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ABSTRACT
Habitats around the Gulf of Mexico (GOM) provide critical resources for Nearctic–Neotropical migratory landbirds, the
majority of which travel across or around the GOM every spring and fall as they migrate between temperate breeding
grounds in North America and tropical wintering grounds in the Caribbean and Central and South America. At the
same time, ecosystems in the GOM are changing rapidly, with unknown consequences for migratory landbird
populations, many of which are experiencing population declines. In general, the extent to which events encountered
en route limit migratory bird populations is not well understood. At the same time, information from weather
surveillance radar, stable isotopes, tracking, eBird, and genetic datasets is increasingly available to address many of the
unanswered questions about bird populations that migrate through stopover and airspace habitats in the GOM. We
review the state of the science and identify key research needs to understand the impacts of en route events around
the GOM region on populations of intercontinental landbird migrants that breed in North America, including: (1)
distribution, timing, and habitat associations; (2) habitat characteristics and quality; (3) migratory connectivity; and (4)
threats to and current conservation status of airspace and stopover habitats. Finally, we also call for the development
of unified and comprehensive long-term monitoring guidelines and international partnerships to advance our
understanding of the role of habitats around the GOM in supporting migratory landbird populations moving between
temperate breeding grounds and wintering grounds in Mexico, Central and South America, and the Caribbean.

Keywords: Gulf of Mexico, landbird migration, Nearctic–Neotropical bird population, stopover habitat, airspace
habitat, Gulf coast, migratory connectivity, avian monitoring

¿Cómo los eventos en ruta alrededor del Golfo de México influencian a las poblaciones de aves terrestres
migratorias?

RESUMEN
Los hábitats alrededor del Golfo de México (GDM) proveen recursos crı́ticos para las aves terrestres migratorias
Neártico–Neotropicales, la mayorı́a de las cuales viaja a través o alrededor del GDM cada primavera y otoño cuando
migran entre sus zonas de anidación templadas en Norte América y sus zonas de invernada tropicales en el Caribe y en
Centro y Sud América. Al mismo tiempo, los ecosistemas del GDM están cambiando rápidamente, con consecuencias
desconocidas para las poblaciones de aves terrestres migratorias, muchas de las cuales están experimentando declives
poblacionales. En general, no se entiende bien la magnitud con que los eventos encontrados en ruta limitan a las
poblaciones de aves migratorias. Al mismo tiempo, la información de radares meteorológicos, isótopos estables,
rastreo, eBird y bases de datos genéticos es cada vez más accesible para atender muchas de las preguntas que quedan
por responder acerca de las poblaciones de aves que migran a través del espacio aéreo y los hábitats costeros de
descanso del GDM. Aquı́ hacemos una revisión del estado de la ciencia e identificamos necesidades de investigación
clave para entender los impactos que los eventos en ruta alrededor del GDM tienen sobre las poblaciones de aves
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terrestres migratorias intercontinentales que anidan en Norte América, incluyendo (1) asociaciones de distribución,
temporales y de hábitat; (2) caracterı́sticas y calidad del hábitat; (3) conectividad migratoria; y (4) amenazas al espacio
aéreo y a los hábitats de descanso, ası́ como su estatus de conservación actual. Finalmente, también hacemos un
llamado al desarrollo de lineamientos unificados y exhaustivos para el monitoreo de largo plazo, y a colaboraciones
internacionales para mejorar nuestro entendimiento del papel que el hábitat del GDM juega para mantener
poblaciones de aves terrestres migratorias que se mueven entre sus zonas de anidación templadas y sus zonas de
invernada en México, Centro y Sud América, y el Caribe.

Palabras clave: Golfo de México, migración de aves terrestres, poblaciones de aves Neárticas–Neotropicales,
hábitat de descanso, hábitat aéreo, costa del Golfo, conectividad migratoria, monitoreo de ave

Migratory birds can travel awe-inspiring distances, some-

times over sea and inhospitable landscapes, during many

round-trip journeys over a lifetime. Although flight

through airspace and foraging in stopover habitats that

vary in suitability may come with considerable risks, the

extent to which resources and threats encountered during

migration limit populations remains unclear (Newton

2006). The mortality associated with migration may be

substantial (Sillett and Holmes 2002, Newton 2006,

Rockwell et al. 2017), but the reproductive benefits of

exploiting seasonally abundant resources during the

temperate summer and tropical winter presumably balance

or outweigh the costs of migration. That said, unprece-

dented anthropogenic changes in atmospheric conditions

aloft and availability of suitable stopover habitat on the

ground may be increasing the threats and inflating the

costs associated with migration (Wilcove and Wikelski

2008).

The Gulf of Mexico (GOM) is a conspicuous feature of

the Neotropical–Nearctic migration system because the

majority of landbird species (i.e. passerines and near-

passerines with a terrestrial life history [doves, cuckoos,

nightjars, hummingbirds, and woodpeckers]) that breed

in temperate North America navigate it twice a year

during migratory passage to and from wintering grounds

in Mexico, Central and South America, and the

Caribbean. West coast–breeding Neotropical–Nearctic

landbird species rarely navigate the GOM, but eastern-

and central-breeding species primarily navigate the GOM

region during migration (Rappole 1995, Newton 2008, La

Sorte et al. 2014). Additionally, many eastern species have

breeding ranges that extend west across the boreal forest,

and these western continental populations also move east

to navigate the GOM region during migration (Ruegg and

Smith 2002, Ruegg et al. 2006, Delmore et al. 2012).

Before and after traveling across or around the GOM,

billions of landbirds congregate on the barrier islands and

in the marshes, scrub, coastal forests, and forested

wetlands of the GOM coast from southern Texas to the

Florida Keys in the United States, Tamaulipas to Quintana

Roo in Mexico, and around western Cuba every spring

and fall. These GOM coastal habitats provide critical

resources before and after the nonstop flight across the

GOM (Moore 1999).

