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ABSTRACT
Full-annual-cycle (FAC) models integrate seasonal demographic and environmental processes to elucidate the factors
that limit and regulate animal populations. Unlike traditional, breeding-season-focused models of migratory
populations, FAC population models include the effects on population dynamics of events in both the breeding and
the nonbreeding season (i.e. winter and migration). Given that migratory birds can spend most of the year away from
the breeding grounds and face seasonally specific threats and limitation, FAC models can provide critical and unique
insights about their population dynamics. We review existing FAC population model types, including demographic
network models, seasonal matrix models, and individual-based models, with examples of each type. We also suggest
some approaches new to FAC population modeling—integrated population models and integral projection models—
and make recommendations for the development and implementation of these models. Incorporating model
components such as density dependence, migratory connectivity (the demographic linkages between breeding and
nonbreeding areas), and seasonal interactions can be critical for model realism but can also increase model complexity
and development time. Much of the development of FAC population models has been more theoretical than applied.
The main limitation to the application of the developed models is availability of empirical data for all annual stages,
particularly knowledge of migratory connectivity and density-dependent seasonal survival. As these data become
more available, the models outlined here should find additional uses.

Keywords: density dependence, full life-cycle, migratory connectivity, nonbreeding, population dynamics,
population limitation, seasonal, vital rates

Modelos poblacionales de ciclo anual completo para aves migratorias

RESUMEN
Los modelos de ciclo anual completo (CAC) integran los procesos ambientales y demográficos estacionales para
dilucidar los factores que limitan y regulan las poblaciones animales. A diferencia de los modelos tradicionales
enfocados en la estación reproductiva de las poblaciones migrantes, los modelos poblacionales CAC incluyen los
efectos de los eventos tanto de la estación reproductiva como no reproductiva (i.e. invierno y migración) en las
dinámicas poblacionales. Dado que las aves migratorias pueden pasar la mayorı́a del año alejadas de las áreas
reproductivas y enfrentar amenazas estacionales especı́ficas y limitantes, los modelos CAC pueden aportar una visión
crı́tica y única sobre sus dinámicas poblacionales. En este trabajo revisamos los tipos de modelos poblacionales CAC
existentes, incluyendo modelos de redes demográficas, modelos matriciales estacionales y modelos basados en
individuos, con ejemplos de cada tipo. También sugerimos algunos enfoques nuevos para el modelado poblacional
CAC, para modelos poblacionales integrados y para modelos de proyección integral, y brindamos recomendaciones
para el desarrollo y la implementación de estos modelos. La incorporación de componentes al modelo como la denso-
dependiente, la conectividad migratoria (los vı́nculos demográficos entre las áreas reproductivas y no reproductivas) y
las interacciones estacionales puede ser fundamental para el realismo de los modelos, pero también aumenta la
complejidad de los modelos y su tiempo de desarrollo. Gran parte del desarrollo de los modelos poblacionales CAC ha
sido más teórico que aplicado. La limitante principal para la aplicación de los modelos desarrollados es la
disponibilidad de datos empı́ricos para todas las etapas anuales, particularmente del conocimiento de la conectividad
migratoria y la supervivencia estacional denso-dependiente. A medida que estos datos se tornan más disponibles, los
modelos delineados aquı́ deberı́an tener usos adicionales.

Palabras clave: ciclo de vida completo, conectividad migratoria, denso-dependencia, dinámica poblacional,
estacional, limitación poblacional, no reproductiva, tasas vitales
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INTRODUCTION

Many avian and other animal populations are migratory,

making regular, seasonal movements, and therefore encoun-

ter different conditions and threats across seasons (Marra et

al. 2011). For example, the Semipalmated Sandpiper (Calidris

pusilla), a small shorebird, breeds in Arctic North America

and spends its stationary nonbreeding season (hereafter

‘‘winter’’; see Table 1) mostly in northern South America.

This species may be declining as a result of winter hunting,

declines in food availability during migration, and climate

change on the breeding grounds, among other factors

(Hitchcock and Gratto-Trevor 1997, Morrison et al. 2012).

For logistical reasons, models used to understand the

population dynamics of migratory birds or to make

recommendations for their conservation have traditionally

included data from only 1 season (generally the breeding

season). However, demographic events in one season can

affect population dynamics in subsequent seasons in ways

impossible to predict from traditional 1-season population

models, through carryover effects, density dependence,

environmental change, and other factors in the other seasons

(Sillett et al. 2000, Webster and Marra 2005, Calvert et al.

2009). Most population models have not included the full
annual cycle because information about migratory connec-

tivity (defined in Table 1; Webster et al. 2002) and published

studies outside the breeding season (P. P. Marra personal

observation) are lacking. As these data become more

available, a review of the approaches available for full-

annual-cycle (FAC) population modeling seems appropriate.

A population model is a mathematical model that is

applied to the study of population dynamics, or how and

why population abundances change over time and space

(Table 1; Turchin 2003).We include models that only make

inferences about population growth, but we exclude those

that simply model occupancy dynamics (e.g., Taylor and

Hall 2012) or only estimate individual demographic

components of population growth, such as survival (e.g.,

Sillett and Holmes 2002, Gullett et al. 2014). We define an

‘‘FAC population model’’ as a model that includes the

effects of events in both the breeding and the nonbreeding

season (i.e. winter and migration) on the population

dynamics of migratory animals. FAC population models

can divide the annual cycle in different ways; for example,

most but not all FAC population models separate

migration and winter seasons, but only a few models of

migratory birds explicitly model molting season. FAC

population models are also sometimes referred to as ‘‘full-
life-cycle’’ (FLC) population models. However, ‘‘FLC’’
more generally designates modeling all stages from birth

to death for any organism, and we consider ‘‘FAC’’ a

clearer term.

FAC population models can be used for both theoretical

and applied questions. In general, population models are

built for several reasons, including (1) to estimate

population trends, (2) to estimate overall levels of

population viability, (3) to estimate vulnerability to specific

threats, (4) to understand the dynamics of biological

invasions, (5) to determine what limits population growth,

and (6) to recommend management actions (Morris and

Doak 2002, Williams et al. 2002). FAC population models

represent a way to express and test hypotheses on how

events that occur at multiple stages of the annual cycle

affect the dynamics of migratory populations. An FAC

approach to both studying and conserving migratory birds

is critical, but questions remain about the development of

FAC population models.

There are many types of FAC population model, with

different advantages, drawbacks, and data requirements.

