obtained the lowest recorded
temperature and the highest recorded temperature for a
species in counties where it is present. We then compared
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this range to counties where the species is absent according
to the BONAP data set and recorded if the county’s value
fell inside (assigned a value of one) or outside (assigned a
value of zero) the range of the recorded presence locations.
Finally, we summed these values of one or zero for all of
the variables by county. The sum indicates the number of
variables for each county that fell within the bioclimatic
envelope of the species. Since 19 variables were used, a
value of 10 would mean that the county was within the
range of 10 variables and outside the range of nine
variables. We did not differentiate between the variables, so
counties with a value of 10 would not necessarily fall within
the range of the exact same 10 variables.

For validation of the method we developed a bioclimatic
envelope for each of the 100 worst exotic species present in
the Northwest in 1930 and compared it to the species’
recorded distribution in 1960, 1990, and 2004. We used
the Northwest data set because we could use the time
periods to check validity. We performed the same
comparison using the updated envelopes based upon the
new species location records for both 1960 and 1990 to
further validate the technique. Assessment metrics included
percentage of new occurrences captured by the envelope,
sensitivity and specificity (Fielding and Bell 1997), and the
number of counties added to the watch list. Sensitivity is
the probability that observed presence locations were
predicted correctly; specificity is the probability that
absence locations were predicted correctly. Because the
assessment metrics required binary data, we defined
anything with an envelope value of at least 15 as present.
We selected 15 as the cutoff by examining the number of
presence locations in future years that fell into each of the
19 envelope count classes and selected the one where the
values leveled off for all species. The envelope from each
time period for the Northwest and the envelope from 2004
were also compared to the 2007 BONAP data set. After
validation we examined an application of this bioclimatic

envelope method, calculating the bioclimatic envelope in
the United States for each of the 100 worst invasive exotics
in the BONAP data set to examine potential species
distributions.

Results and Discussion

Validation with Time Period Analysis. Because we
examined 100 species, we present general trends and a
few detailed examples (for all 100 species and occurrences
see Appendix B). A minimum of 15 occurrence records was
required to capture future occurrences, as determined by
examination of sensitivity and sample size, thus we used
this value as a cutoff for including species within further
analyses reported here. For all species in the time series,
average sensitivity of the envelope was 92, 95, and 96% for
1930 applied to 1960, 1960 applied to 1990, and 1990
applied to 2005, respectively (Table 1). However, speci-
ficity, which was calculated by defining all counties not
reporting a species as ‘‘absence’’ locations, was much lower,
meaning that the envelope overpredicted the species
distribution (27, 24, and 25%, respectively; Table 1).
These low specificity values could be caused by calculating
the metrics using absence locations that were not
necessarily unsuitable locations for the species to grow.
Rather, these were places where the species has not been
recorded either because of sampling errors (these data are
based on museum records and not a statistical sampling
design) or because of suitable habitat where the exotic
species has not yet arrived. All species have continued to be
recorded in new locations for the time period, including
the most recent, although this period was half that of the
others. Although this could be a result of failing to detect or
report a species, in previous analyses using the INVADERS
data, we determined that at least some of the new records
through time are due to species spread (Stohlgren et al.
2008). Another reason for the drastically different

Table 1. Results from predicted distribution with the envelope model compared to actual distribution.

Envelope
model

Actual
distribution

Species
sample size

Average % of
new records

predicted Sensitivitya Specificityb

Range in number of
county watch lists including

a certain species

NW1930 NW1960 18 85% 92 27 63–151
NW1960 NW1990 37 95% 94 24 26–148
NW1990 NW2005 50 80% 96 25 40–150
NW1930 BONAP2007 18 86% 86 37 63–151
NW1960 BONAP2007 37 93% 91 29 26–148
NW1990 BONAP2007 50 95% 95 25 40–150

a Sensitivity is the proportion of true positives, or the number of counties predicted as present where the species was actually recorded
as present in the future.

b Specificity is the proportion of true negatives, or the number of counties predicted as absent where the species was not recorded as
present in the future.
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sensitivity and specificity values relates to the development
of the envelope. Factors limiting the distribution of the
species may not have been included in the suite of
predictors, leading to overprediction. Other methods for
determining species distributions that develop statistical
relationships with variables using both presence and
absence data may be better able to differentiate suitable
habitat.