Coastal ecosystems are among the world’s most

biodiverse, supporting an incredible and dynamic assembly

of species. Yet, they are increasingly being altered by

natural and anthropogenic stressors including climate

change (e.g., increased frequency of severe weather events

and sea level rise), pollution (e.g., oil spills, heavy metals,

and pesticides), disrupted hydrology (e.g., dams, levees,

and canals), and habitat destruction or degradation from

human activities (e.g., urban development and commercial

harvesting; Abdollahi et al. 2005, Stedman and Dahl 2008,

Henkel et al. 2012, Carter et al. 2014). The human

population along the GOM coast in the United States has

increased at a rate more than double the national average,

while wetland habitats are being lost faster here than

anywhere else in the United States (Partnership for Gulf

Coast Land Conservation 2014). In Mexico, the Yucatan

Peninsula is among the world’s most vulnerable regions to

climate-induced changes, with the expectation that current

drying trends will continue (Torrescano-Valle and Folan

2015). Although these changes have largely unknown

consequences for the billions of birds that rely on habitats

around the GOM coast during migration, it is possible that

these changes are contributing to bird population declines.

Analyses of available long-term datasets have revealed

population declines in many Nearctic–Neotropical migra-

tory species over the last 40 yr (North American Bird and

Conservation Initiative Canada 2012). Although the causes

of declines are hard to identify (Wilcove and Wikelski

2008, Rappole 2013), research has predominantly focused

on the breeding phase of the annual cycle, overlooking the

importance of events during nonbreeding periods, and

especially during migration (Marra et al. 2005). Yet, the

habitat loss and degradation that affect Nearctic–Neo-

tropical migratory landbirds during breeding and winter

residency must also affect them during migration (Moore

et al. 1995, 2005, Mehlman et al. 2005, Ewert et al. 2015).

The rapid landscape and habitat changes occurring in

coastal areas may disproportionately affect species that are

dependent on coasts for emergencies or refueling before

long sustained flights. That said, we know little, for

example, about the distribution and spatial extent of

human development in relation to the airspace corridors

and stopover habitats used by migrating birds, nor do we

understand when and where species or populations move
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through the GOM coast region. It is now increasingly

possible to fill these information gaps with gulf-wide

analyses of citizen science (eBird; ebird.org), weather

surveillance radar, tracking, stable isotope, and genetic

data to understand the role of habitats along the GOM

coast in migratory bird population trends across North

America (Figure 1).

If we are to understand how events encountered during

migration through the GOM region are contributing to

declines among Nearctic–Neotropical migrant species, we

must identify the spatial and temporal distributions of

species and populations, determine how migrants are

affected by natural and anthropogenic events (e.g.,

hurricanes and oil spills) and habitats encountered during

passage, and ultimately quantify the magnitude of those

impacts on population trends. To that end, here we assess

the state of the science for landbird migrants around the

GOM region, including data needs that address: (1) the

distribution, timing, and habitat associations of species; (2)

habitat characteristics and quality; (3) migratory connec-

tivity of populations; and (4) threats to and current

conservation status of airspace corridors and stopover

habitats. Further, Nearctic–Neotropical migratory birds

are an internationally shared resource, the movements of

which directly link habitats across the Northern and

Southern hemispheres. Thus, we conclude with a call for

the development of unified and comprehensive long-term

monitoring guidelines and international partnerships to

advance our understanding of the role of habitats around

the GOM in population trends of migratory landbirds

moving between North America and Central and South

America and the Caribbean.

Distribution, Timing, and Habitat Associations

Perhaps the most fundamental information needed to

advance our understanding of how events in the GOM

region affect Nearctic–Neotropical migratory landbird

populations is where and when species occur, on land

and in the air, during spring and fall migration. There is a

long history of seeking information about the routes taken

by migrating landbirds in the GOM region. Beginning in

the late 19th century, scientists in the ornithological

community began a lengthy debate about whether

migrating birds traveled over (e.g., Frazar 1881, Cooke

1904, 1915, Lowery 1946) or around (e.g., Williams 1945,

FIGURE 1. Billions of intercontinental migratory landbirds travel through the Gulf of Mexico region every spring (arrows) and fall (not
shown), where their distribution in stopover and airspace habitat is detected remotely by weather surveillance radar (circles with
inset symbol). In stopover habitat, their migratory behaviors are sampled by mist-netting and banding to measure physiological
condition and stopover duration, and migratory connectivity is measured by collection of tissues and attachment of tracking devices
(inset image). Artwork by Abby McBride
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1950) the GOM. By the middle of the 20th century, the

application of weather surveillance radar to the study of

bird migration confirmed that large numbers of birds fly

directly over the GOM (e.g., Hailman 1962, Gauthreaux

1970, 1971, Hebrard 1971). More recently, tracking of

individual birds has confirmed that, although small land-

birds have the capacity to fly directly between North and

South America, GOM airspace figures prominently in their

routes during both spring and fall migration (e.g., Bayly et

al. 2013, DeLuca et al. 2015, Deppe et al. 2015, Stanley et

al. 2015, Kramer et al. 2017).

Airspace is habitat that spans the interface between

terrestrial and aerial domains and, although frequently

overlooked, provides critical resources for migrating birds

(Kunz et al. 2008, Diehl 2013). In fact, the atmosphere

through which migrants fly is a structured and predictable

medium that has surely been a selective force on individual

success and survival. For example, migratory landbirds

most often fly at times of day and at heights where travel is

least costly, most rapid, and safest (Kerlinger and Moore

1989, Gauthreaux 1991). Defining airspace habitat for

landbird species in the GOM requires information about

their temporal and spatial bounds of movement in relation

to meteorological, climatological, and geographical fea-
tures. As such, it is not surprising that the study of airspace

habitat has advanced with technologies for remote sensing

of meteorological conditions and animal migration using

weather surveillance radar (Shamoun-Baranes et al. 2010,

Westbrook et al. 2014, Farnsworth et al. 2016, Kelly and

Horton 2016). Nor is it surprising that airspace habitat has

changed, and likely will continue to change, with the

construction of communication cell towers, wind turbines,

and buildings, as well as with shifting global climate

patterns.