Despite their importance, there has never been a compre-

hensive review of the models available to ecologists. The

purpose of the present review is to describe existing and

potential modeling approaches for FAC inference, organized

roughly in order of increasing model detail and/or complex-

ity. For each model type, we discuss data requirements,

response variables, examples when available, and assump-

tions, strengths, and limitations. This review is not meant to

be exhaustive, but rather to highlight models of different

types.Themajority of the exampleswe present are fromavian

studies; however, we suggest that these models are critical for

migratory animals of all taxa. We make modeling recom-

mendations for different modeling and conservation goals

and discuss the way forward.

MODEL TYPES

Single-season Count Models
Single-season count models examine the effects of the

breeding and nonbreeding environments on changes in

relative abundance in 1 of the 2 seasons. The data required

are simply counts from 1 season (such as the North

American Breeding Bird Survey), environmental data from

.1 season, and migratory connectivity estimates (Figure

1A). Migratory connectivity estimates, which are generally

the most difficult type of data to acquire, might not be

needed if the environmental data being modeled apply to

the whole range in the noncount season. However,

applying environmental data from the entire noncount-

season range (as opposed to data from where each counted

population is actually going in the noncount season) will

reduce the power of the analysis to detect the environ-

mental effect in the noncount season.

Kölzsch et al. (2007) examined how density dependence

in the breeding season and environmental factors in the

breeding and nonbreeding seasons affected the population

dynamics of a population of Great Snipes (Gallinago

media) in central Norway using a raw-count (Figure 1B)

stochastic Ricker-logistic population model. They found
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evidence of breeding-season density dependence and

environmental effects on population dynamics, but no

evidence of winter-season environmental effects. However,

they did not include potential observation error in their

model, although they provided some evidence that it was

low and unlikely to have caused a spurious detection of

density dependence. They also lacked direct information

on where in Africa their breeding population wintered,

which may be why they could not find evidence of winter-

weather effects on the population.

Wilson et al. (2011) examined the effects of breeding

season and winter weather on population trends in

American Redstart (Setophaga ruticilla) using the Link

and Sauer model (Table 1 and Figure 1D; Link and Sauer

2002). They used breeding-season count data, migratory

connectivity estimates, and wintering and breeding weath-

er data. They found winter-weather effects from the

Caribbean on population trends of eastern breeding birds,

but little evidence of breeding-weather effects or winter-

weather effects in the west. The Link and Sauer model

accounts for observation error in counts and for differ-

ences between observers.

Pasinelli et al. (2011) used stochastic Gompertz-logistic

models in a state-space framework (Table 1 and Figure 1C;

de Valpine and Hastings 2002) to examine the effects of

breeding-population density dependence and of breeding,

TABLE 1. Glossary.

Term Definition

Carryover effects Nonlethal events occurring in one season that influence individual performance in
a subsequent season

Demographic stochasticity Variation in population dynamics due to the sequence of birth and death of
individuals

Density dependence Change in vital rates with change in abundance or density
Environmental stochasticity Change in vital rates over time due to random variation in the environment or

other species
Full-annual-cycle (FAC) population model Model that includes the effects of events in both breeding and nonbreeding

seasons on population dynamics for migratory animals
Full-life-cycle (FLC) population model Population model that includes all stages from birth to death
Individual-based model (IBM) Population model that tracks individual organisms, not just numbers in categories

or distributions of traits
Individual heterogeneity Inherent, persistent differences between individuals of the same population and

sex
Integral projection model Generalization of matrix population models that allow 1 or more of the ways in

which individuals are characterized to be continuous instead of categorical
Integrated population model Single, unified analysis of population count data and demographic data that can be

used for both estimating parameters and projecting populations
Link and Sauer model A spatially hierarchical model for count data that estimates population trends and

allows for observer effects and other nuisance variables
Matrix population model A population model that projects numbers within a population in different ages,

stages, or other categories through time, implemented with a matrix (a
rectangular array of mathematical elements)

Migratory Animal species or population that makes regular, directed seasonal movements
Migratory connectivity The movement and mixing of individuals between summer and winter populations

and stopover areas
Optimal annual routine (OAR) model Optimality-based IBM that allow individual behavior to be predicted over the full

annual cycle
Population A group of organisms of the same species that live in the same region
Population dynamics The study of how and why population abundances change over time and space
Population model A mathematical model that is applied to the study of population dynamics
Season A section of the year relevant to the population ecology of the migratory taxa in

question (e.g., breeding, fall migration, winter, and spring migration)
Seasonal interactions Any events occurring in one season that influence individual performance or

density dependence in a subsequent season
Seasonal matrix population model A matrix population model that projects populations within and between years

through a series of seasonal matrices
State-space model A hierarchical model with separate components for process (e.g., change in

population abundance through time) and observation (conditional on process
component)

Transient population dynamics Short-term population dynamics, which can differ from long-term or asymptotic
population dynamics due to environmental change or perturbations from stable
population structure

Winter The nonbreeding, nonmigratory season for the species in question
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FIGURE 1. Map and equations for single-season and 2-season count models. (A) Example map of data collection and populations. In
this example, there are 3 breeding populations (b1, b2, and b3) and 2 wintering populations (w1 and w2) connected by migratory
connectivity (i.e. wj,k is the proportion of birds from breeding population j that migrate to wintering population k). The population
growth of birds from year t to year t þ 1 can be affected by the breeding-region temperature of that year (Tj,t) and the wintering
region’s rainfall of that year (Rk,t). Solid dots represent the beginning of the breeding-season count sites, and open circles represent
the beginning of the winter-season count sites (used only in 2-season count models). (B) Equations for a single-season raw-count
model, where the abundance of birds in breeding population j in year tþ1, Nj,tþ1, is a stochastic density-independent or -dependent
function (f) of abundance in the previous year, breeding-season temperature, and winter-season rainfalls scaled by migratory
connectivity. Xi,j,t is the count of birds in site i within population j and year t (the total count from a breeding population is assumed
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wintering, and migratory staging-area environmental

conditions on 6 populations of Red-backed Shrikes (Lanius

collurio) breeding in Central Europe. They did not have

data on migratory connectivity and, therefore, based fall,

winter, and spring environmental conditions on the entire

species range during those seasons. They found evidence

of density dependence in all populations and evidence of

fall or winter rainfall effects in 4 of the populations. State-

space models also account for observation error.

The above 3 examples show that single-season count

models can be formulated with raw counts (Kölzsch et al.

2007), Link and Sauer models (Wilson et al. 2011), or

state-space models (Pasinelli et al. 2011). These methods

differ in how they account for potential observer error.