For example, we created a bioclimatic envelope for hoary
cress [Cardaria draba (L.) Desv.] using the data from 1930
(Figure 1a) and 1960 (Figure 1b) and then compared the
envelope’s prediction to the reported distribution from the
next time periods (1960 and 1990, respectively). The 1930
envelope for hoary cress captured many of the new
locations in 1960, but not as great a proportion of the

future time-step’s new locations. The 1960 envelope
captures more of the future time-step’s new locations
because the species had spread to locations with bioclimatic
conditions not encompassed by the 1930 recorded
distribution. By rerunning the envelope with the new
locations from 1960 the envelope improves by encompass-
ing these novel environments, supporting the need for an
iterative approach to improve these models as new records
are added to the database (Stohlgren and Schnase 2006).

Selecting all counties with a 1930 envelope score of at
least 15 for each of the species, on average 88% of locations
reported as present by 2007 were captured by the envelope.
The time series results indicate that this is a useful
technique to reduce potential locations to watch for such
species to appear. County watch lists may be generated by
adding species to county lists when the county has a high
envelope score.

Based upon the results from the Northwest time series,
we found this method to be informative for creating species’
watch lists. This simple model captured many of the new
occurrences reported in future time steps. The benefits of
this approach are that little has to be known about the
individual species, which is helpful for unresearched, newly
established exotic species. This method provides immedi-
ately useful information while more detailed information is
being collected and analyzed. More detailed information
could be used to predict locations within an at-risk county
where the species will be most likely to occur. In every case,
the number of counties on a watch list generated from the
envelope results was still fewer than the 199 counties in the
Northwest region (Table 1).

This method may be especially useful in situations where
errors of omission (a species is predicted absent when
present) far outweigh those of commission (a species is
predicted present when absent). The method performed
very well at capturing new locations and new potential
locations. However, occasionally it overpredicted, perhaps
due to capturing appropriate bioclimatic conditions for
growth rather than the subset of those locations a species is
limited to by interactions with other organisms. For the
species we examined, it is difficult to know if these species
have reached the full range of their potential distribution or
if they are still spreading. The BONAP data set compiled
in 2007 showed increases for all but five of the 100 species
from the 2004 data set (an average increase of 99 counties
added to a species’ distribution), suggesting that the species
examined are still being found in new locations.

Model Applications. Application of the bioclimatic en-
velope for the 100 worst invasive exotics suggested that all
species could spread relative to the 2004 BONAP data set
distribution. On average, species were recorded in 635
counties in 29 states. The average number of counties for
each species with an envelope value of at least 15 (e.g., at

Figure 1. A bioclimatic envelope was generated from all
occurrences recorded by (a) 1930 and (b) 1960 for hoary cress.
Counties are colored according to the number of bioclimatic
variables within the range defined by the bioclimatic envelope.
Counties outlined in bold with diagonal lines through them
indicate recorded observations by the years (a) 1930 and 1960
and (b) 1960 and 1990. It was found in all counties by 2005.
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least 15 of the 19 parameters for the county were within the
range of the envelope) was 2,513 counties in 43 states, for a
predicted average increase of 1,878 counties in 14 states
from the 2004 distribution. Thus, a species could be added
to an average number of 1,878 county watch lists.
Although this number is large, the envelope for 45 of the
100 species included fewer than 10 new states, meaning
that 45 of the species would be added to the watch lists of
fewer than 10 states.

Almost all species in the BONAP data set did have
increased occurrence records between 2004 and 2007.
Eleven species could not be compared due to changes in
taxonomy, which made it difficult to differentiate between
distribution changes based upon renaming a species and
actual spread. For the remaining 89 species, the average
number of species per county increased from 635 counties
in 29 states in 2004 to 686 counties in 31 states in 2007, an
average increase of 98 counties over the 3-yr period. These
data again suggest that the selected species are still
increasing in distribution, further validating the method
as the bioclimatic envelope models based upon the 2004
distributions showed potential increase in distribution.

As an example of the results, we selected two species with
different current distributions—clustered vs. highly dis-
persed—to discuss in detail. Mary’s-grass [Microstegium
vimineum (Trin.) A. Camus var. imberbe (Nees) Honda],
introduced into Tennessee in 1919, was found in 325
counties in 23 states in the eastern United States in 2004
and had a small predicted bioclimatic envelope (Figure 2a).
Yellow starthistle (Centaurea solstitialis L.), introduced in
the mid-1800s, was also found in small number of counties
(218 counties in 32 states), but these locations were widely
distributed across the United States and in more states
rather than clumped (Figure 2b). The predicted envelope
subsequently had a larger predicted distribution. Species
such as curly dock and green foxtail [Setaria viridis (L.)
Beauv.] were reported in at least half the counties within
the contiguous United States and had predicted extents
covering most counties. However, even for these species,
unique counties such as hot, dry counties in the Southwest
and hot, moist ones in the southern tip of Florida had a
lower habitat match value and therefore lower number of
parameters within the envelope. The species Mary’s-grass
would then be added to the watch lists of a fewer counties
than yellow starthistle, which would be added to almost all
counties’ lists. This method for generating watch lists may
be more beneficial for species such as Mary’s-grass (species
only on a few counties’ lists) than potentially widespread
species.