Although migratory birds ought to select altitudes that

have the most supportive winds to reduce energetic costs

and minimize flight time (Bruderer et al. 1995, Alerstam

2011), little is actually known about flight altitudes over

the GOM. Generally, most migrants are found in the first

2,000 m above sea level (Kerlinger and Moore 1989, La

Sorte et al. 2014), but it is not unusual to observe migrants

flying as high as 5,000 m asl in response to atmospheric

conditions (Gauthreaux 1971, Gauthreaux and Belser

1999). Gauthreaux (1991) recorded considerable day-to-

day variation in altitude as migrants arrived along the

GOM coast of the U.S. in spring, and migrants may

increase altitude during the transition from nighttime to

daytime flight as they approach the GOM coast (see Myres

1964, Larkin et al. 1979).

Regardless of actual flight altitude, prevailing atmospheric

conditions at these altitudes have likely shaped when and

where migrants navigate GOM airspace (e.g., Buskirk 1980,

Gauthreaux 1991, La Sorte et al. 2014). Fall migration

through the region often occurs when synoptic-scale

weather systems (e.g., high pressure systems followed by

strong cold fronts moving into the GOM) favor transgulf

flights during mid-September to mid-October (Gauthreaux

et al. 2005, Deppe and Rotenberry 2008, Martinez Leyva et

al. 2009, La Sorte et al. 2014). The greatest densities of

spring migrants consistently arrive during mid-April to

early May along the western GOM coast, in Texas and

Louisiana, USA (e.g., Gauthreaux and Belser 1998, 1999,

Gauthreaux et al. 2006, Lafleur et al. 2016). Longitudinal

passage patterns during spring vary annually and with

atmospheric conditions (e.g., Gauthreaux et al. 2006, Lafleur

et al. 2016). However, to date, no studies have comprehen-

sively (1) compared airspace habitats in terms of bird

density and species composition; (2) compiled migration

traffic rates across the decades of available radar data; or (3)

addressed intra- and inter-annual variation in airspace use

during spring or fall migration. Moreover, how migrants use

airspace over the GOM or along the Mexican and Cuban

coasts of the GOM remains a significant research challenge

given the sparsity of radar coverage. Where there are radars

in Mexico and Cuba, data may not be archived or readily

available for analysis.

Landbirds rarely migrate nonstop from origin to

destination; rather, they stop over periodically for a few

hours to a few days between flights (Newton 2007). In fact,

the majority of the migration period is spent at stopover

sites between flights (Hedenström and Alerstam 1997,

Alerstam 2003), and where a migrant stops to rest and

replenish fuel stores along the GOM coast is a hierarchical

process influenced by endogenous and exogenous condi-

tions (Buler et al. 2007). As migrants approach the U.S.

coast at the end of a flight across the GOM, physiological

stress (Moore et al. 1990, Kuenzi et al. 1991, Spengler et al.

1995) or severe weather (Lowery 1946, Gauthreaux 1971)

may constrain their choice of where to land. These
intrinsic and extrinsic constraints may influence how far

inland birds travel before making landfall and can produce

strong coastal concentrations of migrants. For example,

adverse weather (e.g., widespread heavy rain and strong

opposing winds) causes migrants to ‘‘fall out’’ in substantial

numbers on barrier islands (Moore et al. 1990, Kuenzi et

al. 1991) and in inland habitats (Gauthreaux 1971). These

mass coastal fallouts of migrants typically occur with

movements of air masses across the GOM, particularly

frontal boundaries between air masses (e.g., Rappole and

Ramos 1994, Russell 2005). Transgulf migrants facing

adverse weather conditions often land on the first dry

ground that they encounter, resulting in coastal concen-

trations that have been best documented in Mississippi,

Alabama, and the panhandle of Florida, USA (Buler and

Moore 2011, Lafleur et al. 2016), and on the northern

Yucatan Peninsula, Mexico (Solomon 2016). In eastern

Texas and southwestern Louisiana, migrants may also

often pass over the inhospitable coastal marshes to land in
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forested landscapes farther inland (Gauthreaux 1971,

Gauthreaux and Belser 1998).

Because passerine birds are, in general, less efficient

flyers than other bird taxa (Hedenström and Alerstam

1992, Ward et al. 2001, Rayner and Maybury 2003), they

may be under greater pressure to minimize the distance

traveled when crossing the GOM by departing from and

arriving on the immediate coast. Among landbirds,

smaller-bodied species appear more constrained to landing

closer to the coast than larger species during both spring

and fall migration (Buler et al. 2007). During fall migration,

the same coastal effect is true for young birds, which are

disproportionately abundant in coastal areas, while adult

birds are more abundant in inland areas (Woodrey and

Moore 1997).

Although wind patterns and proximity to the coast

influence the distribution of migrants among landscapes of

the GOM coast, bird densities in the United States during

spring migration are also positively correlated with the

amount of hardwood forest cover (Buler and Moore 2011,

Lafleur et al. 2016). The composition of the landscape may

serve as a cue that allows migrants to assess landscape

quality prior to landing (Chernetsov 2006, Buler et al.

2007). For example, landscapes with a greater amount of

forest cover are associated with greater food availability

(Buler et al. 2007) and faster refueling rates of migrants

(Ktitorov et al. 2008, Cohen et al. 2014). Tall and

structurally diverse forested landscapes may support
greater numbers of migratory landbirds than unforested

landscapes (Petit 2000, Rodewald and Matthews 2005).

After landfall, habitat selection within a landscape is

influenced by intrinsic habitat factors (Aborn and Moore

1997, Chernetsov 2005, Seewagen et al. 2010, Cohen et al.