Models based on raw counts do not account for

observation error and should generally be avoided with

field data, especially because this biases estimates of

density dependence and stochasticity (Staples et al. 2004,

Freckleton et al. 2006). Both Link and Sauer models and

state-space models account for observation error, but

state-space models separate observation and population

processes, allowing covariates to affect just one or the

other. Traditional state-space models and Link and Sauer

models provide estimates of an index of abundance, not

true estimates of abundance, because they assume that

false positive errors (overcounting) are about as likely as

false negative errors (undercounting; Hostetler and

Chandler 2015). Newer state-space models (Dail and

Madsen 2011, Hostetler and Chandler 2015) overcome

this problem by using a binomial model for detection

probability. State-space models and raw-count models can

include density dependence, but Link and Sauer models

currently lack this process. However, Link and Sauer

models provide a more developed, spatially hierarchical

model of population trends than other models generally

do.

Single-season count models generally cannot test

hypotheses about the demographic mechanisms responsi-

ble for population dynamics, but they can be used to

generate hypotheses. In addition, without individual-based

data the models are perhaps more likely to get spurious

effects. However, these models, especially in the state-

space formulation, would be useful in a population viability

analysis (PVA) framework to create a quantitative FAC

climate vulnerability assessment, based on a priori

hypotheses about how weather affects population dynam-

ics (Small-Lorenz et al. 2013).

Two-season Count Models

If one has counts from 2 seasons, the models described

above can be extended to allow for further insights. Link

and Sauer (2007) described an extension of their

hierarchical count model (Link and Sauer 2002) to account

for 2 seasons of count data collected with different

protocols. Although they applied this model to a

nonmigratory species (and so used counts from the same

locations), with good migratory connectivity estimates and

counts from both breeding and wintering ranges, this

model could be applied to examine seasonal changes in

numbers in a migratory species. Betini et al. (2013, 2014)

set up an experimental laboratory system of ‘‘migratory’’

populations with fruit flies (Drosophila melanogaster) and

found evidence of density dependence in both breeding

and nonbreeding seasons and carryover effects in both

directions. Using a series of Ricker-logistic population

models, they found that density dependence in both

seasons and carryover effects both help stabilize popula-

tion dynamics. Their laboratory setup enabled them to use

raw counts without correcting for observation error

(Figure 1E). Their model could be extended in a state-

space framework to account for observation error in 2-

season counts in natural migratory populations (Figure

1F).

Single-population Density-dependent Models

Single-population density-dependent models predict the

equilibrium abundance of a migratory population in 2

seasons in response to habitat changes on both the

breeding and wintering grounds (Sutherland 1996, 1998,

Norris 2005, Sheehy et al. 2010). This class of FAC model

requires estimates of density-dependent summer recruit-

ment and winter mortality as well as habitat-change

scenarios; optional inputs include effects of habitat quality

on the density-independent component of summer

 
to be the abundance of that population in this model). (C) Equations for a single-season state-space model, which is identical to the
single-season raw-count model, except that it accounts for variance in breeding-population counts around abundance (s2). (D)
Equations for a single-season Link and Sauer model, where li,j,t is the expected count in site i within population j and year t and is a
stochastic density-independent function (f0) of the weather covariates, year, the random effect of site (sitei,j), and the random effect
of the count observer (obsi,j,t). (E) Equations for a 2-season raw-count model, where g and h are functions for stochastic population
growth rate over half the year (beginning of summer to beginning of winter and the reverse, respectively), Mk,t is the abundance of
wintering population k at the beginning of winter, fk,j is the proportion of birds from wintering population k that migrate to
breeding population j, and Yi,k,t is the count of birds in site i within wintering population k and year t. (F) Equations for a 2-season
state-space model, which is identical to the 2-season raw-count model, except that it accounts for variance in breeding and
wintering population counts around abundances (s2 and x2, respectively).
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recruitment and winter mortality, proportions and costs of

habitats of different quality, and estimates of carryover

effects between seasons. The original model (Sutherland

1996) can be used to predict the effects of breeding and

wintering habitat loss on equilibrium abundance. Subse-

quent model extensions can account for carryover effects

(Norris 2005, Norris and Taylor 2006, Sheehy et al. 2010)

and habitats of different quality (Sutherland 1998, Norris

2005, Norris and Taylor 2006, Sheehy et al. 2010) and cost

(Sheehy et al. 2010) for optimal conservation planning.

Sheehy et al. (2010) applied a single-population density-

dependent model to the issue of where to purchase habitat

for most effective conservation of the Hooded Warbler (S.

citrina). Their model was parameterized with estimates of

habitat quality and density dependence from the Hooded

Warbler and the closely related Black-throated Blue

Warbler (S. caerulescens) and of the costs of habitat in

Belize and Ontario. When they incorporated habitats of

different quality, the optimal strategy was to purchase only

high-quality habitat from both seasons. A 4-season version

of the model has also been developed (Sheehy et al. 2011).

Single-population density-dependent models are rela-

tively simple to build, but with a key limitation: the

assumption of a single population of animals. When

applied to multiple breeding populations that winter in

multiple areas, the implicit assumptions are that either

migratory connectivity is weak and breeding dispersal is

strong or that these processes do not have a strong effect
on equilibrium abundance. Existing models in this

category all assume that fecundity and winter mortality

are both density dependent and that (adult) mortality is

limited to the winter season. As presented in the literature,

these models also do not account for stochasticity or

transient dynamics. Transient dynamics (Table 1; Caswell

2007) could be relevant to the goal of evaluating the effects

of changes in the amount and quality of habitat if habitat

quantity and quality are continually changing (Dolman and

Sutherland 1995). In this case, the migratory population

might never reach an equilibrium abundance, because

equilibrium abundance keeps changing.

Demographic Migratory Network Models
Demographic migratory network models generalize single-

population density-dependent models to allow for multiple

breeding and wintering populations (Sutherland and

Dolman 1994, Dolman and Sutherland 1995, Taylor and

Norris 2010). Breeding and wintering populations are

linked through migratory connectivity, but connectivity is

generally an output that arises from competition and

migration costs rather than an input. Required inputs

include estimates of density-dependent fecundity and

winter survival parameters; optional inputs include dis-

tances between locations, migration mortality rates or food

requirements, habitat quality of locations, carrying capac-

ity of populations, how distances affect competitive ability,

and habitat-loss scenarios. These models predict equilib-

rium abundance and migratory connectivity and the effects

of habitat loss on the migratory connectivity, abundance,

and population dynamics of multiple linked migratory

populations.