Generalist species such as thistles tend to spread easily
due in part to their plumose seed dispersion method, and
such coarse-scale modeling techniques may not be
beneficial, as with yellow starthistle. These generalist
species do well in most habitats and tend to have potential

habitat in the vast majority of counties within the United
States, and may be more difficult to model (Evangelista et
al. 2008). However, for species that are highly restricted by
environment in their distributions, such melaleuca [Mel-
aleuca quinquenervia (Cav.) Blake], this technique could
inform resource managers in diverse locations whether or
not they need to monitor for the appearance of this plant.
Melaleuca grows primarily in hot and wet conditions,
which means that the bioclimatic envelope of this species is
very specific. Managers working in the desert southwest or
cold mountainous regions can probably rule out the need
to monitor for such a plant. Although Mary’s-grass is not as
specialized as melaleuca, it still appears more restricted in
its distribution than a thistle, and managers in the western

Figure 2. County-level distribution with the current distribution
(defined as the counties where the Biota of North America
Program [BONAP] data set recorded the species as present) are
filled with slashed lines in black (2004) and grey (2007) for (a)
Mary’s-grass and (b) yellow starthistle. Counties are colored
according to the number of predictor variables that fell within
the range of the bioclimatic envelope generated from the 2004
BONAP distribution, where higher values indicate greater
habitat suitability.
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United States could again leave it off a watch list
(Figure 2a). It is this ability to rule out species for an area
that is particularly helpful in the development of species
watch lists.

If data were available for watersheds or ecoregions rather
than politically defined units such as counties, we would
recommend using these data because they would be less
prone to the errors associated with amalgamating climatic
data across a large, diverse county. However, data for
politically defined regions are much more readily available,
and despite the issues associated with a single county
encompassing very diverse conditions, this technique still
has some value. Also, by using metrics other than simply
means for the county, we were able to capture some of the
extremes that do exist (e.g., if minimum temperature is
limiting, using the lowest minimum temperature found
anywhere within the county would indicate whether the
species could survive anywhere within the county).
Additionally, this technique is not limited to the
bioclimatic predictors used here. Other variables deemed
important for a particular species or a suite of species
could be used to define the environmental envelope of a
species.

This method is not meant to replace other, more
detailed methods. It only predicts locations that may be
suitable climatically, and with the variables chosen in the
example presented in this paper, and does not explore other
potentially limiting factors such as biotic interactions. It
can be used as a first approximation of potential habitat
after the establishment of a species thought to be invasive
while the necessary data are collected to perform more in-
depth analyses. As illustrated by the time series data, the
methods described here could provide a useful means to
quickly develop watch lists for the network of county weed
coordinators across the country requiring few additional
resources. The models may also be useful in selecting
priority weed species for control based on their potential
spread, and can certainly provide utility as a first-iteration
modeling approach to inform immediate actions while
more detailed data are collected.

Sources of Materials
1 ArcGIS, ESRI, Redlands, CA.
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Appendix A. Nineteen bioclimatic variables derived from average monthly precipitation, minimum temperature, and maximum
temperature, based on Nix (1986).

Name Description

BIO1 Annual mean temperature
BIO2 Mean diurnal range (mean of monthly [maximum temperature 2 minimum temperature])
BIO3 Isothermality (BIO2/BIO7) (3 100)
BIO4 Temperature seasonality (standard deviation 3 100)
BIO5 Maximum temperature of warmest month
BIO6 Minimum temperature of coldest month
BIO7 Temperature annual range (BIO5–BIO6)
BIO8 Mean temperature of wettest quarter
BIO9 Mean temperature of driest quarter
BIO10 Mean temperature of warmest quarter
BIO11 Mean temperature of coldest quarter
BIO12 Annual precipitation
BIO13 Precipitation of wettest month
BIO14 Precipitation of driest month
BIO15 Precipitation seasonality (coefficient of variation)
BIO16 Precipitation of wettest quarter
BIO17 Precipitation of driest quarter
BIO18 Precipitation of warmest quarter
BIO19 Precipitation of coldest quarter

Appendix B. One hundred of the most problematic invasive exotic species identified by BONAPa and the number of counties in the
northwest (INVADERS database) and the continental US (BONAP database) each is present in per time period.