2012), including food abundance, physiognomy, and

floristics, which become important for determining habitat

use patterns of migrants (Hutto 1985, Petit 2000,

Chernetsov 2006, Buler et al. 2007, Cohen et al. 2014).

For example, migrants arriving at the Yucatan Peninsula

concentrate in mangroves, scrub forests, and coastal

dunes, and refine habitat use within these vegetation types

based on structural and floristic attributes (Deppe and

Rotenberry 2008). That said, migratory birds are capable of

using a variety of environments throughout their annual

cycles, and habitat use during migration is highly variable

both within and among species (e.g., Bairlein 1983, Petit

2000). Migrants occur in more diverse landscapes during

migration than during stationary phases of the annual

cycle, which not is surprising given the greater diversity of

environments encountered en route (Zuckerberg et al.

2016). This observed variability may represent adaptive

behavioral and physiological plasticity that permits mi-

grants to successfully occupy a diverse array of habitat

types as well as respond to novel circumstances during

migration (Martin and Karr 1990).

Radar mapping studies have also revealed high-density

use of forests in human-dominated landscapes, particularly

urban parks within large cities in areas outside the GOM

coast region (Bonter et al. 2009, Buler and Dawson 2014),

and citizen science data corroborate this affinity of

migrants with human-dominated landscapes across the

United States (La Sorte et al. 2014, Zuckerberg et al. 2016),

which may be influenced by attraction to anthropogenic

light (Watson et al. 2016). Similarly, field surveys in

Veracruz, Mexico, have documented high use of forest

patches in highly fragmented, agriculturally dominated

landscapes (Ruelas Inzunza et al. 2000) and in urban parks

(González-Garcı́a et al. 2014). Therefore, although migrat-

ing birds often congregate during stopover in hardwood

forest, habitat patches embedded in urban or agricultural

landscapes may also be important stopover sites (e.g.,

Seewagen and Slayton 2008, Seewagen et al. 2010).

In general, knowledge about the distribution and habitat

requirements of migrants along the Mexican and Carib-

bean coasts of the GOM lags behind that of our knowledge

for the United States Gulf Coast, and is based primarily on

brief inventories (e.g., MacKinnon and Aburto 2003,

Estrada and Coates-Estrada 2005) and observational

records (i.e. eBird). However, a handful of studies in

Mexico (González-Garcı́a et al. 2014) and Cuba (González-

Alonso et al. 2006) have identified regionally important

stopover sites and documented the importance of succes-

sional vegetation (Winker 1995a), forest patches in

agricultural landscapes (Ruelas Inzunza et al. 2005, Deppe

and Rotenberry 2008), and small natural areas embedded

in coastal urban centers (Raymundo Sanchez 2010).

Whereas sparse spatiotemporal sampling has left signifi-

cant gaps in our understanding of migrant distributions

and habitat affiliations, analyses of gulf-wide radar and

eBird data have the potential to provide much of this

missing information.

Habitat Characteristics and Quality

Assessments of how and when events in the GOM region

affect population dynamics require an additional under-

standing of the survival and condition of migrants within

stopover sites. Whether a given stopover site meets the

needs of Nearctic–Neotropical migrant landbirds depends

on their nutritional requirements and the distribution,

quality, and quantity of resources at the stopover site. Here

we consider the individual migrant’s ability to successfully

refuel at a stopover site in relation to the availability of

resources, and describe how energy-based models could be

used to quantify the habitat quality of landscapes around

the GOM coast.

Important biotic variables that determine the suitability

of stopover habitats include (1) the intensity of competi-

tion for food resources, (2) shelter provided from
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predators, and (3) the type, abundance, and spatial

distribution of food resources (Cohen et al. 2012). Land-

bird densities at stopover sites often far exceed the highest

densities reached during the breeding or wintering periods

of the annual cycle (Moore et al. 1993). Therefore,

although rarely studied, food-based competition is expect-

ed at stopover sites when high densities of migrants are

refueling during migration. For example, Moore and Yong

(1991) found that the density of potential competitors

negatively affected fuel deposition rates during stopover on

the GOM coast. Further, the selection of habitat at inland

stopover sites has been positively related to the abundance

of arthropods (Graber and Graber 1983, Hutto 1985,

Cohen et al. 2012), thereby potentially increasing compe-

tition for food resources.

Predation risk also alters habitat quality during stopover.

Coastlines often concentrate raptors during their migra-

tions (Kerlinger and Moore 1989), and several species of

raptor that migrate around the GOM occur frequently in

coastal habitats (e.g., Aborn 1994, Woltmann 2001). This

may increase the conflict between meeting energetic

demands and predator avoidance. For example, Blue-gray

Gnatcatchers (Polioptila caerulea) have been found to

move deeper into cover and away from food resources as
the risk of hawk predation increases (Cimprich et al. 2005).

Lean birds also take greater risks of exposure to predators

to satisfy energetic demands than birds with fuel reserves

(Cimprich and Moore 2006). In many situations, the

energetic cost of avoiding predation may outweigh the

energetic benefit of foraging in a habitat possessing high-

quality food, such as a coastal thicket with fruiting shrubs

(Mudrzynski and Norment 2013, Smith and McWilliams

2015), so that habitats with lower-quality food but little or

no predation may be preferred.

Arguably the most important constraint during migra-

tion is finding sufficient resources to meet energetic

demands (McWilliams et al. 2004, McGrath et al. 2009,

Cohen et al. 2014). Many landbirds are known to change

their diets to high-energy foods during migration, includ-

ing fruits and nectar, which may also satisfy their protein

requirements during migration even though the protein

content of these foods is relatively low (Langlois and

McWilliams 2010). In northern latitudes, birds that are

predominantly insectivorous during the breeding season

change their diets to eat more fruit during fall migration

(Parrish 1997). Along the Gulf Coast of Louisiana and

Texas, Barrow et al. (2000) found that 44% of migrant

species consumed fruit during spring and only 24% of

species consumed fruit during fall, although more recent

studies suggest that frugivory of landbirds during fall

migration along the GOM coast may be more common (F.