Sutherland and Dolman (1994, Dolman and Sutherland

1995) developed models that allow for density dependence

in multiple breeding and wintering populations for

migratory vertebrates, and predicted patterns of migratory

connectivity using evolutionarily stable strategies. They

used their models to examine the effects of habitat loss on

population size and migratory connectivity. They exam-

ined both equilibrium and dynamic properties of their

models.

Taylor and Norris (2010) built on Sutherland and

Dolman’s framework using the terminology of graph

theory, a branch of mathematics that concerns the pairwise

interactions between objects. Each network contains

breeding and wintering populations (or nodes) and

migratory routes (or edges). The model incorporates

migration mortality (distance dependent), breeding suc-

cess (depends on node quality, density, and wintering

population competitive ability), and winter mortality

(depends on node quality, density, and the breeding

population’s competitive ability). It can be used to explore

how changes in the number and arrangement of nodes

affect total equilibrium population size and migratory
connectivity, and how changes in the amount or quality of

habitat in different nodes affect the same. James and

Abbott (2014) used this model to explore how changes in

migratory distance and breeding-season length would

affect populations of migratory birds.

The Taylor and Norris (2010) model has been applied

to migratory bat species (Wiederholt et al. 2013, Erickson

et al. 2014). Wiederholt et al. (2013) applied the model to

the Mexican free-tailed bat (Tadarida brasiliensis mex-

icana), which shows partial migration from the wintering

grounds that varies by sex. Therefore, Wiederholt et al.

extended the model to include 2 sexes and their differing

effects on carrying capacity in winter and summer. They

used their model to identify the most important breeding

roosts and migratory roosts. Erickson et al. (2014)

modeled the dynamics of bats in a theoretical landscape

based on 2 species: the Indiana bat (Myotis sodalis) and

the little brown bat (M. lucifugus). They extended the

model to include age structure and relaxed the assump-

tion that order of arrival affects competitive ability,

because this seemed unlikely for colonially breeding bats.

They found that after populations are disturbed from

equilibria (because of factors such as disease or increased

migration mortality), they may either be slow to return or

move to alternative equilibria in ways that are difficult to

predict.
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Existing models in this category all assume that

fecundity and winter mortality are both density dependent

and that there is no adult mortality during the breeding

season. Taylor and Norris (2010) assumed different

density-dependent functions for fecundity and winter

survival than Sutherland and Dolman (1994) did, and it

could be informative to investigate how the choice of

density-dependent function affects predictions by these

models. In general, this is a powerful class of model, with

many potential combinations with other classes of models,

such as matrix and integrated population models.

The models of Martin et al. (2007) and Iwamura et al.

(2013) could also be considered FAC network population

models, and their goals are similar to those of the models

in this section (determining optimal habitat preservation in

the wintering range of American Redstarts and the effects

of sea-level rise on stopover habitat for 10 Australasian

shorebirds, respectively). However, they make very differ-

ent assumptions: Migratory connectivity is fixed, and the

size of a breeding population is controlled by habitat

availability in the nonbreeding habitats it is connected to.

Because there is no attempt to model density-dependent

breeding success or winter survival, a model similar to

these may be easier to parameterize than the demographic
migratory-network models.

Annual Time-step Matrix Models
Animals within a population are not all identical

demographically; at minimum, categorical factors such as

age, stage, and sex can affect reproductive rates and

survival probabilities. Matrix population models can

incorporate the effects of these sources of demographic

variation on population dynamics (Caswell 2001). Figure

2A shows a simple, 2-age-class life-cycle diagram and

matrix model. The basic equation of matrix population

projection is

Ntþ1 ¼ ANt

where A is the population projection matrix and Nt is the

vector of the number of animals in each stage or category

at time t. These population projection models can

equivalently be expressed as a set of difference equations

instead of as a matrix equation; the key point is that they

project age- or stage-structured populations forward from

one year to the next.

Required inputs for an FAC annual time-step matrix

population model are age- or stage-specific estimates of

fecundity, annual survival probabilities, the effects of

seasonal events on 1 or more of those vital rates, and

starting population size. Estimates of migratory connec-

tivity, density-dependent vital rates, and environmental

stochasticity may also be incorporated. Matrix models

could be used to estimate overall levels of vulnerability or

viability; to estimate vulnerability to specific threats in

breeding, wintering, or migratory seasons; to determine

what limits populations; and to recommend management

actions. They can be examined in either equilibrium or

dynamic contexts.

Matrix models have been applied to a declining

subspecies of Red Knot (Calidris canutus rufa) that feeds

primarily on horseshoe crab (Limulus polyphemus) eggs

during a critical spring migratory stopover in Delaware

Bay (McGowan et al. 2011). Baker et al. (2004)

hypothesized that the Red Knot decline is largely due to

commercial harvest of horseshoe crabs in the mid-

Atlantic. Early population models for Red Knots showed

a declining population but did not explicitly tie this

decline to horseshoe crab harvest (Baker et al. 2004).

McGowan et al. (2011) developed matrix population

models with annual time-steps for horseshoe crabs and

Red Knots in Delaware Bay that link harvest type and

limits to horseshoe crab abundance, horseshoe crab

abundance to density of eggs available for Red Knot

consumption, egg density to stopover weight gain by Red

Knots, and Red Knot weight gain to annual adult survival

and fecundity. They found that the trajectory of the Red

Knot population and the effects of different harvest
regimes were very sensitive to the choice of model for the

effect of weight gain on annual survival, but that the

model that most accurately predicted recent Red Knot

population trajectories also predicted a large effect of

horseshoe crab harvest on this population.

This example shows that annual time-step matrix

models can account for carryover effects (Table 1) on

fecundity explicitly; carryover effects on seasonal survival

would be included implicitly, because only annual survival

is included. The assumptions of annual time-step matrix

models include no differences between animals in a

category, and limitations include the difficulty of param-

eterization and not partitioning effects of survival by

season. However, for density-independent models, the

second limitation may not be important. Annual survival

probability is simply the product of seasonal survival rates,

and the elasticity, or proportional sensitivity, of the terms

of a product are all identical. Therefore, in density-

independent models, proportional changes in seasonal

survival rates will all have the same effect. The next 4

model types are extensions of this model type that loosen

these assumptions and limitations.