Scientific name Common name

INVADERS database BONAP database

1930 1960 1990 2005 2004 2007

Abutilon theophrasti Medik. Velvetleaf 3 7 38 63 954 1,167
Achillea millefolium L. Yarrow, common 2,068
Aegilops cylindrica Host Goatgrass, jointed 6 17 51 462 480
Ailanthus altissima (P. Mill.) Swingle Tree-of-heaven 5 10 18 20 720 920
Akebia quinata (Houtt.) Decne. Chocolate vine 42 60
Albizia julibrissin Durazz. Silktree 439 552
Alhagi maurorum Medik. Camelthorn 2 4 43 44
Alliaria petiolata (Bieb.) Cavara & Grande Mustard, garlic 2 383 591
Allium vineale L. Garlic, wild 6 10 12 756 817
Amaranthus retroflexus L. Pigweed, redroot 1,114
Ambrosia artemisiifolia L. Ragweed, common 1,777
Avena fatua L. Oat, wild 22 33 52 74 433 456
Bromus tectorum L. Brome, downy 66 122 155 171 1,507 1,677
Bryonia alba L. Bryony, white 15 24 33 34
Capsella bursa-pastoris (L.) Medik. Shepherd’s-purse 58 88 120 133 1,832 2,038
Cardaria chalapensis (L.) Hand.-Maz. Whitetop, lens-podded 8 15 23 124
Cardaria draba (L.) Desv. Cress, hoary 19 53 105 161 500 532
Carduus nutans L. Thistle, musk 3 19 55 118 689 965
Centaurea diffusa Lam. Knapweed, diffuse 22 74 151 264 274
Centaurea solstitialis L. Starthistle, yellow 11 24 39 82 218 315
Centaurea biebersteinii DC. Spotted knapweed 830
Ceratocephala testiculata (Crantz) Bess Buttercup, bur 194 207
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Scientific name Common name

INVADERS database BONAP database

1930 1960 1990 2005 2004 2007

Chenopodium album L. Lambsquarters,
common

58 99 135 149 1,611

Cirsium arvense (L.) Scop. Thistle, Canada 28 75 137 185 1,051 1,245
Conium maculatum L. Poison-hemlock 12 41 81 125 917 1,066
Convolvulus arvensis L. Bindweed, field 35 82 127 162 1,318 1,536
Crupina vulgaris Cass. Crupina, common 5 13 16 17
Cynoglossum officinale L. Houndstongue 12 51 88 108 664 763
Cyperus esculentus L. Nutsedge, yellow 7 12 17 19 1,197 0
Cyperus rotundus L. Nutsedge, purple 306 334
Cytisus scoparius (L.) Link Broom, Scotch 13 23 39 56 209 229
Datura stramonium L. Jimsonweed 1,012 1,176
Digitaria ischaemum (Schreb.) Schreb.

ex Muhl.
Crabgrass, smooth 9 20 26 33 1,104 1,275

Digitaria sanguinalis (L.) Scop. Crabgrass, large 10 29 45 53 1,359 1,528
Echinochloa crus-galli (L.) Beauv. Barnyardgrass 1,692 1,835
Eichhornia crassipes (Mart.) Solms Waterhyacinth 189 202
Elaeagnus angustifolia L. Russian-olive 2 10 46 60 441 493
Elaeagnus umbellata Thunb. Autumn-olive 2 3 6 318 533
Eleusine indica (L.) Gaertn. Goosegrass 1,145 1,310
Erodium cicutarium (L.) L’Hér. ex Ait. Filaree, redstem 57 82 103 115 679 726
Erucastrum gallicum (Willd.) O.E. Schulz Mustard, dog 5 6 10 15 218 243
Euphorbia esula L. Spurge, leafy 6 48 96 151 687 787
Fatoua villosa (Thunb.) Nakai Mulberryweed 61 87
Galega officinalis L. Goatsrue 2 16 18
Galeopsis tetrahit L. Hempnettle,

common
9 23 27 167 196

Halogeton glomeratus (Stephen ex Bieb.)
C.A. Mey.