Moore personal observation). For example, some fall

migrants that stop on small islands off the northern coast

of the Yucatan Peninsula gain mass by foraging on fruit

that is abundant in coastal scrub (Solomon 2016). An

improved understanding of the plant species that migrants

forage on and their role in satisfying the energetic

requirements of migration is needed for creating guide-

lines for the management and restoration of habitats in the

GOM coast region (Martinez Leyva et al. 2009, Wood et al.

2012).

Habitat quality in the form of food resources is difficult

to quantify when it is measured at a landscape scale. In the

vicinity of the GOM, the density of migrants within

hardwood forest patches is positively associated with

arthropod and fruit abundance (Buler et al. 2007), and

migrants have higher fuel deposition rates in landscapes

with more hardwood forest cover (Cohen et al. 2014). In

habitat containing sparse and spatially restricted food

resources, migrants forage locally where food is abundant,

whereas in habitat with more broadly abundant food

resources, migrants are less restricted in their foraging

movements (Cohen et al. 2012). Sites may also vary in

function and quality between spring and fall migration

(Winker 1995b, Shaw and Winker 2011). Bioenergetic

models are a tool for measuring the relationship between

food resources and bird fitness to quantify the quality of

stopover habitat and its carrying capacity for migratory
birds (e.g., Williams et al. 2014).

Bioenergetic models integrate information about the

basic energetic requirements of birds with estimates of the

energy available on the landscape. Although they have not
yet been applied to landbird migrant habitat around the

GOM coast, we outline the potential of these models for

integrating available information about the energetic

condition of migrants with habitat characteristics to

quantify habitat quality. Energy-based habitat models

require information about the daily energetic requirements

of birds (e.g., the sum of energy required for maintenance

and activity; King 1973, McKinney and McWilliams 2005,

Servello et al. 2005, Williams et al. 2014). Wikelski et al.

(2003) provide one of the few direct estimates of daily

energetic requirements of actively migrating landbirds, for

Catharus species migrating north through the Great Lakes

region. They estimated that 30-g thrushes expended 133 kJ

per day on days that included a migratory flight (an

average of 4.6 hr of flying on a given night) and ~88 kJ per

day on stopover days without a migratory flight. These

direct estimates of daily energetic requirements for freely

migrating thrushes confirm that information about daily

fat accumulation can be used to quantify the energetic

value of a habitat for migrating landbirds. Further,

estimates of daily energetic requirements for one individ-

ual can be extrapolated to reflect the numbers of

individuals using a habitat, thereby estimating the amount

of that habitat needed to support a target number of

individuals within a landscape. Such models have been

used widely and successfully for migratory waterbirds

The Condor: Ornithological Applications 119:327–343, Q 2017 American Ornithological Society

332 Landbird migration and the Gulf of Mexico E. B. Cohen, W. C. Barrow, J. J. Buler, et al.

Downloaded From: https://complete.bioone.org/journals/The-Condor on 24 Apr 2024
Terms of Use: https://complete.bioone.org/terms-of-use



(Williams et al. 2014) and should be useful for population-

based habitat assessments along the GOM coast. We

recommend that managers use local sampling to measure

the condition of birds and the availability of resources in

habitats to build and assess landscape-scale models. These

models can be used with an adaptive management

approach to ensure adequate resources for migrating

landbirds.

Migratory Connectivity

Understanding how events during migration affect popu-

lation dynamics requires information not only about where

species occur, but also when and where populations occur

and how they are connected to other phases of the annual

cycle, i.e. en route migratory connectivity (Webster et al.

2002). Events that migrating birds encounter along the

GOM coast may either affect populations during migration

or carryover to affect them during subsequent phases of
the annual cycle (e.g., Paxton and Moore 2015, Hewson et

al. 2016, Sorensen et al. 2016). Furthermore, events along

the GOM coast are unlikely to have an equal influence on

all populations of Nearctic–Neotropical migratory species

that move through the region (Henkel et al. 2012). For

these reasons, measuring the impacts of events encoun-

tered during migration requires information that links

stopover and airspace habitats with specific breeding and

wintering populations (Runge et al. 2014).

En route migratory connectivity to breeding and

wintering areas has both a spatial and a temporal

component, and an understanding of both is needed to

appreciate the potential impacts and carryover effects of

stopover and airspace habitats on the survival, timing, and

condition of migrating populations. With the exception of

a few sites and species, the spatial and temporal patterns of

migratory connectivity through the GOM coast region are

poorly understood. However, tracking between breeding

and wintering areas has revealed that, during spring

migration, Ovenbirds (Seiurus aurocapilla) that winter in

Mexico and Central America and breed in western North

America move across, or sometimes around, the GOM,

while those that winter in the Caribbean and breed in

northeastern North America migrate along the Atlantic

coast of Florida (Hallworth et al. 2015). It is not clear

whether western-breeding populations of Ovenbirds dif-

ferentiate where they cross the GOM (Hallworth et al.

2015). Wood Thrushes (Hylocichla mustelina) that winter

in Mexico and Central America migrate across, and

sometimes around, the GOM in spring, primarily taking

a route into the Mississippi River delta of Louisiana and

into eastern Texas (Stanley et al. 2015). During fall

migration, Wood Thrushes cross the GOM and pass

farther east, from Florida to Louisiana (Stanley et al. 2015).