Seasonal Matrix Models
Most matrix models of wildlife populations have an annual

time-step. However, seasonal or periodic matrix popula-

tion models, which can be used to project population

numbers and structure both within and between years

(Figure 2B), have long been used in a variety of contexts

(Skellam 1967, Caswell 2001). Such a model can be applied
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FIGURE 2. Life-cycle diagrams and equations for 2-stage, 1-sex (female) population-projection matrix models. (A) Annual time-
step matrix model, with a prebreeding (beginning of summer) census. Age 1 females produce, on average, mj female offspring,
which survive to become age 1 females the next summer with probability /j. Age 2þ females produce, on average, ma female
offspring, which also survive to become age 1 females the next summer with probability /j. Age 1 and age 2þ females both
survive to become or stay age 2þ the next summer with probability /a. A is the annual population projection matrix. To make this
model full-annual-cycle, 1 or more of the vital rates should be affected by nonbreeding-season events. (B) Seasonal matrix model.

The Auk: Ornithological Advances 132:433–449, Q 2015 American Ornithologists’ Union

440 Annual-cycle population models J. A. Hostetler, T. S. Sillett, and P. P. Marra

Downloaded From: https://complete.bioone.org/journals/The-Auk on 19 Sep 2024
Terms of Use: https://complete.bioone.org/terms-of-use



to a migratory species, either in a relatively simple fashion

(single breeding population, 1 sex, 2 age classes, density

independent, and deterministic) or generalized to allow for

more complexity using other well-established matrix-

modeling approaches.

Required inputs for seasonal matrix population models

are age- or stage-specific estimates of fecundity, seasonal

survival probabilities, and starting population size. De-

pending on the model complexity, estimates of migratory

connectivity, density-dependent vital rates, and determin-

istic or stochastic environmental effects on vital rates may

also be required. Seasonal matrix models can be used in

the same ways as annual time-step matrix models but can

also break down the effects of survival on population

growth by season. Seasonal matrix models also permit the

modeling of migratory populations in which animals

survive ,1 yr and of density dependence in both the

breeding and nonbreeding seasons. Seasonal matrix

population models can be more difficult to parameterize

than any of the previously discussed models.

Runge and Marra (2005) developed a seasonal matrix

model to examine the effects of habitat limitation, sexual

habitat segregation, and carryover effects (Table 1) in

breeding and nonbreeding seasons on the equilibrium

population sizes and sex ratios of a migratory bird species.

Their exploration was mostly theoretical but was patterned

and somewhat parameterized from data on American

Redstarts. Instead of structuring the population by age or

stage, they structured it on the basis of sex and habitat

quality (poor and good habitats in the winter season;

source and sink habitats in the breeding season). They

found that habitat availability on both the breeding

grounds and the wintering grounds, carryover effects,

and sex ratio all strongly affect equilibrium population

abundance.

Mattsson et al. (2012) developed a 2-sex, age-class-

structured, density-dependent seasonal metapopulation

model to determine the optimal habitat management to

maximize sustainable harvest for the Northern Pintail

(Anas acuta). They incorporated estimates and educated

guesses of current abundances; migratory connectivity;

survival dependent on sex, age class, and season; harvest

rates; recruitment dependent on density and habitat

conditions; and density-dependent emigration rates. They

found that increasing the habitat quality for the Prairie

Pothole breeding population increased carrying capacity

and sustainable harvest rate more than the same habitat-

quality increase for the Gulf Coast wintering population.

Flockhart et al. (2015) developed a stochastic, density-

dependent seasonal matrix model to examine the drivers

of monarch butterfly (Danaus plexippus) declines and

model the population viability over the next 100 yr. They

modeled 5 life stages, 3 breeding regions, and 1 winter

region (Mexico) with a 1-mo time step. They used

estimates from many sources on migratory connectivity,

fecundity, adult breeding survival, overwinter survival,

density-dependent larval survival, and pupal survival, as

well as an expert-opinion survey for migratory survival;

they allowed most vital rates to be stochastic. They tested

the effects of 3 potential threats to monarch population

viability: habitat loss in the breeding regions, habitat loss in

the winter region, and extreme weather events in the

winter region. Using simulations and transient elasticities

of abundance (Caswell 2007), they found that habitat

(milkweed) declines on the breeding grounds were the

largest driver of declines and of the probability of quasi-

extinction. Habitat loss and extreme weather events both

increase the probability of mass mortality events during

the winter; however, their model predicts that climate

change will eventually remove the chance of the mass-

mortality events.

The limitations and assumptions of seasonal matrix

models are similar to those of annual time-step matrix

models, except that they are generally more difficult to

parameterize. The strengths of these models include that

they can partition effects of survival by season. They can

also explicitly account for carryover effects, although not

mechanistically (e.g., through body condition; see below).

We provide example R code for a seasonal matrix model in

Supplemental Material Appendix S1.

Integrated Population Models
Integrated population models, an extension to matrix

population models, can be easier to parameterize than

those models (Besbeas et al. 2002, Brooks et al. 2004,

Schaub and Abadi 2011). Integrated population modeling

is a tool used for both estimating parameters and

projecting populations. It is a unified analysis of popula-

tion count data and demographic data, and an extension to

state-space models (Table 1), which contain a model for

the biological process and models for detection (e.g.,

counts). Integrated population models can be fit in either

 
Age 1 and age 2þ females both survive the summer with probability /sum,a. Age 1 and age 2þ females produce mj and ma female
offspring, respectively, which survive to become age 0 females at the beginning of autumn with probability /sum, j. These individuals
survive autumn migration with probability /mig, j to be age 0 at the beginning of winter; survive the winter with probability /win, j to
be age 0 at the beginning of spring; then survive spring migration with probability /mig, j to be age 1 at the beginning of summer.
Age 1þ females at the beginning of autumn similarly survive autumn migration with probability /mig,a; survive the winter with
probability /win,a; then survive spring migration with probability /mig,a to be age 2þ at the beginning of summer. The annual
population projection matrix A is the product of the seasonal matrices Bsum, Baut, Bwin, and Bspr.
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the classical (Besbeas et al. 2002) or the Bayesian statistical

framework (Brooks et al. 2004), though the Bayesian

framework is generally more flexible. These models are

useful for including multiple sources of data, especially

when individual sources of data considered alone would

provide imprecise parameter estimates. In fact, when there

are no data for a demographic parameter (e.g., immigra-

tion), but data for other parameters are of good quality,

these models can be used to estimate the missing

parameter (Abadi et al. 2010b). To our knowledge,

however, no seasonal or FAC integrated population models

have been published.