Halogeton 10 21 26 99 102

Heracleum mantegazzianum Sommier &
Levier

Hogweed, giant 5 7 36 48

Hieracium caespitosum Dumort. Hawkweed, meadow 420 486
Hydrilla verticillata (L. f.) Royle Hydrilla 77 107
Hyoscyamus niger L. Henbane, black 20 43 78 105 181 187
Hypericum perforatum L. St. Johnswort, common 27 63 93 106 1,082 1,223
Ipomoea purpurea (L.) Roth Morningglory, tall 4 5 5 678 831
Isatis tinctoria L. Woad, dyer’s 11 30 55 124 132
Lactuca serriola L. Lettuce, prickly 38 80 117 131 1,539 1,713
Lamium amplexicaule L. Henbit 15 31 50 64 1,207 1,405
Lamium maculatum L. Deadnettle, spotted 3 4 7 9 95 119
Lamium purpureum L. Deadnettle, purple 6 15 36 47 679 861
Lepidium campestre (L.) R. Br. Pepperweed, field 7 28 52 63 945 1,069
Lepidium latifolium L. Pepperweed, perennial 8 32 86 216 220
Lespedeza cuneata (Dumont) G. Don Lespedeza, sericea 702 794
Linaria dalmatica (L.) P. Mill. Toadflax, Dalmatian 3 30 77 149 324 335
Lonicera japonica Thunb. Honeysuckle, Japanese 1,013 1,225
Lythrum salicaria L. Loosestrife, purple 5 34 98 567 929
Melaleuca quinquenervia (Cav.) Blake Melaleuca 25 20
Microstegium vimineum (Trin.) A.

Camus var. imberbe (Nees) Honda
Mary’s-grass 325 400

Appendix B. Continued.
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Scientific name Common name

INVADERS database BONAP database

1930 1960 1990 2005 2004 2007

Myriophyllum spicatum L. Watermilfoil, Eurasian 3 38 260 444
Orobanche minor Sm. Broomrape, small 2 3 4 36 47
Paulownia tomentosa (Thunb.) Sieb. &

Zucc. ex Steud.
Paulownia, royal 2 5 294 349

Peganum harmala L. Rue, African 4 4 34 34
Plantago lanceolata L. Plantain, buckhorn 32 61 75 85 1,456 1,637
Polygonum cuspidatum Sieb. & Zucc. Knotweed, Japanese 40 65 481 622
Polygonum perfoliatum L. Tearthumb, devil’s 20 72
Portulaca oleracea L. Purslane, common 14 33 66 75 1,073 1,294
Prosopis juliflora (Sw.) DC. Mesquite 2 1
Pueraria montana var. lobata (Willd.)

Maesen & S.M. Almeida
Kudzu 477

Ranunculus repens L. Buttercup, creeping 22 50 73 76 439 495
Rosa multiflora Thunb. ex Murr. Rose, multiflora 2 679 944
Rubus armeniacus Focke Blackberry, Himalaya 141 155
Rumex crispus L. Dock, curly 52 96 125 143 1,851 2,091
Salsola kali L. Saltwort, common 149 94
Salvia aethiopis L. Sage, Mediterranean 4 14 18 27 27
Salvinia molesta Mitchell Salvinia, giant 11 53
Secale cereale L. Rye, cereal 5 15 42 51 546 641
Setaria faberi Herrm. Foxtail, giant 813 994
Setaria viridis (L.) Beauv. Foxtail, green 39 79 105 119 1,570 1,731
Solanum viarum Dunal Soda apple, tropical 24 99
Sonchus oleraceus L. Sowthistle, annual 14 37 54 66 848 1,021
Sorghum halepense (L.) Pers. Johnsongrass 5 10 19 41 1,238 1,375
Spartina anglica C.E. Hubbard Cordgrass, common 7 7
Sphaerophysa salsula (Pallas) DC. Swainsonpea 2 12 17 20 63 63
Stellaria media (L.) Vill. Chickweed, common 27 66 99 109 1,524 1,711
Taeniatherum caput-medusae (L.) Nevski Medusahead 5 18 22 38 78 85
Tamarix ramosissima Ledeb. Saltcedar 203
Taraxacum officinale G.H. Weber ex Wiggers Dandelion 42 80 131 142 1,740 1,926
Tragopogon lamottei Rouy 503 576
Tribulus terrestris L. Puncturevine 4 29 39 77 708 730
Urtica dioica L. Nettle, stinging 1,211
Verbascum thapsus L. Mullein, common 39 71 98 117 1,715 1,918
Vinca minor L. Periwinkle, common 2 4 468 640
Xanthium spinosum L. Cocklebur, spiny 11 23 36 38 194 211

a BONAP, Biota of North America Program.
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