In both spring and fall, Wood Thrush passage longitudes

through the GOM coast region are positively correlated

with breeding longitudes (Stanley et al. 2015). During

spring migration, Eastern Kingbirds (Tyrannus tyrannus)

tracked from Oklahoma and Nebraska, USA, crossed the

GOM through the mid-Texas coast, with one bird

migrating through the Florida and Alabama border (Jahn

et al. 2013). Eastern-, central-, and western-breeding

populations of Golden-winged Warbler (Vermivora chrys-

optera) all navigate the GOM region, with spatial

differentiation among populations during fall but not

spring migration (Kramer et al. 2017). Inland and coastal

subspecies of Swainson’s Thrush (Catharus ustulatus) use

divergent migration routes, with only the inland subspecies

crossing (during fall) or circumventing (during spring) the

GOM (Delmore et al. 2012). Little information is available

about the consistency of passage routes or timing, other

than for 10 Wood Thrushes tracked for 2 yr, which showed

substantial annual variability in migration routes across

the GOM (Stanley et al. 2012). Information about en route

migratory connectivity patterns through the GOM coast

region derived from tracking data has been limited by

small sample sizes of few species and incomplete sampling

across the range. Therefore, multisite and multiyear

studies are necessary to understand population-specific

airspace and stopover habitat use throughout the GOM

region.

There is evidence for temporal patterns of migratory

connectivity from stable isotopes in the tissues of birds

captured on the GOM coast: Analysis of stable isotopes in

tissues of migrating birds captured at stopover sites on the

GOM coast has revealed spatial patterns of migratory

connectivity and carryover effects of winter habitat quality.

Populations of 5 forest-breeding migrants, the Acadian

Flycatcher (Empidonax virescens), Ovenbird, Black-and-

white Warbler (Mniotilta varia), Hooded Warbler (Seto-
phaga citrina), and American Redstart (Setophaga ruti-

cilla), from the southeastern United States to the Canadian

boreal forests moved through a single spring stopover site

in eastern Louisiana, with southern-breeding populations

passing through the site earlier than northern-breeding

populations for all species except the Acadian Flycatcher

(Langin et al. 2009). Additionally, passage timing to spring

stopover on the northern coast of the GOM was later for

Black-and-white Warblers from poorer quality winter

habitat (Paxton and Moore 2015). In contrast, Wood

Thrush energetic condition during winter did not influ-

ence spring passage timing across the GOM, suggesting

that this species compensates for the effects of winter

habitat quality during spring migration (McKinnon et al.

2015). Two long-term analyses of spring passage phenol-

ogy suggest that migrant timing and condition may be

influenced by both long-term climate change and extreme

global weather events. Species that winter in Central

America, but not South America, have delayed the timing
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of their spring migration across the GOM over the past 20

yr (Cohen et al. 2015), while species that winter in South

America, but not Central America, arrive in poorer

condition during El Niño years (Paxton et al. 2014). These

studies were not population-specific, but suggest that

carryover effects from winter into spring migration may be

common. Analyses of stable isotopes in tissues of

migrating birds captured at stopover sites on the GOM

coast have the potential to provide considerable informa-

tion about spatial and temporal patterns of en route

migratory connectivity with breeding latitudes. Toward

this end, we recommend that migration banding stations

on the GOM coast use common protocols, including tissue

collection from as many species as possible, for future

analyses of migratory connectivity.

Knowledge of migratory connectivity is essential to

understand the role of the GOM coast on the population

dynamics of Nearctic–Neotropical migratory species, as

well as to assess the potential impacts of future

conservation investments (Sheehy et al. 2011, Henkel et

al. 2012). Advancing tracking technologies and stable

isotope and genomics analyses (Rushing et al. 2014,

Hallworth and Marra 2015, Ruegg et al. 2016) are making

it increasingly possible to understand full life cycle

migratory connectivity, and measures of population-

specific distributions around the GOM can be paired with

information about the distribution of threats and habitats

to assess the impacts on specific populations.

Current Conservation Status and Threats Faced by
GOM Habitats

In addition to knowledge of where migratory species occur,

their survival and condition in those areas, and how

populations are linked to other phases of the annual cycle,

a thorough understanding of the influence of events

around the GOM region on migrant populations requires

information about current and future threats to habitats.

Coastal ecosystems are changing dramatically, and factors

associated with the impacts of coastal development

threaten migratory landbird habitats. The most obvious

of these factors is direct habitat loss from clearing of forest

and scrubland, filling of wetlands, dredging, and hardening

of shorelines. In particular, urban development along

coastlines can be greater than in inland areas (Buler and

Moore 2011) and may lead to increased exposure of

migrants to anthropogenic sources of mortality, including

collisions with human-made structures and vehicles,

pesticides, and cat predation (Loss et al. 2015). Habitat

degradation may occur with forest cutting and fragmen-

tation, increases in predators or competitors attracted to

human communities, and introduction of invasive species

(Buler and Moore 2011). Global climate change will also

alter the character of coastal ecosystems and affect habitat

availability and quality for migratory landbirds. For

example, protected areas on the northern coast of the

Yucatan Peninsula are predicted to switch from subtropical

dry forest to subtropical thorn woodland or tropical dry

forest if CO2 concentrations double in the atmosphere

(Villers-Rúz and Trejo-Vázquez 1998). Finally, tall struc-

tures such as communication cell towers and wind

turbines effectively decrease the permeability of the lower

altitudes of airspace that migratory birds move through,

leading to increased mortality (Loss et al. 2013, 2014a,

2014b). These changes can have either direct or indirect

effects on the demography of migratory landbirds. The

direct consequence is increased mortality, while indirect

consequences are more subtle and influence demographic

parameters in the future by reducing the probability of

survival or reproduction (e.g., Marra et al. 1998, Smith and

Moore 2003, 2005). Land managers and conservation

planners need to know whether these factors are changing

or have changed in ways that shift population limits.

The only region-wide synthesis of the conservation

status of stopover sites thought to be important for

Nearctic–Neotropical migratory birds in the United States

and Mexico is based on expert opinion (Duncan et al.