Like matrix models, integrated population models can

be used to estimate overall levels of vulnerability or

viability; to estimate vulnerability to specific threats in

breeding, wintering, or migratory seasons; and to deter-

mine what limits populations and recommend manage-

ment actions; and they can be examined in either

equilibrium or dynamic contexts. Generally, an integrated

population model requires both count data and individual-

based demographic data, such as capture–mark–recapture

and reproductive success, although a recently developed

integrated population model requires only spatial capture–

mark–recapture data (Chandler and Clark 2014). Ideally,
for an FAC integrated population model, data would be

available from multiple seasons. Potential weaknesses

include time required for model design and programming,

time and computer resources required to run models, and

lack of adequate data. We provide example R and JAGS

code for an integrated population model in Supplemental

Material Appendix S2.

Integral Projection Models
Several of the model types described above can be used to

model carryover effects on population dynamics (Runge

and Marra 2005, Norris and Taylor 2006, Betini et al.

2013). Generally, they do this by keeping track of a

previous season’s habitat type or quality, and letting that

have an effect on performance in the current season.

However, a more mechanistic approach to modeling

nonlethal carryover effects would keep track of a

continuous variable such as body condition, mass, or

arrival date (Harrison et al. 2011). This could be affected by

factors such as habitat quality, population density, and

environmental stochasticity and could change between

seasons, depending on the costs of migration and other

factors. This approach could be implemented either as an

individual-based model (see next section) or as an integral

projection model.

Integral projection models are a generalization of matrix

population models that allow one or more of the ways in

which individuals are characterized to be continuous

instead of categorical (Easterling et al. 2000, Ozgul et al.

2010, Coulson 2012). Inputs for an FAC integral projection

model based on body condition would be similar to those

for an FAC matrix model but would also include estimates

of the starting distribution of body conditions, the

distribution of body conditions at birth, how body

condition changes over the seasons (and in response to

environmental conditions), and how body condition affects

survival and reproduction. We know of no FAC integral

projection models to date, although between-year carry-

over effects have been modeled with standard integral

projection models (Kuss et al. 2008). An FAC implemen-

tation of the integral projection model has the potential to

be very powerful but would be challenging to design,

program, and parameterize.

Integral projection models, under the name ‘‘integro-
difference models,’’ were originally developed to treat

space as continuous, rather than internal state or size (Kot

et al. 1996, Neubert and Caswell 2000). Thus, they can be

viewed as a generalization of metapopulation or network

models, which divide space into discrete patches. These

models allow dispersal and other vital rates to depend on

position in space and have mostly been used to model the

spread of invasive organisms.We know of no application of

continuous-space integral projection models to migratory

organisms, but they could be very useful where it is
difficult to divide the breeding and winter ranges into

discrete patches or populations.

Individual-based Models
Individual-based models (IBMs) track individual animals

within a population, instead of tracking populations as

numbers of animals within stages or simply as a

distribution of a covariate. Survival, reproduction, and

behavior can be functions of individual traits, time within

the simulation, and (in spatially explicit models) location

of the individual. Behavioral rules can either be empirically

derived or based on optimality, although some authors

restrict the term ‘‘IBM’’ to the former (Grimm and

Railsback 2005). IBMs with optimality-based behavioral

rules are often called ‘‘behavior-based models’’ (BBMs).

Piou and Prévost (2012) built an empirically derived

IBM for the dynamics and evolution of an Atlantic salmon

population (Salmo salar). Their model has 2 seasons, but

with a daily time-step for many processes, such as survival.

The model has 2 locations (a river and the Atlantic Ocean),

allows for variable life-history strategies seen in this

species, models both sexes, includes demographic and

environmental stochasticity, and incorporates size- and

age-dependent survival, migration, and reproduction. The

authors subsequently used their model to examine the

FAC climate vulnerability of this species (Piou and Prévost

2013). They tried different levels of 3 potential effects of

climate change: river temperature increase, river flow

increase, and reduced salmon growth in the ocean. They

found that the latter 2 processes were likely to increase the
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probability of population extinction within the next 30 yr,

but this was partially countervailed by the benefits of

increased river temperature.

Pettifor et al. (2000) developed FAC BBMs for 2

migratory species: Barnacle Goose (Branta leucopsis) and

Brant (B. bernicla). Their model is spatially explicit and

game-theoretic (an optimization model that accounts for

conflict and cooperation with other individuals), which

allows the geese to compete for resources in the winter and

on spring stopovers. The model also incorporates carry-

over effects (winter–spring to breeding) based on energetic

reserves, although in somewhat limited ways. For Barnacle

Geese, an unspecified threshold of energy is required to

breed, but that is the only effect of energy on breeding. For

Brant, breeding productivity in successful years is a

function of female body mass but at the population, not

the individual, level. However, their spatially explicit, FAC

approach allowed them to examine the relative population

effects of habitat loss in different configurations and in

winter habitat versus spring.

Optimal annual routine (OAR) models provide another

way to set up an FAC BBM (Table 1; McNamara et al.

1998, Feró et al. 2008, McNamara and Houston 2008).

They are especially effective for addressing issues of

optimal timing of actions (such as migration and molt)

within the annual cycle. They can be analyzed either to find

the optimal strategy for an individual (assuming no

feedback with other individuals of the population) or to

find an evolutionarily stable strategy for a population

(McNamara and Houston 2008). Although OAR models

are generally used to address theoretical questions, Feró et

al. (2008) showed that these models can be applied to

conservation issues. They examined how theoretical

example birds with different food peaks (and therefore

different molt strategies) reacted to declines in food

availability on their stopover locations.

The strength of IBMs is that their flexibility allows the

modeler to address any subset of the goals of FAC

population modeling. The weaknesses are that they are

generally computationally intensive, very difficult to

parameterize, and require time and expertise for model

development. As a class of models, they include few if any

inherent assumptions, although individual IBMs will

include many assumptions.

POTENTIAL MODEL COMPONENTS

Model assumptions must be carefully considered (both

within and between model categories) and should be

guided primarily by which components (primarily model

structure and processes) are of greatest importance or

interest. To some extent, model components and assump-

tions are each other’s opposites; for example, when

density-dependent components are not included, the

assumption is that the population behaves in a density-

independent fashion. We do not mean to imply, from the

following list of components, that complex FAC models

are preferable to simple ones. Simple models are generally

easier to parameterize, analyze, and present and can even

outperform complex models in prediction (Ward et al.

2014). There is a tradeoff that must be considered for each

modeling program between these issues and the greater

realism of complex models.