2002). This analysis found that only 23% of identified

stopover sites in the United States and 19% in Mexico had

some level of protection (Duncan et al. 2002). Therefore,

.75% of the stopover sites hypothesized to be important

remain unprotected in the United States and Mexico,

indicating that more conservation effort needs to be

dedicated to this region. For example, only 3% of the

estimated 2,107 ha of forested chenier habitat (coastal

hardwoods on relict beach ridges in southwestern

Lousiana), known to be an important spring stopover area

for migrant birds in Louisiana (Moore 1999, Barrow et al.

2005), is protected by a conservation entity (M. Parr
personal communication). Although Cuba was not ana-

lyzed in this synthesis, some stopover sites known to have

a high abundance and richness of migratory birds (e.g.,

Penı́nsula de Guanahacabibes, Cayo Santa Maŕıa, Cayo

Coco; González-Alonso et al. 2006) are located in

protected areas (Sykes et al. 2007). In addition to protected

conservation status, management of stopover sites is

needed to maintain long-term value, though this topic

has seldom been directly addressed (Moore et al. 1993,

Barrow et al. 2005). Of the 2.3 million ha of identified

stopover sites in the United States that are under some

level of protection, only 33% is managed for biodiversity,

suggesting that more work will be needed to maintain even

protected sites as suitable habitat (Duncan et al. 2002). The

need for management is especially essential given the

current and potential threats to these sites from invasive

species and increased storm frequency (e.g., Barrow et al.

2007). An analysis of the conservation status of stopover

sites identified to be important through gulf-wide synthesis
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of migrant distributions and habitat quality is necessary, as

is increased information about the conservation and

management status of sites in Cuba.

Brenner et al. (2016) conducted a threats analysis that

incorporated the loss of wetlands, forests, and mangroves,

and the distribution of urban and suburban areas, roads,

tall structures, wind turbines, and electrical lines, and

found that these threats were broadly distributed across

the GOM region but were particularly concentrated on the

Florida peninsula. We mapped the GOM region using an

available human footprint dataset that combines popula-

tion density, urbanization, roads, railroads, navigable

rivers, coastlines, land use, and nighttime light to quantify

the level of threat to migrating birds from human

population growth and development (http://sedac.ciesin.

columbia.edu/data/set/wildareas-v2-human-influence-

index-geographic). The footprint map suggested that the

stopover sites hypothesized to be important in the United

States had only a slightly higher human footprint than the

rest of the U.S. GOM coast, while in Mexico, stopover sites

considered to be important had a lower human footprint

than the rest of the Mexican GOM coast (Figure 2). The

Columbia Bottomlands in Texas and the central Veracruz

region in Mexico, in particular, are relatively highly

developed with few protected areas (Figure 2). Moreover,

threats to birds, including the illegal capture and trade of

some migratory species in Mexico and Cuba, can be a

significant source of mortality and must also be considered

(Sykes et al. 2007, Garrido and Kirkconnell 2011). We

urgently need a comprehensive, high-resolution, gulf-wide

analysis of the distribution of threats and mortality rates

specific to migratory landbirds.

A Call for Coordinated Monitoring

A comprehensive, standardized, and collaborative gulf-

wide monitoring program for migratory birds is needed to

provide baseline information about landbird populations

in the GOM region to inform long-term conservation

planning. Region-wide monitoring is the best means to

measure the impacts on migrating landbird populations of

ecosystem stressors such as urban development, oil spills,

hurricanes, and sea level rise, as well as the intended and

unintended effects of the many current and planned

conservation and restoration investments around the coast

of the GOM. At best, the current approach of localized and

FIGURE 2. Human footprint analysis of population density, urbanization, roads, railroads, navigable rivers, coastlines, land use, and
nighttime light to quantify the level of threat to migrating birds from human population growth and development (http://sedac.
ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-geographic) around the coast of the Gulf of Mexico shows that
the threat level ranges from green (low to no threat) through yellow and orange to red (high threat). The Columbia Bottomlands in
Texas, USA, and the Central Veracruz region in Mexico, in particular, are relatively highly developed with few protected areas.
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uncoordinated efforts for monitoring provides an incom-

plete picture of bird abundance and response to manage-

ment; at worst, these data misrepresent or overestimate

the value of specific management and restoration practices

(Braun et al. 1978, Strassmann 1987, Meretsky et al. 2006).

Monitoring is often the most discussed but least

implemented element of a conservation project or

management plan (Arnett and Sallabanks 1998). Conse-

quently, the ability of natural resource management

agencies and the bird conservation community to manage

resources is severely compromised (Lindenmayer and

Likens 2009, McDonald-Madden et al. 2010, Williams

2011). To address this issue, the Gulf of Mexico Avian

Monitoring Network (GoMAMN) has utilized a structured

decision-making process (Keeney 2009) to identify and

agree upon fundamental objectives that maximize the

relevance, scientific rigor, and integration of monitoring

efforts across agencies and organizations. Specifically,

GoMAMN has suggested that relevant monitoring efforts

should focus on (1) establishing reliable estimates of

population size and trends; (2) evaluating the effectiveness

of habitat restoration and management efforts for restor-

ing avian populations and their habitats; and (3) under-

standing how ecological processes affect birds and their
habitats (Wilson 2015; www.gomamn.org/). GoMAMN

provides a forum within which conservation partners can

collaborate and implement a coordinated monitoring

framework that recognizes and builds on established

monitoring programs. This monitoring framework will

connect, leverage, and integrate existing efforts into a

comprehensive avian monitoring program to address

contemporary and long-term conservation needs of avian

populations and their habitats within the GOM region.

Nearctic–Neotropical migratory birds are an interna-

tionally shared resource. Even if it were possible to

conserve and manage all stopover habitats on the GOM

coast of the United States, migratory birds would be

unlikely to benefit without comparable efforts in Mexico

and Cuba (e.g., Ruelas Inzunza et al. 2005, González-

Alonso et al. 2006, Deppe and Rotenberry 2008).

Therefore, understanding the population dynamics of

migratory birds requires the adoption of a truly collabo-

rative, multinational approach (Boom 2012). Traditionally,

the amicable relationship between Mexico and the United

States has facilitated the development of collaborations

and opportunities for applying many U.S.-based research

funds to projects based in Mexico. For example, the U.S.

Fish and Wildlife Service Neotropical Migratory Bird

Conservation Act and North American Wetlands Conser-

vation Act grants allow funds to be directed toward (1)

research and monitoring, (2) capacity building, (3) land

protection, restoration, and management, and (4) infra-

structure development in Mexico. There are many experts

studying migratory birds in Cuba (González-Alonso et al.

1992), and Mexican resource management agencies such

as the Secretary of the Environment and Natural Resources

(Secretaŕıa de Medio Ambiente y Recursos Naturales) and

National Council of Science and Technology (Consejo

Nacional de Ciencia y Tecnologı́a) provide funding

opportunities to coordinate with Cuban researchers. With

recent political changes, the potential for United States–

Cuba collaboration is poised to expand (Boom 2012).

Workshops jointly led by Cuban, Mexican, and U.S.

researchers have not only proven to be a successful way

to standardize methods and share expertise, but have also

served as a way to motivate participants to pursue research

on migratory birds (González-Alonso et al. 1992). Future

GoMAMN workshops focused on international scientific

exchange would help to advance international gulf-wide

monitoring and collaboration.

Future Research and Monitoring Needs

Comprehensive information about the distributions of

migratory species and their populations, habitat quality,

and threats will not be trivial to collect or synthesize given

the seasonal and annual variability of landbird migration

through the GOM region. Yet this information is essential

to understand the role of GOM coast habitats in declining

migratory landbird population trends and to predict the

impacts of future changes. Fortunately, many of the

logistical, technological, and analytical constraints on the

collection and utilization of these data no longer exist.

Until recently, detection of migrants was limited to

scattered field studies that primarily characterized local

distribution patterns and to a handful of tracking studies

that characterized the migratory behaviors of species large

enough to carry devices. Today, advances in technology

permit a number of new and innovative means to advance

our understanding of how landbirds utilize the GOM: (1)

weather surveillance radar is a tool for region-wide

mapping of the distribution of landbird species in stopover

and airspace habitat (e.g., Buler and Dawson 2014,

Farnsworth et al. 2016, Horton et al. 2016, Lafleur et al.

2016); (2) archival tracking devices are light enough to

follow the migratory behaviors of small birds (Hallworth

and Marra 2015); (3) automated radio-telemetry arrays are

a tool for detecting the passage locations of migrants

tagged on breeding or wintering ranges (e.g., Taylor et al.

2011, Deppe et al. 2015); (4) stable isotopes in tissues and

genetics are a means of assigning migrating individuals to

destination populations (e.g., Langin et al. 2009, Rushing et

al. 2014, Ruegg et al. 2016); and (5) citizen science data

(e.g., eBird) are increasingly available for mapping regional

distributions, timing, and habitat affiliations of many

species (La Sorte et al. 2014, Zuckerberg et al. 2016).

Concurrent with the emergence of these new technologies

to study and understand migratory birds around the GOM
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region, a new integrated and coordinated network of

scientists and land managers is providing a forum within

which to collaborate and communicate information for the

implementation of unified, increasingly multinational bird

monitoring efforts. We now have the opportunity not only

to understand the role of the GOM region in the

demography of migratory birds, but also to provide this

essential science to inform conservation strategies and

educate decision-makers, managers, landowners, and the

public sector about the billions of migratory birds that

move through and across the barrier islands, beaches,

marshes, open water, and airspace habitats of the GOM

region and are one of the Western Hemisphere’s greatest

living resources.

We emphasize these key research and monitoring needs

for intercontinental landbird migrants in the GOM region

during spring and fall:

(1) Comprehensive analysis of weather surveillance radar

data to identify and characterize stopover habitat

hotspots, including their consistency of use over time

and in relation to anthropogenic and natural changes;

(2) Comprehensive analysis of weather surveillance radar

data to identify airspace corridors, their characteris-

tics in relation to meteorology and climatology, and

their consistency of use over time and in relation to

anthropogenicand natural changes;

(3) Analysis of eBird data to map species-specific

distributions, timing, and landscape associations;

(4) Comprehensive monitoring (e.g., visual, banding,

acoustic) on oil platforms to measure distribution,

abundance, and mortality during passage over the

GOM;

(5) Comprehensive monitoring at a network of long-

term, coordinated coastal banding sites to collect

tissues and measure species-specific passage phenol-

ogy over time and the condition of migrants in

relation to competition, predation pressure, and food

resources;

(6) Analysis of stable isotopes in tissues collected from

migrating birds captured at stopover sites to measure

species-specific patterns of spatial and temporal en

route migratory connectivity with breeding latitudes;

(7) Comprehensive installation of tracking towers and

tagging of many species to measure migratory

connectivity across and around the GOM and

movements of populations relative to habitat quality

and conservation and restoration investments;

(8) Field studies of plant and insect food for migrants,

energetic value of these foods for migrants, and how

restoration can enhance these resources;

(9) Development of energy-based models to measure

landscape-scale stopover habitat quality for use in

adaptive management;

(10) Field and radar studies to measure attraction and

understand the potentially detrimental role of artifi-

cial light at night in urban landscapes and on oil

platforms;

(11) Comprehensive, high-resolution analysis of the spa-

tial distribution of risk and mortality attributed to

buildings, vehicles, pesticides, feral and domestic cats,

illegal capture and trade, communication cell towers,

and wind turbines; and

(12) Increased collaboration through GoMAMN around

the GOM region, including between the United

States, Mexico, and Cuba, as well as the establish-

ment of similar forums in countries where Nearctic–

Neotropical migratory landbirds breed and winter

(e.g., Canada, Central and South America, and the

Caribbean), to identify core values and needs to

enhance integrated, coordinated monitoring efforts.
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