Within-Population Processes
Density dependence. Density dependence represents

the change in a per capita vital rate with a change in

population density (Williams et al. 2002). Population

models with density dependence typically reach a stable

equilibrium abundance or carrying capacity (e.g., Sillett

and Holmes 2005), although cycles, chaotic dynamics, and

a stationary distribution of population densities (when

stochasticity is also included) are also possible (Williams et

al. 2002, Turchin 2003). Many population models are

density-independent, because of the difficulty of estimating

density-dependent vital rates or feedback and the ease of

analyzing density-independent models. However, density

dependence is likely ubiquitous and is key to population

regulation and dynamics. Furthermore, one of the main

purposes of developing FAC population models is to

explore when and where migratory populations are

limited, and this is not possible without including density

dependence. Some of the model types discussed here
(single-population, 2-season, and demographic network)

are intrinsically density-dependent, and others can be so.

However, empirical information on density can be lacking

for 1 or more seasons, especially for species with a

tendency toward within-season movement.

Vital rates decreasing with higher population densities
are just one type of density dependence, sometimes known

as ‘‘negative density dependence.’’ Allee effects occur

either when total individual fitness decreases as population

abundances or densities decrease (demographic Allee

effect) or when some aspect of fitness (such as probability

of breeding) does so (component Allee effects; Courchamp

et al. 1999, Stephens and Sutherland 1999, Stephens et al.

1999). Population processes that can cause Allee effects

include difficulty finding mates at low densities, cooper-

ative breeding or antipredator behavior, predator dilution,

inbreeding depression, increased exploitation risk, and

social thermoregulation, among others (Stephens et al.

1999, Berec et al. 2007). Allee effects can affect the spread

of invasive species (Taylor and Hastings 2005) and, along

with demographic stochasticity (see next section) and

other factors, contribute to the ‘‘extinction vortex,’’
whereby positive feedback pulls small populations closer

and closer to extinction (Gilpin and Soulé 1986, Morris

and Doak 2002, Fagan and Holmes 2006). We know of no
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FAC population models that have incorporated Allee

effects, but, given their importance for extinction risk, we

recommend their inclusion in FAC PVAs whenever there

is good reason to believe they are present.

Stochasticity. Populations fluctuate in numbers over

time for reasons that cannot be fully understood or

predicted. Deterministic population models are easier to

parameterize and analyze (Williams et al. 2002), but they

ignore this uncertainty and do not estimate risk for

populations, such as probability of extinction (Lande et al.

2003). Environmental stochasticity is change in vital rates

(and therefore in population dynamics) over time due to

random variation in the environment or other species. This

refers to random fluctuations between years for a given

season, not the more predictable differences between

seasons within a year, and should not be modeled in the

same manner (e.g., using periodic matrices; Caswell 2001).

Morris and Doak (2002) recommended a minimum of 4–

10 yr of field data to estimate environmental stochasticity

and build a PVA based on it. Demographic stochasticity is

variation in population dynamics due to the sequence of

births and deaths of individuals and is most relevant at

small population sizes (sometimes specified as either ,20

individuals or ,20 individuals stage�1; Morris and Doak
2002). Fluctuation in sex ratio is also generally considered

a type of demographic stochasticity; because it affects

individual fitness, fluctuation in sex ratio can also be

considered an Allee effect (Stephens et al. 1999).

Demographic and environmental stochasticity and density

dependence can be important determinants of population

dynamics and viability (Hostetler et al. 2012). Some of the

model types described here (single-population density-

dependent and demographic migratory network models)

have been explored only in a deterministic framework, but

stochastic versions are possible.

Within-Population Structure
Age and stage. Individuals within a population of

different ages or stages will generally have different vital

rates. These differences can often affect population

dynamics and may be of inherent interest to researchers

and conservationists. Many avian population models have

only 1 or 2 age classes (e.g., Bonnot et al. 2011, Rolland et

al. 2011, Schaub et al. 2012), because of difficulties in

precisely aging adult birds or as a result of minimal

variation in demographic rates with age after the first year.

There are other ways to classify individuals into stages

other than age classes, such as body size and develop-

mental stage.

Sex. Most population models either ignore the sex of

individuals or model only 1 sex. This is generally

appropriate when the abundance of the other sex does

not limit the population, when external factors affect the

sexes similarly, and when the sexes are not expected to

compete for space or resources. Modeling reproduction

can become far more complex in 2-sex models, depending

on how the number of males affects the per female

probability of reproduction (Caswell 2001:17). However,

FAC population models of territorial species that show

sexual habitat selection in the nonbreeding season should

probably model both sexes (Runge and Marra 2005). There

is empirical evidence that sexual segregation in some

migratory birds can influence survival and lead to

carryover effects (Marra et al. 1998, Marra and Holmes

2001).

Individual heterogeneity. Inherent, persistent differ-

ences between individuals of the same population and sex

can be due to genetic, maternal, and/or spatiotemporal

effects (Vindenes et al. 2008). This variation has been

shown to be important for population dynamics (Conner

and White 1999, Vindenes et al. 2008), although most

population models ignore it. Among the FAC models

reviewed here, only integral projection models and IBMs

can incorporate individual heterogeneity. One of the

reasons individual heterogeneity is seldom incorporated

in population models is that its estimation requires long-

term longitudinal data for many individuals. These data are

more challenging to get in an FAC context for migratory
animals because of the large distances involved.

Spatial configuration of habitat. The arrangement of

habitat within a region can also be important for both

population dynamics and management decisions (Pettifor
et al. 2000). To examine this, spatially explicit models are

required. We have discussed 2 types of models that can be

spatially explicit in this sense: IBMs and integral projection

models (with space as the continuous variable). Others

exist (e.g., RAMAS GIS; Akçakaya and Root 2002), but not

yet in an FAC context. Because of the additional

complexity of spatially explicit IBMs, we recommend

incorporating this component only when there is strong

evidence that the configuration of habitat within a region

affects demography.

Migratory and Interseasonal Processes
Migratory connectivity. Demographic linkages be-

tween breeding and nonbreeding areas can affect popula-

tion size and dynamics (Webster et al. 2002, Webster and

Marra 2005, Martin et al. 2007). Some model types, such as

single-population 2-season models, do not incorporate

migratory connectivity. For others, such as some of the

matrix models, migratory connectivity estimates are an

input (Iwamura et al. 2013, Flockhart et al. 2015). For

demographic migratory network models, equilibrium

migratory connectivity is an output of the model and is

affected by the arrangement, size, and quality of nodes

(Dolman and Sutherland 1995, Taylor and Norris 2010).

Migratory connectivity should be included in FAC models

of multiple populations whenever reasonable. In some
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cases, this is very simple. Species that are panmictic (weak

connectivity) can be modeled as a single population;

conversely, species that exhibit very strong geographic

structure (strong connectivity) can have each population

modeled separately.

Seasonal interactions and carryover effects. Carry-

over effects and other seasonal interactions (Table 1;

Norris and Marra 2007, Harrison et al. 2011) appear to be

pervasive for migratory populations (e.g., Marra et al. 1998,

Inger et al. 2010; but see Senner et al. 2014). Carryover

effects can have large effects on population dynamics

(Runge and Marra 2005, Norris and Taylor 2006), although

they can sometimes be safely ignored. For example,

whether winter habitat quality affects either winter survival

directly or spring migration survival probably does not

matter if one is looking at the number of animals the next

summer, because annual survival probability is the product

of seasonal survival probabilities. However, when survival

is estimated by season, ignoring carryover effects can lead

to incorrect inference about the importance of seasonal

environmental factors and density dependence. Several of

the models described here incorporate 1 or more forms of

carryover effect, but integral projection models and IBMs

have the greatest potential for mechanistic modeling of
these interseasonal processes.

Variable timing of events and behaviors. The timing

of many biological events and behaviors can affect

population dynamics. Spring arrival time is perhaps the
best-studied phenological variable for migratory birds and

has been shown to be an important predictor of

reproductive success, especially for males (e.g., Møller

1994, Lozano et al. 1996). The models described here are

mostly discrete-time models, although many of them have

time-steps smaller than a year. Modeling within-season

timing effects when the smallest time-step is a season

becomes difficult. With integral projection models, one

could treat departure and arrival dates as state variables.

However, a more natural approach is probably to use an

IBM with a daily or weekly time-step. OAR models look

promising for these types of questions, especially in an

evolutionary context, although the complexity of these

models exceeds available data for most species.

Movement models. Some FAC population models

explicitly model drivers of migratory movements (Feró et

al. 2008, Taylor and Norris 2010). The outputs of these

models can include the timing of migration (McNamara et

al. 1998), where birds migrate (migratory connectivity;

Sutherland and Dolman 1994), and even whether birds

migrate (Taylor and Norris 2007). Most models of

migratory movements implicitly assume either that

migratory patterns will not change with changes in the

environment or that they will rapidly change to the newly

optimal pattern. In this, the model of Dolman and

Sutherland (1995) stands out: They used a simple genetic

model to explore the potential lag between habitat change

and changes in migratory connectivity. Although their

model is probably oversimplistic, we consider it a good

starting point for developing more realistic models of how

migratory behavior might change over time.

DISCUSSION

We have shown how several different types of population

models have been used to explore FAC population

dynamics. These models have only begun to explore the

potential of FAC analyses. Several of the models that have

been explored only in an equilibrium context, such as the

single-population 2-season model, have an underlying

dynamic model and could be extended to explore transient

dynamics. There are also possibilities for combinations of

model types. For example, Schaub and Abadi (2011)

discussed the possibility of combining integrated popula-
tion modeling with integral projection modeling. In the

FAC context, such a model could be called an ‘‘integrated
integral population projection and migration model,’’ or
(IPM)2, and could allow using multiple data sources to

help determine the effects of continuous variables such as

mass on population dynamics throughout the annual cycle.

Erickson et al. (2014) recently developed a model that

combines demographic migratory network models with

elements of seasonal matrix models.

Choosing which model type to use for an FAC population

model should depend on (1) which components of the real-

world system are of greatest importance or interest in

producing the FAC population dynamics; (2) the scientific

and management goals; and (3) what data and/or estimates

are available.We discussed the first criterion in the previous

section. For the second criterion, for example, if project

goals include determining the demographic mechanisms of

population change or limitation, then most count-based

models would not be appropriate.

Parameterization is a key challenge in building an FAC

population model, especially when the goals of the model

include prediction or making management recommenda-

tions. When several sources of data are available,

integrated population models often make the most

efficient use of the data and produce more accurate

estimates and predictions (Abadi et al. 2010a). However,

when data are sparse, a more theoretical approach using a

simpler model may be more appropriate; conversely, when

good estimates are available for all relevant parameters of

the species, the integrated approach might be overkill,

because improvements would be slight from the extra

effort involved in developing the integrated model.

Despite the challenges involved in using FAC population

models, they offer the opportunity to determine what

factors in which seasons and locations limit migratory

populations (Flockhart et al. 2015). This, in turn, allows
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conservation managers to consider the full annual cycle

when making decisions. Failure to do so can lead to wasted

conservation resources and reduced population viability

(Martin et al. 2007). These models are also well suited to

examining where and how migratory populations might be

vulnerable to climate change.

Population models for migratory species that consider

only 1 season may provide skewed estimates of climate

vulnerability (Small-Lorenz et al. 2013) because climate

change may affect breeding, migratory, and wintering

habitats differently. Even for short-distance migratory

birds, an FAC vulnerability assessment may be preferable.

For example, Jenouvrier et al. (2009) originally developed a

stochastic matrix population model to examine how past

and future changes in breeding-season (Antarctic winter)

sea-ice extent affect the population dynamics and viability

of a migratory Emperor Penguin (Aptenodytes forsteri)

population. The authors later built an FAC population

model that extended their original model to account for

seasonal and spatial variation in sea ice and its effects on

penguin vital rates, behavior, and vulnerability differences

between the sexes (Jenouvrier et al. 2010, 2012). Although

the projected abundance by 2100 was similar between

model types, the stochastic population growth rate

changed from an almost linear relationship with the

frequency of warm events (extreme lower annual sea-ice

extent) to a bell-shaped relationship with annual mean sea-

ice concentrations, with a complex response to increasing

variance of annual sea ice. In addition, the results showed

that the growth rate declined with increasing seasonal

differences in sea-ice extent, which would have been

impossible to see from the original model. Therefore, the

FAC model provided additional insight on how climate

change might affect this population.

FAC population modeling has already made important

theoretical advances and presented novel hypotheses about

where and how migratory populations are limited. These

hypotheses include that the effects of habitat loss in

breeding and winter seasons on population decline depend

on the relative strengths of density dependence in the 2

seasons (Sutherland 1996); that food reduction at various

locations will have different effects on the abundance of

birds with summer and winter molt (Feró et al. 2008); and

that the position of a node within a migratory network

affects both its equilibrium abundance and the effects of

habitat loss (Taylor and Norris 2010). Further applications

and tests of these hypotheses are likely to follow as our

ability to track migratory animals throughout the year

continues to improve.
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